Merge branch 'main' into trackio
Some checks are pending
Secret Leaks / trufflehog (push) Waiting to run

This commit is contained in:
Quentin Gallouédec 2025-06-19 22:14:28 +02:00 committed by GitHub
commit 7742d63d17
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
1417 changed files with 22333 additions and 17985 deletions

View File

@ -8,13 +8,19 @@ check_dirs := examples tests src utils
exclude_folders := ""
modified_only_fixup:
$(eval modified_py_files := $(shell python utils/get_modified_files.py $(check_dirs)))
@if test -n "$(modified_py_files)"; then \
echo "Checking/fixing $(modified_py_files)"; \
ruff check $(modified_py_files) --fix --exclude $(exclude_folders); \
ruff format $(modified_py_files) --exclude $(exclude_folders);\
@current_branch=$$(git branch --show-current); \
if [ "$$current_branch" = "main" ]; then \
echo "On main branch, running 'style' target instead..."; \
$(MAKE) style; \
else \
echo "No library .py files were modified"; \
modified_py_files=$$(python utils/get_modified_files.py $(check_dirs)); \
if [ -n "$$modified_py_files" ]; then \
echo "Checking/fixing files: $${modified_py_files}"; \
ruff check $${modified_py_files} --fix --exclude $(exclude_folders); \
ruff format $${modified_py_files} --exclude $(exclude_folders); \
else \
echo "No library .py files were modified"; \
fi; \
fi
# Update src/transformers/dependency_versions_table.py

View File

@ -28,7 +28,7 @@ class MetricsRecorder:
self.commit_id = commit_id
self.commit_msg = commit_msg
def initialise_benchmark(self, metadata: Dict[str, str]) -> int:
def initialise_benchmark(self, metadata: dict[str, str]) -> int:
"""
Creates a new benchmark, returns the benchmark id
"""
@ -55,7 +55,7 @@ class MetricsRecorder:
f"inserted device measurements for benchmark #{benchmark_id} [CPU util: {cpu_util}, mem MBs: {mem_megabytes}, GPU util: {gpu_util}, GPU mem MBs: {gpu_mem_megabytes}]"
)
def collect_model_measurements(self, benchmark_id: int, measurements: Dict[str, float]):
def collect_model_measurements(self, benchmark_id: int, measurements: dict[str, float]):
with self.conn.cursor() as cur:
cur.execute(
"""
@ -85,7 +85,7 @@ handler.setFormatter(formatter)
logger.addHandler(handler)
def parse_arguments() -> Tuple[str, str, str, str]:
def parse_arguments() -> tuple[str, str, str, str]:
"""
Parse command line arguments for the benchmarking CLI.
"""

View File

@ -278,7 +278,7 @@ Here's an example of a single value return:
```python
Returns:
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
`list[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
```
Here's an example of a tuple return, comprising several objects:

View File

@ -30,7 +30,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers: list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -23,14 +23,6 @@
title: Modular Transformers
- local: auto_docstring
title: Document your models
- local: task_summary
title: What 🤗 Transformers can do
- local: tasks_explained
title: How 🤗 Transformers solve tasks
- local: model_summary
title: The Transformer model family
- local: attention
title: Attention mechanisms
- local: attention_interface
title: Customizing attention function
title: Models
@ -751,6 +743,8 @@
title: ImageGPT
- local: model_doc/levit
title: LeViT
- local: model_doc/lightglue
title: LightGlue
- local: model_doc/mask2former
title: Mask2Former
- local: model_doc/maskformer

View File

@ -75,7 +75,7 @@ training_args = TrainingArguments(
per_device_eval_batch_size=16,
num_train_epochs=2,
fsdp_config="path/to/fsdp_config",
fsdp_strategy="full_shard",
fsdp="full_shard",
weight_decay=0.01,
eval_strategy="epoch",
save_strategy="epoch",

View File

@ -571,7 +571,7 @@ The processor should call the appropriate modality-specific processors within it
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[YourModelProcessorKwargs],

View File

@ -1,61 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Attention mechanisms
Most transformer models use full attention in the sense that the attention matrix is square. It can be a big
computational bottleneck when you have long texts. Longformer and reformer are models that try to be more efficient and
use a sparse version of the attention matrix to speed up training.
## LSH attention
[Reformer](model_doc/reformer) uses LSH attention. In the softmax(QK^t), only the biggest elements (in the softmax
dimension) of the matrix QK^t are going to give useful contributions. So for each query q in Q, we can consider only
the keys k in K that are close to q. A hash function is used to determine if q and k are close. The attention mask is
modified to mask the current token (except at the first position), because it will give a query and a key equal (so
very similar to each other). Since the hash can be a bit random, several hash functions are used in practice
(determined by a n_rounds parameter) and then are averaged together.
## Local attention
[Longformer](model_doc/longformer) uses local attention: often, the local context (e.g., what are the two tokens to the
left and right?) is enough to take action for a given token. Also, by stacking attention layers that have a small
window, the last layer will have a receptive field of more than just the tokens in the window, allowing them to build a
representation of the whole sentence.
Some preselected input tokens are also given global attention: for those few tokens, the attention matrix can access
all tokens and this process is symmetric: all other tokens have access to those specific tokens (on top of the ones in
their local window). This is shown in Figure 2d of the paper, see below for a sample attention mask:
<div class="flex justify-center">
<img scale="50 %" align="center" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/local_attention_mask.png"/>
</div>
Using those attention matrices with less parameters then allows the model to have inputs having a bigger sequence
length.
## Other tricks
### Axial positional encodings
[Reformer](model_doc/reformer) uses axial positional encodings: in traditional transformer models, the positional encoding
E is a matrix of size \\(l\\) by \\(d\\), \\(l\\) being the sequence length and \\(d\\) the dimension of the
hidden state. If you have very long texts, this matrix can be huge and take way too much space on the GPU. To alleviate
that, axial positional encodings consist of factorizing that big matrix E in two smaller matrices E1 and E2, with
dimensions \\(l_{1} \times d_{1}\\) and \\(l_{2} \times d_{2}\\), such that \\(l_{1} \times l_{2} = l\\) and
\\(d_{1} + d_{2} = d\\) (with the product for the lengths, this ends up being way smaller). The embedding for time
step \\(j\\) in E is obtained by concatenating the embeddings for timestep \\(j \% l1\\) in E1 and \\(j // l1\\)
in E2.

View File

@ -92,7 +92,7 @@ def custom_attention(
a_new_kwargs = None, # You can now add as many kwargs as you need
another_new_kwargs = None, # You can now add as many kwargs as you need
**kwargs, # You need to accept **kwargs as models will pass other args
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]
) -> tuple[torch.Tensor, Optional[torch.Tensor]]
... # do your magic!
return attn_output, attn_weights # attn_weights are optional here

View File

@ -47,7 +47,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers: list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -59,3 +59,6 @@ Transformers is designed for developers and machine learning engineers and resea
</a>
</div>
## Learn
If you're new to Transformers or want to learn more about transformer models, we recommend starting with the [LLM course](https://huggingface.co/learn/llm-course/chapter1/1?fw=pt). This comprehensive course covers everything from the fundamentals of how transformer models work to practical applications across various tasks. You'll learn the complete workflow, from curating high-quality datasets to fine-tuning large language models and implementing reasoning capabilities. The course contains both theoretical and hands-on exercises to build a solid foundational knowledge of transformer models as you learn.

