mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
Fixes for the documentation (#13361)
This commit is contained in:
parent
0b8c84e110
commit
7a26307e31
@ -87,7 +87,7 @@ class PretrainedConfig(PushToHubMixin):
|
||||
Whether cross-attention layers should be added to the model. Note, this option is only relevant for models
|
||||
that can be used as decoder models within the `:class:~transformers.EncoderDecoderModel` class, which
|
||||
consists of all models in ``AUTO_MODELS_FOR_CAUSAL_LM``.
|
||||
tie_encoder_decoder (:obj:`bool`, `optional`, defaults to :obj:`False`)
|
||||
tie_encoder_decoder (:obj:`bool`, `optional`, defaults to :obj:`False`):
|
||||
Whether all encoder weights should be tied to their equivalent decoder weights. This requires the encoder
|
||||
and decoder model to have the exact same parameter names.
|
||||
prune_heads (:obj:`Dict[int, List[int]]`, `optional`, defaults to :obj:`{}`):
|
||||
|
@ -16,6 +16,16 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from .data_collator import (
|
||||
DataCollatorForLanguageModeling,
|
||||
DataCollatorForPermutationLanguageModeling,
|
||||
DataCollatorForSeq2Seq,
|
||||
DataCollatorForSOP,
|
||||
DataCollatorForTokenClassification,
|
||||
DataCollatorForWholeWordMask,
|
||||
DataCollatorWithPadding,
|
||||
default_data_collator,
|
||||
)
|
||||
from .metrics import glue_compute_metrics, xnli_compute_metrics
|
||||
from .processors import (
|
||||
DataProcessor,
|
||||
|
@ -50,7 +50,7 @@ class HfDeepSpeedConfig:
|
||||
values: ``"auto"``. Without this special logic the DeepSpeed configuration is not modified in any way.
|
||||
|
||||
Args:
|
||||
config_file_or_dict (:obj:`Union[str, Dict]`) - path to DeepSpeed config file or dict.
|
||||
config_file_or_dict (:obj:`Union[str, Dict]`): path to DeepSpeed config file or dict.
|
||||
|
||||
"""
|
||||
|
||||
|
@ -1535,10 +1535,14 @@ def tf_top_k_top_p_filtering(logits, top_k=0, top_p=1.0, filter_value=-float("In
|
||||
|
||||
Args:
|
||||
logits: logits distribution shape (batch size, vocabulary size)
|
||||
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
||||
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
||||
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
||||
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
||||
top_k (:obj:`int`, `optional`, defaults to 0):
|
||||
If > 0, only keep the top k tokens with highest probability (top-k filtering)
|
||||
top_p (:obj:`float`, `optional`, defaults to 1.0):
|
||||
If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus
|
||||
filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
||||
min_tokens_to_keep (:obj:`int`, `optional`, defaults to 1):
|
||||
Minimumber of tokens we keep per batch example in the output.
|
||||
|
||||
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
||||
"""
|
||||
logits_shape = shape_list(logits)
|
||||
|
@ -2557,10 +2557,14 @@ def top_k_top_p_filtering(
|
||||
|
||||
Args:
|
||||
logits: logits distribution shape (batch size, vocabulary size)
|
||||
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
||||
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
||||
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
||||
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
||||
top_k (:obj:`int`, `optional`, defaults to 0):
|
||||
If > 0, only keep the top k tokens with highest probability (top-k filtering)
|
||||
top_p (:obj:`float`, `optional`, defaults to 1.0):
|
||||
If < 1.0, only keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus
|
||||
filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
||||
min_tokens_to_keep (:obj:`int`, `optional`, defaults to 1):
|
||||
Minimumber of tokens we keep per batch example in the output.
|
||||
|
||||
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
||||
"""
|
||||
if top_k > 0:
|
||||
|
@ -78,7 +78,7 @@ class Speech2TextConfig(PretrainedConfig):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models).
|
||||
max_source_positions (:obj:`int`, `optional`, defaults to 6000):
|
||||
The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
|
||||
max_target_positions: (:obj:`int`, `optional`, defaults to 1024):
|
||||
max_target_positions (:obj:`int`, `optional`, defaults to 1024):
|
||||
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
||||
just in case (e.g., 512 or 1024 or 2048).
|
||||
num_conv_layers (:obj:`int`, `optional`, defaults to 2):
|
||||
@ -95,7 +95,7 @@ class Speech2TextConfig(PretrainedConfig):
|
||||
input_channels (:obj:`int`, `optional`, defaults to 1):
|
||||
An integer specifying number of input channels of the input feature vector.
|
||||
|
||||
Example::
|
||||
Example::
|
||||
|
||||
>>> from transformers import Speech2TextModel, Speech2TextConfig
|
||||
|
||||
|
@ -306,10 +306,10 @@ def pipeline(
|
||||
|
||||
- :obj:`"feature-extraction"`: will return a :class:`~transformers.FeatureExtractionPipeline`.
|
||||
- :obj:`"text-classification"`: will return a :class:`~transformers.TextClassificationPipeline`.
|
||||
- :obj:`"sentiment-analysis"`: (alias of :obj:`"text-classification") will return a
|
||||
- :obj:`"sentiment-analysis"`: (alias of :obj:`"text-classification"`) will return a
|
||||
:class:`~transformers.TextClassificationPipeline`.
|
||||
- :obj:`"token-classification"`: will return a :class:`~transformers.TokenClassificationPipeline`.
|
||||
- :obj:`"ner"` (alias of :obj:`"token-classification"): will return a
|
||||
- :obj:`"ner"` (alias of :obj:`"token-classification"`): will return a
|
||||
:class:`~transformers.TokenClassificationPipeline`.
|
||||
- :obj:`"question-answering"`: will return a :class:`~transformers.QuestionAnsweringPipeline`.
|
||||
- :obj:`"fill-mask"`: will return a :class:`~transformers.FillMaskPipeline`.
|
||||
|
Loading…
Reference in New Issue
Block a user