mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00
[FSMT] Fix non-shared weights (#26187)
* Fix non-shared weights * Add tests * Edit tied weights keys
This commit is contained in:
parent
f0a6057fbc
commit
77ed9fa1a9
@ -1034,7 +1034,7 @@ def _get_shape(t):
|
|||||||
FSMT_START_DOCSTRING,
|
FSMT_START_DOCSTRING,
|
||||||
)
|
)
|
||||||
class FSMTModel(PretrainedFSMTModel):
|
class FSMTModel(PretrainedFSMTModel):
|
||||||
_tied_weights_keys = ["decoder.embed_tokens.weight"]
|
_tied_weights_keys = ["decoder.embed_tokens.weight", "decoder.output_projection.weight"]
|
||||||
|
|
||||||
def __init__(self, config: FSMTConfig):
|
def __init__(self, config: FSMTConfig):
|
||||||
super().__init__(config)
|
super().__init__(config)
|
||||||
@ -1055,6 +1055,10 @@ class FSMTModel(PretrainedFSMTModel):
|
|||||||
def get_decoder(self):
|
def get_decoder(self):
|
||||||
return self.decoder
|
return self.decoder
|
||||||
|
|
||||||
|
def _tie_weights(self):
|
||||||
|
self._tie_or_clone_weights(self.decoder.embed_tokens, self.get_input_embeddings())
|
||||||
|
self._tie_or_clone_weights(self.decoder.output_projection, self.get_input_embeddings())
|
||||||
|
|
||||||
@add_start_docstrings_to_model_forward(FSMT_INPUTS_DOCSTRING)
|
@add_start_docstrings_to_model_forward(FSMT_INPUTS_DOCSTRING)
|
||||||
@add_code_sample_docstrings(
|
@add_code_sample_docstrings(
|
||||||
checkpoint=_CHECKPOINT_FOR_DOC,
|
checkpoint=_CHECKPOINT_FOR_DOC,
|
||||||
@ -1171,7 +1175,7 @@ class FSMTModel(PretrainedFSMTModel):
|
|||||||
)
|
)
|
||||||
class FSMTForConditionalGeneration(PretrainedFSMTModel):
|
class FSMTForConditionalGeneration(PretrainedFSMTModel):
|
||||||
base_model_prefix = "model"
|
base_model_prefix = "model"
|
||||||
_tied_weights_keys = ["model.decoder.embed_tokens.weight"]
|
_tied_weights_keys = ["decoder.embed_tokens.weight", "decoder.output_projection.weight"]
|
||||||
|
|
||||||
def __init__(self, config: FSMTConfig):
|
def __init__(self, config: FSMTConfig):
|
||||||
super().__init__(config)
|
super().__init__(config)
|
||||||
|
@ -271,6 +271,23 @@ class FSMTModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin
|
|||||||
input_names=["input_ids", "attention_mask"],
|
input_names=["input_ids", "attention_mask"],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def test_ensure_weights_are_shared(self):
|
||||||
|
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
|
||||||
|
model = FSMTForConditionalGeneration(config)
|
||||||
|
|
||||||
|
# FSMT shares three weights.
|
||||||
|
# Not an issue to not have these correctly tied for torch.load, but it is an issue for safetensors.
|
||||||
|
self.assertEqual(
|
||||||
|
len(
|
||||||
|
{
|
||||||
|
model.get_output_embeddings().weight.data_ptr(),
|
||||||
|
model.get_input_embeddings().weight.data_ptr(),
|
||||||
|
model.base_model.decoder.output_projection.weight.data_ptr(),
|
||||||
|
}
|
||||||
|
),
|
||||||
|
1,
|
||||||
|
)
|
||||||
|
|
||||||
@unittest.skip("can't be implemented for FSMT due to dual vocab.")
|
@unittest.skip("can't be implemented for FSMT due to dual vocab.")
|
||||||
def test_resize_tokens_embeddings(self):
|
def test_resize_tokens_embeddings(self):
|
||||||
pass
|
pass
|
||||||
|
Loading…
Reference in New Issue
Block a user