View File

@ -152,7 +152,7 @@ print(tokenizer.batch_decode(outputs, skip_special_tokens=True))
| `temperature` | `float` | How unpredictable the next selected token will be. High values (`>0.8`) are good for creative tasks, low values (e.g. `<0.4`) for tasks that require "thinking". Requires `do_sample=True`. |
| `num_beams` | `int` | When set to `>1`, activates the beam search algorithm. Beam search is good on input-grounded tasks. Check [this guide](./generation_strategies.md) for more information. |
| `repetition_penalty` | `float` | Set it to `>1.0` if you're seeing the model repeat itself often. Larger values apply a larger penalty. |
| `eos_token_id` | `List[int]` | The token(s) that will cause generation to stop. The default value is usually good, but you can specify a different token. |
| `eos_token_id` | `list[int]` | The token(s) that will cause generation to stop. The default value is usually good, but you can specify a different token. |
## Pitfalls

View File

@ -14,130 +14,112 @@ rendered properly in your Markdown viewer.
-->
# ALBERT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
<img alt= "TensorFlow" src= "https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white" >
<img alt= "Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style…Nu+W0m6K/I9gGPd/dfx/EN/wN62AhsBWuAAAAAElFTkSuQmCC">
<img alt="SDPA" src= "https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white" >
</div>
</div>
## Overview
# ALBERT
The ALBERT model was proposed in [ALBERT: A Lite BERT for Self-supervised Learning of Language Representations](https://huggingface.co/papers/1909.11942) by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,
Radu Soricut. It presents two parameter-reduction techniques to lower memory consumption and increase the training
speed of BERT:
[ALBERT](https://huggingface.co/papers/1909.11942) is designed to address memory limitations of scaling and training of [BERT](./bert). It adds two parameter reduction techniques. The first, factorized embedding parametrization, splits the larger vocabulary embedding matrix into two smaller matrices so you can grow the hidden size without adding a lot more parameters. The second, cross-layer parameter sharing, allows layer to share parameters which keeps the number of learnable parameters lower.
- Splitting the embedding matrix into two smaller matrices.
- Using repeating layers split among groups.
ALBERT was created to address problems like -- GPU/TPU memory limitations, longer training times, and unexpected model degradation in BERT. ALBERT uses two parameter-reduction techniques to lower memory consumption and increase the training speed of BERT:
The abstract from the paper is the following:
- **Factorized embedding parameterization:** The large vocabulary embedding matrix is decomposed into two smaller matrices, reducing memory consumption.
- **Cross-layer parameter sharing:** Instead of learning separate parameters for each transformer layer, ALBERT shares parameters across layers, further reducing the number of learnable weights.
*Increasing model size when pretraining natural language representations often results in improved performance on
downstream tasks. However, at some point further model increases become harder due to GPU/TPU memory limitations,
longer training times, and unexpected model degradation. To address these problems, we present two parameter-reduction
techniques to lower memory consumption and increase the training speed of BERT. Comprehensive empirical evidence shows
that our proposed methods lead to models that scale much better compared to the original BERT. We also use a
self-supervised loss that focuses on modeling inter-sentence coherence, and show it consistently helps downstream tasks
with multi-sentence inputs. As a result, our best model establishes new state-of-the-art results on the GLUE, RACE, and
SQuAD benchmarks while having fewer parameters compared to BERT-large.*
ALBERT uses absolute position embeddings (like BERT) so padding is applied at right. Size of embeddings is 128 While BERT uses 768. ALBERT can processes maximum 512 token at a time.
This model was contributed by [lysandre](https://huggingface.co/lysandre). This model jax version was contributed by
[kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/google-research/ALBERT).
You can find all the original ALBERT checkpoints under the [ALBERT community](https://huggingface.co/albert) organization.
## Usage tips
> [!TIP]
> Click on the ALBERT models in the right sidebar for more examples of how to apply ALBERT to different language tasks.
- ALBERT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather
than the left.
- ALBERT uses repeating layers which results in a small memory footprint, however the computational cost remains
similar to a BERT-like architecture with the same number of hidden layers as it has to iterate through the same
number of (repeating) layers.
- Embedding size E is different from hidden size H justified because the embeddings are context independent (one embedding vector represents one token), whereas hidden states are context dependent (one hidden state represents a sequence of tokens) so it's more logical to have H >> E. Also, the embedding matrix is large since it's V x E (V being the vocab size). If E < H, it has less parameters.
- Layers are split in groups that share parameters (to save memory).
Next sentence prediction is replaced by a sentence ordering prediction: in the inputs, we have two sentences A and B (that are consecutive) and we either feed A followed by B or B followed by A. The model must predict if they have been swapped or not.
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
### Using Scaled Dot Product Attention (SDPA)
<hfoptions id="usage">
<hfoption id="Pipeline">
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
```py
import torch
from transformers import pipeline
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```
from transformers import AlbertModel
model = AlbertModel.from_pretrained("albert/albert-base-v1", torch_dtype=torch.float16, attn_implementation="sdpa")
...
pipeline = pipeline(
task="fill-mask",
model="albert-base-v2",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create [MASK] through a process known as photosynthesis.", top_k=5)
```
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
</hfoption>
<hfoption id="AutoModel">
On a local benchmark (GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16`, we saw the
following speedups during training and inference.
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
#### Training for 100 iterations
tokenizer = AutoTokenizer.from_pretrained("albert/albert-base-v2")
model = AutoModelForMaskedLM.from_pretrained(
"albert/albert-base-v2",
torch_dtype=torch.float16,
attn_implementation="sdpa",
device_map="auto"
)
|batch_size|seq_len|Time per batch (eager - s)| Time per batch (sdpa - s)| Speedup (%)| Eager peak mem (MB)| sdpa peak mem (MB)| Mem saving (%)|
|----------|-------|--------------------------|--------------------------|------------|--------------------|-------------------|---------------|
