mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Fix template for inputs docstrings (#12976)
This commit is contained in:
parent
75b8990d90
commit
790f1c9545
@ -1789,7 +1789,7 @@ BIG_BIRD_START_DOCSTRING = r"""
|
||||
|
||||
BIG_BIRD_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using :class:`transformers.BigBirdTokenizer`. See
|
||||
@ -1797,14 +1797,14 @@ BIG_BIRD_INPUTS_DOCSTRING = r"""
|
||||
details.
|
||||
|
||||
`What are input IDs? <../glossary.html#input-ids>`__
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
||||
1]``:
|
||||
|
||||
@ -1812,7 +1812,7 @@ BIG_BIRD_INPUTS_DOCSTRING = r"""
|
||||
- 1 corresponds to a `sentence B` token.
|
||||
|
||||
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
||||
config.max_position_embeddings - 1]``.
|
||||
|
||||
@ -1823,7 +1823,7 @@ BIG_BIRD_INPUTS_DOCSTRING = r"""
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
||||
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
@ -1967,7 +1967,7 @@ class BigBirdModel(BigBirdPreTrainedModel):
|
||||
self.attention_type = value
|
||||
self.encoder.set_attention_type(value)
|
||||
|
||||
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -2374,7 +2374,7 @@ class BigBirdForMaskedLM(BigBirdPreTrainedModel):
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.cls.predictions.decoder = new_embeddings
|
||||
|
||||
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -2832,7 +2832,7 @@ class BigBirdForTokenClassification(BigBirdPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -2940,7 +2940,7 @@ class BigBirdForQuestionAnswering(BigBirdPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(BIG_BIRD_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint="google/bigbird-base-trivia-itc",
|
||||
|
@ -928,7 +928,7 @@ CANINE_START_DOCSTRING = r"""
|
||||
|
||||
CANINE_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using :class:`transformers.CanineTokenizer`. See
|
||||
@ -936,14 +936,14 @@ CANINE_INPUTS_DOCSTRING = r"""
|
||||
details.
|
||||
|
||||
`What are input IDs? <../glossary.html#input-ids>`__
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
||||
1]``:
|
||||
|
||||
@ -951,7 +951,7 @@ CANINE_INPUTS_DOCSTRING = r"""
|
||||
- 1 corresponds to a `sentence B` token.
|
||||
|
||||
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
||||
config.max_position_embeddings - 1]``.
|
||||
|
||||
@ -962,7 +962,7 @@ CANINE_INPUTS_DOCSTRING = r"""
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
||||
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
@ -1088,7 +1088,7 @@ class CanineModel(CaninePreTrainedModel):
|
||||
# `repeated`: [batch_size, char_seq_len, molecule_hidden_size]
|
||||
return torch.cat([repeated, remainder_repeated], dim=-2)
|
||||
|
||||
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -1458,7 +1458,7 @@ class CanineForTokenClassification(CaninePreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -1545,7 +1545,7 @@ class CanineForQuestionAnswering(CaninePreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(CANINE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
|
@ -689,7 +689,7 @@ CONVBERT_START_DOCSTRING = r"""
|
||||
|
||||
CONVBERT_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using :class:`transformers.ConvBertTokenizer`. See
|
||||
@ -697,7 +697,7 @@ CONVBERT_INPUTS_DOCSTRING = r"""
|
||||
details.
|
||||
|
||||
`What are input IDs? <../glossary.html#input-ids>`__
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
||||
|
||||
|
||||
@ -705,7 +705,7 @@ CONVBERT_INPUTS_DOCSTRING = r"""
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
||||
1]``:
|
||||
|
||||
@ -714,7 +714,7 @@ CONVBERT_INPUTS_DOCSTRING = r"""
|
||||
- 1 corresponds to a `sentence B` token.
|
||||
|
||||
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
||||
config.max_position_embeddings - 1]``.
|
||||
|
||||
@ -726,7 +726,7 @@ CONVBERT_INPUTS_DOCSTRING = r"""
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
||||
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
@ -1163,7 +1163,7 @@ class ConvBertForTokenClassification(ConvBertPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -1250,7 +1250,7 @@ class ConvBertForQuestionAnswering(ConvBertPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(CONVBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
|
@ -794,7 +794,7 @@ DEBERTA_START_DOCSTRING = r"""
|
||||
|
||||
DEBERTA_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using :class:`transformers.DebertaTokenizer`. See
|
||||
@ -802,14 +802,14 @@ DEBERTA_INPUTS_DOCSTRING = r"""
|
||||
details.
