mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00
parent
366c03271e
commit
7c8dd88d13
@ -217,7 +217,9 @@ class GPTQTest(unittest.TestCase):
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
self.quantized_model.save_pretrained(tmpdirname)
|
||||
if not self.use_exllama:
|
||||
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(tmpdirname).to(0)
|
||||
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(
|
||||
tmpdirname, quantization_config=GPTQConfig(use_exllama=False, bits=4)
|
||||
).to(0)
|
||||
self.check_quantized_layers_type(quantized_model_from_saved, "cuda-old")
|
||||
else:
|
||||
# we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel
|
||||
@ -242,12 +244,11 @@ class GPTQTest(unittest.TestCase):
|
||||
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||
self.quantized_model.save_pretrained(tmpdirname)
|
||||
if not self.use_exllama:
|
||||
self.assertEqual(self.quantized_model.config.quantization_config.use_exllama, False)
|
||||
self.check_quantized_layers_type(self.quantized_model, "cuda-old")
|
||||
# we need to put it directly to the gpu. Otherwise, we won't be able to initialize the exllama kernel
|
||||
quantized_model_from_saved = AutoModelForCausalLM.from_pretrained(
|
||||
tmpdirname, quantization_config=GPTQConfig(use_exllama=True, bits=4), device_map={"": 0}
|
||||
)
|
||||
self.assertEqual(quantized_model_from_saved.config.quantization_config.use_exllama, True)
|
||||
self.assertEqual(quantized_model_from_saved.config.quantization_config.bits, self.bits)
|
||||
self.check_quantized_layers_type(quantized_model_from_saved, "exllama")
|
||||
self.check_inference_correctness(quantized_model_from_saved)
|
||||
@ -279,10 +280,10 @@ class GPTQTestActOrderExllama(unittest.TestCase):
|
||||
"""
|
||||
|
||||
EXPECTED_OUTPUTS = set()
|
||||
EXPECTED_OUTPUTS.add("Hello my name is Katie and I am a 20 year")
|
||||
model_name = "hf-internal-testing/Llama-2-7B-GPTQ"
|
||||
revision = "gptq-4bit-128g-actorder_True"
|
||||
input_text = "Hello my name is"
|
||||
EXPECTED_OUTPUTS.add("Hello, how are you ? I'm doing good, thanks for asking.")
|
||||
# 4bit + act_order + 128g
|
||||
model_name = "hf-internal-testing/TinyLlama-1.1B-Chat-v0.3-GPTQ"
|
||||
input_text = "Hello, how are you ?"
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
@ -292,7 +293,6 @@ class GPTQTestActOrderExllama(unittest.TestCase):
|
||||
cls.quantization_config = GPTQConfig(bits=4, max_input_length=4028)
|
||||
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
|
||||
cls.model_name,
|
||||
revision=cls.revision,
|
||||
torch_dtype=torch.float16,
|
||||
device_map={"": 0},
|
||||
quantization_config=cls.quantization_config,
|
||||
@ -336,7 +336,7 @@ class GPTQTestActOrderExllama(unittest.TestCase):
|
||||
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)
|
||||
self.assertTrue("temp_state buffer is too small" in str(cm.exception))
|
||||
|
||||
prompt = "I am in Paris and" * 500
|
||||
prompt = "I am in Paris and"
|
||||
inp = self.tokenizer(prompt, return_tensors="pt").to(0)
|
||||
self.assertTrue(inp["input_ids"].shape[1] < 4028)
|
||||
self.quantized_model.generate(**inp, num_beams=1, min_new_tokens=3, max_new_tokens=3)
|
||||
@ -355,10 +355,10 @@ class GPTQTestExllamaV2(unittest.TestCase):
|
||||
"""
|
||||
|
||||
EXPECTED_OUTPUTS = set()
|
||||
EXPECTED_OUTPUTS.add("Hello my name is Katie and I am a 20 year")
|
||||
model_name = "hf-internal-testing/Llama-2-7B-GPTQ"
|
||||
revision = "gptq-4bit-128g-actorder_True"
|
||||
input_text = "Hello my name is"
|
||||
EXPECTED_OUTPUTS.add("Hello, how are you ? I'm doing good, thanks for asking.")
|
||||
# 4bit + act_order + 128g
|
||||
model_name = "hf-internal-testing/TinyLlama-1.1B-Chat-v0.3-GPTQ"
|
||||
input_text = "Hello, how are you ?"
|
||||
|
||||
@classmethod
|
||||
def setUpClass(cls):
|
||||
@ -368,7 +368,6 @@ class GPTQTestExllamaV2(unittest.TestCase):
|
||||
cls.quantization_config = GPTQConfig(bits=4, exllama_config={"version": 2})
|
||||
cls.quantized_model = AutoModelForCausalLM.from_pretrained(
|
||||
cls.model_name,
|
||||
revision=cls.revision,
|
||||
torch_dtype=torch.float16,
|
||||
device_map={"": 0},
|
||||
quantization_config=cls.quantization_config,
|
||||
|
Loading…
Reference in New Issue
Block a user