|2 |256 |0.028 |0.024 |14.388 |358.411 |321.088 |11.624 |
|2 |512 |0.049 |0.041 |17.681 |753.458 |602.660 |25.022 |
|4 |256 |0.044 |0.039 |12.246 |679.534 |602.660 |12.756 |
|4 |512 |0.090 |0.076 |18.472 |1434.820 |1134.140 |26.512 |
|8 |256 |0.081 |0.072 |12.664 |1283.825 |1134.140 |13.198 |
|8 |512 |0.170 |0.143 |18.957 |2820.398 |2219.695 |27.062 |
prompt = "Plants create energy through a process known as [MASK]."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
#### Inference with 50 batches
with torch.no_grad():
outputs = model(**inputs)
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
predictions = outputs.logits[0, mask_token_index]
|batch_size|seq_len|Per token latency eager (ms)|Per token latency SDPA (ms)|Speedup (%) |Mem eager (MB)|Mem BT (MB)|Mem saved (%)|
|----------|-------|----------------------------|---------------------------|------------|--------------|-----------|-------------|
|4 |128 |0.083 |0.071 |16.967 |48.319 |48.45 |-0.268 |
|4 |256 |0.148 |0.127 |16.37 |63.4 |63.922 |-0.817 |
|4 |512 |0.31 |0.247 |25.473 |110.092 |94.343 |16.693 |
|8 |128 |0.137 |0.124 |11.102 |63.4 |63.66 |-0.409 |
|8 |256 |0.271 |0.231 |17.271 |91.202 |92.246 |-1.132 |
|8 |512 |0.602 |0.48 |25.47 |186.159 |152.564 |22.021 |
|16 |128 |0.252 |0.224 |12.506 |91.202 |91.722 |-0.567 |
|16 |256 |0.526 |0.448 |17.604 |148.378 |150.467 |-1.388 |
|16 |512 |1.203 |0.96 |25.365 |338.293 |271.102 |24.784 |
top_k = torch.topk(predictions, k=5).indices.tolist()
for token_id in top_k[0]:
print(f"Prediction: {tokenizer.decode([token_id])}")
```
This model was contributed by [lysandre](https://huggingface.co/lysandre). This model jax version was contributed by
[kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/google-research/ALBERT).
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers run --task fill-mask --model albert-base-v2 --device 0
```
</hfoption>
</hfoptions>
## Notes
- Inputs should be padded on the right because BERT uses absolute position embeddings.
- The embedding size `E` is different from the hidden size `H` because the embeddings are context independent (one embedding vector represents one token) and the hidden states are context dependent (one hidden state represents a sequence of tokens). The embedding matrix is also larger because `V x E` where `V` is the vocabulary size. As a result, it's more logical if `H >> E`. If `E < H`, the model has less parameters.
## Resources
The resources provided in the following sections consist of a list of official Hugging Face and community (indicated by 🌎) resources to help you get started with AlBERT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
<PipelineTag pipeline="text-classification"/>
- [`AlbertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification).
- [`TFAlbertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification).
- [`FlaxAlbertForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb).
- Check the [Text classification task guide](../tasks/sequence_classification) on how to use the model.
<PipelineTag pipeline="token-classification"/>
- [`AlbertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification).
- [`TFAlbertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
- [`FlaxAlbertForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification).
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 🤗 Hugging Face Course.
- Check the [Token classification task guide](../tasks/token_classification) on how to use the model.
@ -163,8 +145,7 @@ The resources provided in the following sections consist of a list of official H
- [`AlbertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb).
- [`TFAlbertForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb).
- Check the [Multiple choice task guide](../tasks/multiple_choice) on how to use the model.
- Check the [Multiple choice task guide](../tasks/multiple_choice) on how to use the model.
## AlbertConfig
@ -172,11 +153,7 @@ The resources provided in the following sections consist of a list of official H
## AlbertTokenizer
[[autodoc]] AlbertTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
[[autodoc]] AlbertTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary
## AlbertTokenizerFast
@ -193,23 +170,19 @@ The resources provided in the following sections consist of a list of official H
## AlbertModel
[[autodoc]] AlbertModel
- forward
[[autodoc]] AlbertModel - forward
## AlbertForPreTraining
[[autodoc]] AlbertForPreTraining
- forward
[[autodoc]] AlbertForPreTraining - forward
## AlbertForMaskedLM
[[autodoc]] AlbertForMaskedLM
- forward
[[autodoc]] AlbertForMaskedLM - forward
## AlbertForSequenceClassification
[[autodoc]] AlbertForSequenceClassification
- forward
[[autodoc]] AlbertForSequenceClassification - forward
## AlbertForMultipleChoice
@ -217,13 +190,11 @@ The resources provided in the following sections consist of a list of official H
## AlbertForTokenClassification
[[autodoc]] AlbertForTokenClassification
- forward
[[autodoc]] AlbertForTokenClassification - forward
## AlbertForQuestionAnswering
[[autodoc]] AlbertForQuestionAnswering
- forward
[[autodoc]] AlbertForQuestionAnswering - forward
</pt>
@ -231,78 +202,62 @@ The resources provided in the following sections consist of a list of official H
## TFAlbertModel
[[autodoc]] TFAlbertModel
- call
[[autodoc]] TFAlbertModel - call
## TFAlbertForPreTraining
[[autodoc]] TFAlbertForPreTraining
- call
[[autodoc]] TFAlbertForPreTraining - call
## TFAlbertForMaskedLM
[[autodoc]] TFAlbertForMaskedLM
- call
[[autodoc]] TFAlbertForMaskedLM - call
## TFAlbertForSequenceClassification
[[autodoc]] TFAlbertForSequenceClassification
- call
[[autodoc]] TFAlbertForSequenceClassification - call
## TFAlbertForMultipleChoice
[[autodoc]] TFAlbertForMultipleChoice
- call
[[autodoc]] TFAlbertForMultipleChoice - call
## TFAlbertForTokenClassification
[[autodoc]] TFAlbertForTokenClassification
- call
[[autodoc]] TFAlbertForTokenClassification - call
## TFAlbertForQuestionAnswering
[[autodoc]] TFAlbertForQuestionAnswering
- call
[[autodoc]] TFAlbertForQuestionAnswering - call
</tf>
<jax>
## FlaxAlbertModel
[[autodoc]] FlaxAlbertModel
- __call__
[[autodoc]] FlaxAlbertModel - **call**
## FlaxAlbertForPreTraining
[[autodoc]] FlaxAlbertForPreTraining
- __call__
[[autodoc]] FlaxAlbertForPreTraining - **call**
## FlaxAlbertForMaskedLM
[[autodoc]] FlaxAlbertForMaskedLM
- __call__
[[autodoc]] FlaxAlbertForMaskedLM - **call**
## FlaxAlbertForSequenceClassification
[[autodoc]] FlaxAlbertForSequenceClassification
- __call__
[[autodoc]] FlaxAlbertForSequenceClassification - **call**
## FlaxAlbertForMultipleChoice
[[autodoc]] FlaxAlbertForMultipleChoice
- __call__
[[autodoc]] FlaxAlbertForMultipleChoice - **call**
## FlaxAlbertForTokenClassification
[[autodoc]] FlaxAlbertForTokenClassification
- __call__
[[autodoc]] FlaxAlbertForTokenClassification - **call**
## FlaxAlbertForQuestionAnswering
[[autodoc]] FlaxAlbertForQuestionAnswering
- __call__
[[autodoc]] FlaxAlbertForQuestionAnswering - **call**
</jax>
</frameworkcontent>