|
||||
|
||||
`What are input IDs? <../glossary.html#input-ids>`__
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
||||
1]``:
|
||||
|
||||
@ -817,12 +817,12 @@ DEBERTA_INPUTS_DOCSTRING = r"""
|
||||
- 1 corresponds to a `sentence B` token.
|
||||
|
||||
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
||||
config.max_position_embeddings - 1]``.
|
||||
|
||||
`What are position IDs? <../glossary.html#position-ids>`_
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
||||
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
|
@ -915,7 +915,7 @@ DEBERTA_START_DOCSTRING = r"""
|
||||
|
||||
DEBERTA_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using :class:`transformers.DebertaV2Tokenizer`. See
|
||||
@ -923,14 +923,14 @@ DEBERTA_INPUTS_DOCSTRING = r"""
|
||||
details.
|
||||
|
||||
`What are input IDs? <../glossary.html#input-ids>`__
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
||||
1]``:
|
||||
|
||||
@ -938,12 +938,12 @@ DEBERTA_INPUTS_DOCSTRING = r"""
|
||||
- 1 corresponds to a `sentence B` token.
|
||||
|
||||
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
||||
config.max_position_embeddings - 1]``.
|
||||
|
||||
`What are position IDs? <../glossary.html#position-ids>`_
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
||||
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
|
@ -466,7 +466,7 @@ class DeiTModel(DeiTPreTrainedModel):
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
@ -570,7 +570,7 @@ class DeiTForImageClassification(DeiTPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
@ -707,7 +707,7 @@ class DeiTForImageClassificationWithTeacher(DeiTPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=DeiTForImageClassificationWithTeacherOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
|
@ -774,7 +774,7 @@ class IBertModel(IBertPreTrainedModel):
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(IBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
|
@ -509,7 +509,7 @@ class MPNetModel(MPNetPreTrainedModel):
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -867,7 +867,7 @@ class MPNetForTokenClassification(MPNetPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(MPNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
|
@ -680,7 +680,7 @@ REMBERT_START_DOCSTRING = r"""
|
||||
|
||||
REMBERT_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using :class:`transformers.RemBertTokenizer`. See
|
||||
@ -688,14 +688,14 @@ REMBERT_INPUTS_DOCSTRING = r"""
|
||||
details.
|
||||
|
||||
`What are input IDs? <../glossary.html#input-ids>`__
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
||||
1]``:
|
||||
|
||||
@ -703,7 +703,7 @@ REMBERT_INPUTS_DOCSTRING = r"""
|
||||
- 1 corresponds to a `sentence B` token.
|
||||
|
||||
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
|
||||
config.max_position_embeddings - 1]``.
|
||||
|
||||
@ -714,7 +714,7 @@ REMBERT_INPUTS_DOCSTRING = r"""
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
||||
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
@ -772,7 +772,7 @@ class RemBertModel(RemBertPreTrainedModel):
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint="rembert",
|
||||
@ -925,7 +925,7 @@ class RemBertForMaskedLM(RemBertPreTrainedModel):
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.cls.predictions.decoder = new_embeddings
|
||||
|
||||
@add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint="rembert",
|
||||
@ -1343,7 +1343,7 @@ class RemBertForTokenClassification(RemBertPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint="rembert",
|
||||
@ -1431,7 +1431,7 @@ class RemBertForQuestionAnswering(RemBertPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(REMBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint="rembert",
|
||||
|
@ -730,7 +730,7 @@ class RobertaModel(RobertaPreTrainedModel):
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
|
@ -744,7 +744,7 @@ ROFORMER_START_DOCSTRING = r"""
|
||||
|
||||
ROFORMER_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using :class:`transformers.RoFormerTokenizer`. See
|
||||
@ -752,14 +752,14 @@ ROFORMER_INPUTS_DOCSTRING = r"""
|
||||
details.