View File

@ -14,82 +14,32 @@ rendered properly in your Markdown viewer.
-->
# AyaVision
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Aya Vision
The Aya Vision 8B and 32B models is a state-of-the-art multilingual multimodal models developed by Cohere For AI. They build on the Aya Expanse recipe to handle both visual and textual information without compromising on the strong multilingual textual performance of the original model.
[Aya Vision](https://huggingface.co/papers/2505.08751) is a family of open-weight multimodal vision-language models from Cohere Labs. It is trained with a synthetic annotation framework that generates high-quality multilingual image captions, improving Aya Vision's generated responses. In addition, a cross-modal model merging technique is used to prevent the model from losing its text capabilities after adding vision capabilities. The model combines a CommandR-7B language model with a SigLIP vision encoder.
Aya Vision 8B combines the `Siglip2-so400-384-14` vision encoder with the Cohere CommandR-7B language model further post-trained with the Aya Expanse recipe, creating a powerful vision-language model capable of understanding images and generating text across 23 languages. Whereas, Aya Vision 32B uses Aya Expanse 32B as the language model.
You can find all the original Aya Vision checkpoints under the [Aya Vision](https://huggingface.co/collections/CohereLabs/cohere-labs-aya-vision-67c4ccd395ca064308ee1484) collection.
Key features of Aya Vision include:
- Multimodal capabilities in 23 languages
- Strong text-only multilingual capabilities inherited from CommandR-7B post-trained with the Aya Expanse recipe and Aya Expanse 32B
- High-quality visual understanding using the Siglip2-so400-384-14 vision encoder
- Seamless integration of visual and textual information in 23 languages.
> [!TIP]
> This model was contributed by [saurabhdash](https://huggingface.co/saurabhdash) and [yonigozlan](https://huggingface.co/yonigozlan).
>
> Click on the Aya Vision models in the right sidebar for more examples of how to apply Aya Vision to different image-to-text tasks.
<!-- <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/aya_vision_architecture.webp"
alt="drawing" width="600"/>
The example below demonstrates how to generate text based on an image with [`Pipeline`] or the [`AutoModel`] class.
<small> Aya Vision architecture. </small> -->
Tips:
- Aya Vision is a multimodal model that takes images and text as input and produces text as output.
- Images are represented using the `<image>` tag in the templated input.
- For best results, use the `apply_chat_template` method of the processor to format your inputs correctly.
- The model can process multiple images in a single conversation.
- Aya Vision can understand and generate text in 23 languages, making it suitable for multilingual multimodal applications.
This model was contributed by [saurabhdash](https://huggingface.co/saurabhdash) and [yonigozlan](https://huggingface.co/yonigozlan).
## Usage
Here's how to use Aya Vision for inference:
```python
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
model_id = "CohereForAI/aya-vision-8b"
torch_device = "cuda:0"
# Use fast image processor
processor = AutoProcessor.from_pretrained(model_id, use_fast=True)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map=torch_device, torch_dtype=torch.float16
)
# Format message with the aya-vision chat template
messages = [
{"role": "user",
"content": [
{"type": "image", "url": "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium"},
{"type": "text", "text": "चित्र में लिखा पाठ क्या कहता है?"},
]},
]
# Process image on CUDA
inputs = processor.apply_chat_template(
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt", device=torch_device
).to(model.device)
gen_tokens = model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
gen_text = print(processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True))
```
### Pipeline
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
from transformers import pipeline
pipe = pipeline(model="CohereForAI/aya-vision-8b", task="image-text-to-text", device_map="auto")
pipe = pipeline(model="CohereLabs/aya-vision-8b", task="image-text-to-text", device_map="auto")
# Format message with the aya-vision chat template
messages = [
@ -104,84 +54,108 @@ outputs = pipe(text=messages, max_new_tokens=300, return_full_text=False)
print(outputs)
```
### Multiple Images and Batched Inputs
Aya Vision can process multiple images in a single conversation. Here's how to use it with multiple images:
</hfoption>
<hfoption id="AutoModel">
```python
# pip install 'git+https://github.com/huggingface/transformers.git@v4.49.0-Aya Vision'
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
model_id = "CohereForAI/aya-vision-8b"
model_id = "CohereLabs/aya-vision-8b"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map="cuda:0", torch_dtype=torch.float16
model_id, device_map="auto", torch_dtype=torch.float16
)
# Example with multiple images in a single message
# Format message with the aya-vision chat template
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
},
{
"type": "image",
"url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
},
{
"type": "text",
"text": "These images depict two different landmarks. Can you identify them?",
},
],
},
]
{"role": "user",
"content": [
{"type": "image", "url": "https://pbs.twimg.com/media/Fx7YvfQWYAIp6rZ?format=jpg&name=medium"},
{"type": "text", "text": "चित्र में लिखा पाठ क्या कहता है?"},
]},
]
inputs = processor.apply_chat_template(
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to(model.device)
gen_tokens = model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
**inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
gen_text = processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(gen_text)
print(processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True))
```
For processing batched inputs (multiple conversations at once):
</hfoption>
</hfoptions>
Quantization reduces the memory footprint of large models by representing weights at lower precision. Refer to the [Quantization](../quantization/overview) overview for supported backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bits.
```python
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
model_id = "CohereForAI/aya-vision-8b"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id, device_map="cuda:0", torch_dtype=torch.float16
from transformers import (
AutoProcessor,
AutoModelForImageTextToText,
BitsAndBytesConfig
)
# Prepare two different conversations
batch_messages = [
# First conversation with a single image
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
processor = AutoProcessor.from_pretrained("CohereLabs/aya-vision-32b", use_fast=True)
model = AutoModelForImageTextToText.from_pretrained(
"CohereLabs/aya-vision-32b",
quantization_config=bnb_config,
device_map="auto"
)
inputs = processor.apply_chat_template(
[
{
"role": "user",
"content": [
{"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
{"type": "text", "text": "Write a haiku for this image"},
],
},
{"role": "user", "content": [
{"type": "image", "url": "https://huggingface.co/roschmid/dog-races/resolve/main/images/Border_Collie.jpg"},
{"type": "text", "text":"Describe what you see."}
]}
],
# Second conversation with multiple images
[
padding=True,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
).to("cuda")
generated = model.generate(**inputs, max_new_tokens=50)
print(processor.tokenizer.decode(generated[0], skip_special_tokens=True))
```
## Notes
- Images are represented with the `<image>` tag in the chat template.
- Use the [`~ProcessorMixin.apply_chat_template`] method to correctly format inputs.
- The example below demonstrates inference with multiple images.
```py
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
processor = AutoProcessor.from_pretrained("CohereForAI/aya-vision-8b")
model = AutoModelForImageTextToText.from_pretrained(
"CohereForAI/aya-vision-8b", device_map="cuda", torch_dtype=torch.float16
)
messages = [
{
"role": "user",
"content": [
@ -199,35 +173,88 @@ batch_messages = [
},
],
},
],
]
# Process each conversation separately and combine into a batch
batch_inputs = processor.apply_chat_template(
batch_messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
# Generate responses for the batch
batch_outputs = model.generate(
**batch_inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
# Decode the generated responses
for i, output in enumerate(batch_outputs):
response = processor.tokenizer.decode(
output[batch_inputs.input_ids.shape[1]:],
skip_special_tokens=True
]
inputs = processor.apply_chat_template(
messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
).to("cuda")
gen_tokens = model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
print(f"Response {i+1}:\n{response}\n")
```
gen_text = processor.tokenizer.decode(gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(gen_text)
```
- The example below demonstrates inference with batched inputs.
```py
from transformers import AutoProcessor, AutoModelForImageTextToText
import torch
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
"CohereForAI/aya-vision-8b", device_map="cuda", torch_dtype=torch.float16
)
batch_messages = [
[
{
"role": "user",
"content": [
{"type": "image", "url": "https://llava-vl.github.io/static/images/view.jpg"},
{"type": "text", "text": "Write a haiku for this image"},
],
},
],
[
{
"role": "user",
"content": [
{
"type": "image",
"url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
},
{
"type": "image",
"url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
},
{
"type": "text",
"text": "These images depict two different landmarks. Can you identify them?",
},
],
},
],
]
batch_inputs = processor.apply_chat_template(
batch_messages,
padding=True,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
).to(model.device)
batch_outputs = model.generate(
**batch_inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.3,
)
for i, output in enumerate(batch_outputs):
response = processor.tokenizer.decode(
output[batch_inputs.input_ids.shape[1]:],
skip_special_tokens=True
)
print(f"Response {i+1}:\n{response}\n")
```
## AyaVisionProcessor