|
||||
|
||||
`What are input IDs? <../glossary.html#input-ids>`__
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
||||
1]``:
|
||||
|
||||
@ -773,7 +773,7 @@ ROFORMER_INPUTS_DOCSTRING = r"""
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
||||
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
@ -832,7 +832,7 @@ class RoFormerModel(RoFormerPreTrainedModel):
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -981,7 +981,7 @@ class RoFormerForMaskedLM(RoFormerPreTrainedModel):
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.cls.predictions.decoder = new_embeddings
|
||||
|
||||
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -1412,7 +1412,7 @@ class RoFormerForTokenClassification(RoFormerPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -1499,7 +1499,7 @@ class RoFormerForQuestionAnswering(RoFormerPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(ROFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
|
@ -569,7 +569,7 @@ class SqueezeBertModel(SqueezeBertPreTrainedModel):
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -662,7 +662,7 @@ class SqueezeBertForMaskedLM(SqueezeBertPreTrainedModel):
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.cls.predictions.decoder = new_embeddings
|
||||
|
||||
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -741,7 +741,7 @@ class SqueezeBertForSequenceClassification(SqueezeBertPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -839,7 +839,7 @@ class SqueezeBertForMultipleChoice(SqueezeBertPreTrainedModel):
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(
|
||||
SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)")
|
||||
SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
||||
)
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
@ -932,7 +932,7 @@ class SqueezeBertForTokenClassification(SqueezeBertPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -1019,7 +1019,7 @@ class SqueezeBertForQuestionAnswering(SqueezeBertPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
|
@ -452,7 +452,7 @@ class ViTModel(ViTPreTrainedModel):
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
@ -555,7 +555,7 @@ class ViTForImageClassification(ViTPreTrainedModel):
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING)
|
||||
@replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
|
||||
def forward(
|
||||
self,
|
||||
|
@ -861,7 +861,7 @@ XLNET_START_DOCSTRING = r"""
|
||||
|
||||
XLNET_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using :class:`transformers.XLNetTokenizer`. See
|
||||
|
@ -696,7 +696,7 @@ class {{cookiecutter.camelcase_modelname}}PreTrainedModel(PreTrainedModel):
|
||||
|
||||
{{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
|
||||
input_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using :class:`transformers.{{cookiecutter.camelcase_modelname}}Tokenizer`.
|
||||
@ -704,14 +704,14 @@ class {{cookiecutter.camelcase_modelname}}PreTrainedModel(PreTrainedModel):
|
||||
:func:`transformers.PreTrainedTokenizer.__call__` for details.
|
||||
|
||||
`What are input IDs? <../glossary.html#input-ids>`__
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`):
|
||||
attention_mask (:obj:`torch.FloatTensor` of shape :obj:`({0})`, `optional`):
|
||||
Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
|
||||
|
||||
- 1 for tokens that are **not masked**,
|
||||
- 0 for tokens that are **masked**.
|
||||
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
token_type_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
|
||||
1]``:
|
||||
|
||||
@ -719,7 +719,7 @@ class {{cookiecutter.camelcase_modelname}}PreTrainedModel(PreTrainedModel):
|
||||
- 1 corresponds to a `sentence B` token.
|
||||
|
||||
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`):
|
||||
position_ids (:obj:`torch.LongTensor` of shape :obj:`({0})`, `optional`):
|
||||
Indices of positions of each input sequence tokens in the position embeddings.
|
||||
Selected in the range ``[0, config.max_position_embeddings - 1]``.
|
||||
|
||||
@ -730,7 +730,7 @@ class {{cookiecutter.camelcase_modelname}}PreTrainedModel(PreTrainedModel):
|
||||
- 1 indicates the head is **not masked**,
|
||||
- 0 indicates the head is **masked**.
|
||||
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
|
||||
inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`({0}, hidden_size)`, `optional`):
|
||||
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
@ -788,7 +788,7 @@ class {{cookiecutter.camelcase_modelname}}Model({{cookiecutter.camelcase_modelna
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.encoder.layer[layer].attention.prune_heads(heads)
|
||||
|
||||
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -947,7 +947,7 @@ class {{cookiecutter.camelcase_modelname}}ForMaskedLM({{cookiecutter.camelcase_m
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.cls.predictions.decoder = new_embeddings
|
||||
|
||||
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -1385,7 +1385,7 @@ class {{cookiecutter.camelcase_modelname}}ForTokenClassification({{cookiecutter.
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
@ -1472,7 +1472,7 @@ class {{cookiecutter.camelcase_modelname}}ForQuestionAnswering({{cookiecutter.ca
|
||||
|
||||
self.init_weights()
|
||||
|
||||
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
|
||||
@add_start_docstrings_to_model_forward({{cookiecutter.uppercase_modelname}}_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||||
@add_code_sample_docstrings(
|
||||
tokenizer_class=_TOKENIZER_FOR_DOC,
|
||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||
|
Loading…
Reference in New Issue
Block a user