View File

@ -14,84 +14,127 @@ rendered properly in your Markdown viewer.
-->
# Bamba
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Bamba
Bamba-9B is a decoder-only language model based on the [Mamba-2](https://github.com/state-spaces/mamba) architecture and is designed to handle a wide range of text generation tasks. It is trained from scratch using a two-stage training approach. In the first stage, the model is trained on 2 trillion tokens from the Dolma v1.7 dataset. In the second stage, it undergoes additional training on 200 billion tokens, leveraging a carefully curated blend of high-quality data to further refine its performance and enhance output quality.
[Bamba](https://huggingface.co/blog/bamba) is a 9B parameter decoder-only language model built on the [Mamba-2](./mamba2) architecture. It is pretrained in two stages - it starts by training on 2T tokens from the [Dolma v1.7](https://huggingface.co/datasets/allenai/dolma) dataset and then trained on an additional 200B tokens from [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb) and [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia).
Checkout all Bamba-9B model checkpoints [here](https://github.com/foundation-model-stack/bamba).
You can find all the original Bamba checkpoints under the [Bamba](https://huggingface.co/collections/ibm-ai-platform/bamba-674f1388b9bbc98b413c7bab) collection.
> [!TIP]
> This model was contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).
>
> Click on the Bamba models in the right sidebar for more examples of how to apply Bamba to different text generation tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-generation",
model="ibm-ai-platform/Bamba-9B-v2",
torch_dtype=torch.bfloat16,
device=0
)
pipeline("Plants create energy through a process known as")
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ibm-ai-platform/Bamba-9B-v2")
model = AutoModelForCausalLM.from_pretrained("ibm-ai-platform/Bamba-9B-v2", torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa")
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo "Plants create energy through a process known as" | transformers-cli run --task text-generation --model ibm-ai-platform/Bamba-9B-v2 --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to int4.
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
tokenizer = AutoTokenizer.from_pretrained("ibm-ai-platform/Bamba-9B-v2")
model = AutoModelForCausalLM.from_pretrained(
"ibm-ai-platform/Bamba-9B-v2",
quantization_config=quantization_config,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**inputs)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- Bamba supports padding-free training which concatenates distinct training examples while still processing inputs as separate batches. It can significantly accelerate inference by [~2x](https://github.com/huggingface/transformers/pull/35861#issue-2807873129) (depending on model and data distribution) and reduce memory-usage if there are examples of varying lengths by avoiding unnecessary compute and memory overhead from padding tokens.
Padding-free training requires the `flash-attn`, `mamba-ssm`, and `causal-conv1d` packages and the following arguments must be passed to the model in addition to `input_ids` and `labels`.
- `position_ids: torch.LongTensor`: the position index of each token in each sequence.
- `seq_idx: torch.IntTensor`: the index of each sequence in the batch.
- Each of the [`FlashAttentionKwargs`]
- `cu_seq_lens_q: torch.LongTensor`: the cumulative sequence lengths of all queries.
- `cu_seq_lens_k: torch.LongTensor`: the cumulative sequence lengths of all keys.
- `max_length_q: int`: the longest query length in the batch.
- `max_length_k: int`: the longest key length in the batch.
The `attention_mask` inputs should not be provided. The [`DataCollatorWithFlattening`] programmatically generates the set of additional arguments above using `return_seq_idx=True` and `return_flash_attn_kwargs=True`. See the [Improving Hugging Face Training Efficiency Through Packing with Flash Attention](https://huggingface.co/blog/packing-with-FA2) blog post for additional information.
```python
from transformers import DataCollatorWithFlattening
# Example of using padding-free training
data_collator = DataCollatorWithFlattening(
tokenizer=tokenizer,
return_seq_idx=True,
return_flash_attn_kwargs=True
)
```
## BambaConfig
| Model | Params | # Layers | Hidden Dim. | Attention Heads | GQA | KV Heads | Context Length | Tied Embeddings |
|-------------------|--------------|----------|-------------|-----------------|-----|----------|----------------|------------------|
| Bamba | 9B (9.78B) | 32 | 4096 | 32 | Yes | 8 | 4096 | True |
[[autodoc]] BambaConfig
<!---
## Usage Tips
Tips:
- The architecture is based on Mamba-2 models.
## BambaModel
[[autodoc]] BambaModel
- forward
-->
## BambaForCausalLM
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("ibm-fms/Bamba-9B")
tokenizer = AutoTokenizer.from_pretrained("ibm-fms/Bamba-9B")
message = ["Mamba is a snake with following properties "]
inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
response = model.generate(**inputs, max_new_tokens=64)
print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
```
## Padding-Free Training
Bamba supports padding-free training in which distinct training examples can be concatenated
together while nevertheless processing the inputs as though they belonged to separate batches. When
the examples are of varying lengths, padding-free training can provide significant speed ups and
memory savings compared to batching the examples together and using padding, as the unnecessary
compute and memory due to padding is avoided entirely. The performance gains depend on factors such
as the model and the data distribution, but throughput gains up to [~2x are commonly
seen](https://github.com/huggingface/transformers/pull/35861#issue-2807873129).
Using padding-free training with Bamba requires the `flash-attn`, `mamba-ssm`, and `causal-conv1d`
packages, and the following arguments must be passed to the model in addition to `input_ids` and
`labels`:
* `position_ids: torch.LongTensor`: the position index of each token in each sequence.
* `seq_idx: torch.IntTensor`: the index of each sequence in the batch.
* Each of the [`FlashAttentionKwargs`]
* `cu_seq_lens_q: torch.LongTensor`: The cumulative sequence lengths of all queries.
* `cu_seq_lens_k: torch.LongTensor`: The cumulative sequence lengths of all keys.
* `max_length_q: int`: the longest query length in the batch.
* `max_length_k: int`: the longest key length in the batch.
The `attention_mask` inputs should not be provided. The [`DataCollatorWithFlattening`] can be used
to programmatically generate the above set of additional arguments using `return_seq_idx=True` and
`return_flash_attn_kwargs=True`. See [this blog post](https://huggingface.co/blog/packing-with-FA2)
for additional information.
[[autodoc]] BambaForCausalLM
- forward
This HF implementation is contributed by [ani300](https://github.com/ani300) and [fabianlim](https://github.com/fabianlim).

View File

@ -62,11 +62,11 @@ def make_box_first_token_mask(bboxes, words, tokenizer, max_seq_length=512):
box_first_token_mask = np.zeros(max_seq_length, dtype=np.bool_)
# encode(tokenize) each word from words (List[str])
input_ids_list: List[List[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words]
# encode(tokenize) each word from words (list[str])
input_ids_list: list[list[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words]
# get the length of each box
tokens_length_list: List[int] = [len(l) for l in input_ids_list]
tokens_length_list: list[int] = [len(l) for l in input_ids_list]
box_end_token_indices = np.array(list(itertools.accumulate(tokens_length_list)))
box_start_token_indices = box_end_token_indices - np.array(tokens_length_list)

View File

@ -14,49 +14,77 @@ rendered properly in your Markdown viewer.
-->
# Convolutional Vision Transformer (CvT)
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
</div>
</div>
## Overview
# Convolutional Vision Transformer (CvT)
The CvT model was proposed in [CvT: Introducing Convolutions to Vision Transformers](https://huggingface.co/papers/2103.15808) by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan and Lei Zhang. The Convolutional vision Transformer (CvT) improves the [Vision Transformer (ViT)](vit) in performance and efficiency by introducing convolutions into ViT to yield the best of both designs.
Convolutional Vision Transformer (CvT) is a model that combines the strengths of convolutional neural networks (CNNs) and Vision transformers for the computer vision tasks. It introduces convolutional layers into the vision transformer architecture, allowing it to capture local patterns in images while maintaining the global context provided by self-attention mechanisms.
The abstract from the paper is the following:
You can find all the CvT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=cvt) organization.
*We present in this paper a new architecture, named Convolutional vision Transformer (CvT), that improves Vision Transformer (ViT)
in performance and efficiency by introducing convolutions into ViT to yield the best of both designs. This is accomplished through
two primary modifications: a hierarchy of Transformers containing a new convolutional token embedding, and a convolutional Transformer
block leveraging a convolutional projection. These changes introduce desirable properties of convolutional neural networks (CNNs)
to the ViT architecture (\ie shift, scale, and distortion invariance) while maintaining the merits of Transformers (\ie dynamic attention,
global context, and better generalization). We validate CvT by conducting extensive experiments, showing that this approach achieves
state-of-the-art performance over other Vision Transformers and ResNets on ImageNet-1k, with fewer parameters and lower FLOPs. In addition,
performance gains are maintained when pretrained on larger datasets (\eg ImageNet-22k) and fine-tuned to downstream tasks. Pre-trained on
ImageNet-22k, our CvT-W24 obtains a top-1 accuracy of 87.7\% on the ImageNet-1k val set. Finally, our results show that the positional encoding,
a crucial component in existing Vision Transformers, can be safely removed in our model, simplifying the design for higher resolution vision tasks.*
> [!TIP]
> This model was contributed by [anujunj](https://huggingface.co/anugunj).
>
> Click on the CvT models in the right sidebar for more examples of how to apply CvT to different computer vision tasks.
This model was contributed by [anugunj](https://huggingface.co/anugunj). The original code can be found [here](https://github.com/microsoft/CvT).
The example below demonstrates how to classify an image with [`Pipeline`] or the [`AutoModel`] class.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- CvT models are regular Vision Transformers, but trained with convolutions. They outperform the [original model (ViT)](vit) when fine-tuned on ImageNet-1K and CIFAR-100.
- You can check out demo notebooks regarding inference as well as fine-tuning on custom data [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer) (you can just replace [`ViTFeatureExtractor`] by [`AutoImageProcessor`] and [`ViTForImageClassification`] by [`CvtForImageClassification`]).
- The available checkpoints are either (1) pre-trained on [ImageNet-22k](http://www.image-net.org/) (a collection of 14 million images and 22k classes) only, (2) also fine-tuned on ImageNet-22k or (3) also fine-tuned on [ImageNet-1k](http://www.image-net.org/challenges/LSVRC/2012/) (also referred to as ILSVRC 2012, a collection of 1.3 million
images and 1,000 classes).
```py
import torch
from transformers import pipeline
pipeline = pipeline(
task="image-classification",
model="microsoft/cvt-13",
torch_dtype=torch.float16,
device=0
)
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageClassification, AutoImageProcessor
image_processor = AutoImageProcessor.from_pretrained("microsoft/cvt-13")
model = AutoModelForImageClassification.from_pretrained(
"microsoft/cvt-13",
torch_dtype=torch.float16,
device_map="auto"
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt").to("cuda")
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()
class_labels = model.config.id2label
predicted_class_label = class_labels[predicted_class_id]
print(f"The predicted class label is: {predicted_class_label}")
```
</hfoption>
</hfoptions>
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with CvT.
<PipelineTag pipeline="image-classification"/>
- [`CvtForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
Refer to this set of ViT [notebooks](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/VisionTransformer) for examples of inference and fine-tuning on custom datasets. Replace [`ViTFeatureExtractor`] and [`ViTForImageClassification`] in these notebooks with [`AutoImageProcessor`] and [`CvtForImageClassification`].
## CvtConfig

View File

@ -149,7 +149,7 @@ As a summary, consider the following table:
| **Description** | Predicting bounding boxes and class labels around objects in an image | Predicting masks around objects (i.e. instances) in an image | Predicting masks around both objects (i.e. instances) as well as "stuff" (i.e. background things like trees and roads) in an image |
| **Model** | [`~transformers.DetrForObjectDetection`] | [`~transformers.DetrForSegmentation`] | [`~transformers.DetrForSegmentation`] |
| **Example dataset** | COCO detection | COCO detection, COCO panoptic | COCO panoptic | |
| **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': `List[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': `List[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} and masks_path (path to directory containing PNG files of the masks) |
| **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': `list[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': `list[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': `list[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': `list[Dict]`} and masks_path (path to directory containing PNG files of the masks) |
| **Postprocessing** (i.e. converting the output of the model to Pascal VOC format) | [`~transformers.DetrImageProcessor.post_process`] | [`~transformers.DetrImageProcessor.post_process_segmentation`] | [`~transformers.DetrImageProcessor.post_process_segmentation`], [`~transformers.DetrImageProcessor.post_process_panoptic`] |
| **evaluators** | `CocoEvaluator` with `iou_types="bbox"` | `CocoEvaluator` with `iou_types="bbox"` or `"segm"` | `CocoEvaluator` with `iou_tupes="bbox"` or `"segm"`, `PanopticEvaluator` |

View File

@ -78,7 +78,13 @@ If you're interested in submitting a resource to be included here, please feel f
[[autodoc]] DPTImageProcessor
- preprocess
## DPTImageProcessorFast
[[autodoc]] DPTImageProcessorFast
- preprocess
- post_process_semantic_segmentation
- post_process_depth_estimation
## DPTModel

View File

@ -0,0 +1,104 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the MIT License; you may not use this file except in compliance with
the License.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# LightGlue
## Overview
The LightGlue model was proposed in [LightGlue: Local Feature Matching at Light Speed](https://arxiv.org/abs/2306.13643)
by Philipp Lindenberger, Paul-Edouard Sarlin and Marc Pollefeys.
Similar to [SuperGlue](https://huggingface.co/magic-leap-community/superglue_outdoor), this model consists of matching
two sets of local features extracted from two images, its goal is to be faster than SuperGlue. Paired with the
[SuperPoint model](https://huggingface.co/magic-leap-community/superpoint), it can be used to match two images and
estimate the pose between them. This model is useful for tasks such as image matching, homography estimation, etc.
The abstract from the paper is the following:
*We introduce LightGlue, a deep neural network that learns to match local features across images. We revisit multiple
design decisions of SuperGlue, the state of the art in sparse matching, and derive simple but effective improvements.
Cumulatively, they make LightGlue more efficient - in terms of both memory and computation, more accurate, and much
easier to train. One key property is that LightGlue is adaptive to the difficulty of the problem: the inference is much
faster on image pairs that are intuitively easy to match, for example because of a larger visual overlap or limited
appearance change. This opens up exciting prospects for deploying deep matchers in latency-sensitive applications like
3D reconstruction. The code and trained models are publicly available at this [https URL](https://github.com/cvg/LightGlue)*
## How to use
Here is a quick example of using the model. Since this model is an image matching model, it requires pairs of images to be matched.
The raw outputs contain the list of keypoints detected by the keypoint detector as well as the list of matches with their corresponding
matching scores.
```python
from transformers import AutoImageProcessor, AutoModel
import torch
from PIL import Image
import requests
url_image1 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_98169888_3347710852.jpg"
image1 = Image.open(requests.get(url_image1, stream=True).raw)
url_image2 = "https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/refs/heads/master/assets/phototourism_sample_images/united_states_capitol_26757027_6717084061.jpg"
image2 = Image.open(requests.get(url_image2, stream=True).raw)
images = [image1, image2]
processor = AutoImageProcessor.from_pretrained("ETH-CVG/lightglue_superpoint")
model = AutoModel.from_pretrained("ETH-CVG/lightglue_superpoint")
inputs = processor(images, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
```
You can use the `post_process_keypoint_matching` method from the `LightGlueImageProcessor` to get the keypoints and matches in a readable format:
```python
image_sizes = [[(image.height, image.width) for image in images]]
outputs = processor.post_process_keypoint_matching(outputs, image_sizes, threshold=0.2)
for i, output in enumerate(outputs):
print("For the image pair", i)
for keypoint0, keypoint1, matching_score in zip(
output["keypoints0"], output["keypoints1"], output["matching_scores"]
):
print(
f"Keypoint at coordinate {keypoint0.numpy()} in the first image matches with keypoint at coordinate {keypoint1.numpy()} in the second image with a score of {matching_score}."
)
```
You can visualize the matches between the images by providing the original images as well as the outputs to this method:
```python
processor.plot_keypoint_matching(images, outputs)
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/632885ba1558dac67c440aa8/duPp09ty8NRZlMZS18ccP.png)
This model was contributed by [stevenbucaille](https://huggingface.co/stevenbucaille).
The original code can be found [here](https://github.com/cvg/LightGlue).
## LightGlueConfig
[[autodoc]] LightGlueConfig
## LightGlueImageProcessor
[[autodoc]] LightGlueImageProcessor
- preprocess
- post_process_keypoint_matching
- plot_keypoint_matching
## LightGlueForKeypointMatching
[[autodoc]] LightGlueForKeypointMatching
- forward

View File

@ -83,7 +83,7 @@ echo -e "San Francisco 49ers cornerback Shawntae Spencer will miss the rest of t
```
</hfoption>
</hfoptions
</hfoptions>
## Notes

View File

@ -14,97 +14,86 @@ rendered properly in your Markdown viewer.
-->
# RoBERTa
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# RoBERTa
The RoBERTa model was proposed in [RoBERTa: A Robustly Optimized BERT Pretraining Approach](https://huggingface.co/papers/1907.11692) by Yinhan Liu, [Myle Ott](https://huggingface.co/myleott), Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. It is based on Google's BERT model released in 2018.
[RoBERTa](https://huggingface.co/papers/1907.11692) improves BERT with new pretraining objectives, demonstrating [BERT](./bert) was undertrained and training design is important. The pretraining objectives include dynamic masking, sentence packing, larger batches and a byte-level BPE tokenizer.
It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining objective and training with
much larger mini-batches and learning rates.
You can find all the original RoBERTa checkpoints under the [Facebook AI](https://huggingface.co/FacebookAI) organization.
The abstract from the paper is the following:
*Language model pretraining has led to significant performance gains but careful comparison between different
approaches is challenging. Training is computationally expensive, often done on private datasets of different sizes,
and, as we will show, hyperparameter choices have significant impact on the final results. We present a replication
study of BERT pretraining (Devlin et al., 2019) that carefully measures the impact of many key hyperparameters and
training data size. We find that BERT was significantly undertrained, and can match or exceed the performance of every
model published after it. Our best model achieves state-of-the-art results on GLUE, RACE and SQuAD. These results
highlight the importance of previously overlooked design choices, and raise questions about the source of recently
reported improvements. We release our models and code.*
> [!TIP]
> Click on the RoBERTa models in the right sidebar for more examples of how to apply RoBERTa to different language tasks.
This model was contributed by [julien-c](https://huggingface.co/julien-c). The original code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/roberta).
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- This implementation is the same as [`BertModel`] with a minor tweak to the embeddings, as well as a setup
for RoBERTa pretrained models.
- RoBERTa has the same architecture as BERT but uses a byte-level BPE as a tokenizer (same as GPT-2) and uses a
different pretraining scheme.
- RoBERTa doesn't have `token_type_ids`, so you don't need to indicate which token belongs to which segment. Just
separate your segments with the separation token `tokenizer.sep_token` (or `</s>`).
- RoBERTa is similar to BERT but with better pretraining techniques:
```py
import torch
from transformers import pipeline
* Dynamic masking: tokens are masked differently at each epoch, whereas BERT does it once and for all.
* Sentence packing: Sentences are packed together to reach 512 tokens (so the sentences are in an order that may span several documents).
* Larger batches: Training uses larger batches.
* Byte-level BPE vocabulary: Uses BPE with bytes as a subunit instead of characters, accommodating Unicode characters.
- [CamemBERT](camembert) is a wrapper around RoBERTa. Refer to its model page for usage examples.
pipeline = pipeline(
task="fill-mask",
model="FacebookAI/roberta-base",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create <mask> through a process known as photosynthesis.")
```
## Resources
</hfoption>
<hfoption id="AutoModel">
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with RoBERTa. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
<PipelineTag pipeline="text-classification"/>
tokenizer = AutoTokenizer.from_pretrained(
"FacebookAI/roberta-base",
)
model = AutoModelForMaskedLM.from_pretrained(
"FacebookAI/roberta-base",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
- A blog on [Getting Started with Sentiment Analysis on Twitter](https://huggingface.co/blog/sentiment-analysis-twitter) using RoBERTa and the [Inference API](https://huggingface.co/inference-api).
- A blog on [Opinion Classification with Kili and Hugging Face AutoTrain](https://huggingface.co/blog/opinion-classification-with-kili) using RoBERTa.
- A notebook on how to [finetune RoBERTa for sentiment analysis](https://colab.research.google.com/github/DhavalTaunk08/NLP_scripts/blob/master/sentiment_analysis_using_roberta.ipynb). 🌎
- [`RobertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb).
- [`TFRobertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb).
- [`FlaxRobertaForSequenceClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb).
- [Text classification task guide](../tasks/sequence_classification)
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
<PipelineTag pipeline="token-classification"/>
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
- [`RobertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb).
- [`TFRobertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb).
- [`FlaxRobertaForTokenClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification).
- [Token classification](https://huggingface.co/course/chapter7/2?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Token classification task guide](../tasks/token_classification)
print(f"The predicted token is: {predicted_token}")
```
<PipelineTag pipeline="fill-mask"/>
</hfoption>
<hfoption id="transformers CLI">
- A blog on [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train) with RoBERTa.
- [`RobertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFRobertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [`FlaxRobertaForMaskedLM`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Masked language modeling task guide](../tasks/masked_language_modeling)
```bash
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model FacebookAI/roberta-base --device 0
```
<PipelineTag pipeline="question-answering"/>
</hfoption>
</hfoptions>
- A blog on [Accelerated Inference with Optimum and Transformers Pipelines](https://huggingface.co/blog/optimum-inference) with RoBERTa for question answering.
- [`RobertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb).
- [`TFRobertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb).
- [`FlaxRobertaForQuestionAnswering`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering).
- [Question answering](https://huggingface.co/course/chapter7/7?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Question answering task guide](../tasks/question_answering)
## Notes
**Multiple choice**
- [`RobertaForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb).
- [`TFRobertaForMultipleChoice`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb).
- [Multiple choice task guide](../tasks/multiple_choice)
- RoBERTa doesn't have `token_type_ids` so you don't need to indicate which token belongs to which segment. Separate your segments with the separation token `tokenizer.sep_token` or `</s>`.
## RobertaConfig

View File

@ -14,39 +14,78 @@ rendered properly in your Markdown viewer.
-->
# RoCBert
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# RoCBert
The RoCBert model was proposed in [RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining](https://aclanthology.org/2022.acl-long.65.pdf) by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
It's a pretrained Chinese language model that is robust under various forms of adversarial attacks.
[RoCBert](https://aclanthology.org/2022.acl-long.65.pdf) is a pretrained Chinese [BERT](./bert) model designed against adversarial attacks like typos and synonyms. It is pretrained with a contrastive learning objective to align normal and adversarial text examples. The examples include different semantic, phonetic, and visual features of Chinese. This makes RoCBert more robust against manipulation.
The abstract from the paper is the following:
You can find all the original RoCBert checkpoints under the [weiweishi](https://huggingface.co/weiweishi) profile.
*Large-scale pretrained language models have achieved SOTA results on NLP tasks. However, they have been shown
vulnerable to adversarial attacks especially for logographic languages like Chinese. In this work, we propose
ROCBERT: a pretrained Chinese Bert that is robust to various forms of adversarial attacks like word perturbation,
synonyms, typos, etc. It is pretrained with the contrastive learning objective which maximizes the label consistency
under different synthesized adversarial examples. The model takes as input multimodal information including the
semantic, phonetic and visual features. We show all these features are important to the model robustness since the
attack can be performed in all the three forms. Across 5 Chinese NLU tasks, ROCBERT outperforms strong baselines under
three blackbox adversarial algorithms without sacrificing the performance on clean testset. It also performs the best
in the toxic content detection task under human-made attacks.*
> [!TIP]
> This model was contributed by [weiweishi](https://huggingface.co/weiweishi).
>
> Click on the RoCBert models in the right sidebar for more examples of how to apply RoCBert to different Chinese language tasks.
This model was contributed by [weiweishi](https://huggingface.co/weiweishi).
The example below demonstrates how to predict the [MASK] token with [`Pipeline`], [`AutoModel`], and from the command line.
## Resources
<hfoptions id="usage">
<hfoption id="Pipeline">
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
```py
import torch
from transformers import pipeline
pipeline = pipeline(
task="fill-mask",
model="weiweishi/roc-bert-base-zh",
torch_dtype=torch.float16,
device=0
)
pipeline("這家餐廳的拉麵是我[MASK]過的最好的拉麵之")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"weiweishi/roc-bert-base-zh",
)
model = AutoModelForMaskedLM.from_pretrained(
"weiweishi/roc-bert-base-zh",
torch_dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer("這家餐廳的拉麵是我[MASK]過的最好的拉麵之", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "這家餐廳的拉麵是我[MASK]過的最好的拉麵之" | transformers-cli run --task fill-mask --model weiweishi/roc-bert-base-zh --device 0
```
</hfoption>
</hfoptions>
## RoCBertConfig

View File

@ -56,6 +56,7 @@ This model was contributed by [nielsr](https://huggingface.co/nielsr). The origi
on both printed (e.g. the [SROIE dataset](https://paperswithcode.com/dataset/sroie) and handwritten (e.g. the [IAM
Handwriting dataset](https://fki.tic.heia-fr.ch/databases/iam-handwriting-database>) text recognition tasks. For more
information, see the [official models](https://huggingface.co/models?other=trocr>).
- [Finetune TrOCR on your own OCR dataset](https://github.com/Ashutosh-4485/trocr-custom-fine-tune.git).
- TrOCR is always used within the [VisionEncoderDecoder](vision-encoder-decoder) framework.
## Resources

View File

@ -83,7 +83,7 @@ def read_video_pyav(container, indices):
Decode the video with PyAV decoder.
Args:
container (`av.container.input.InputContainer`): PyAV container.
indices (`List[int]`): List of frame indices to decode.
indices (`list[int]`): List of frame indices to decode.
Returns:
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
'''

View File

@ -38,7 +38,7 @@ This model was contributed by [koustuvs](https://huggingface.co/koustuvs), [yoni
## Usage example
The snippet below shows how to load the V-JEPA 2 model using the `AutoModel` class.
The snippet below shows how to load the V-JEPA 2 model for feature extraction using the `AutoModel` class.
```py
import torch
@ -68,6 +68,43 @@ encoder_outputs = outputs.last_hidden_state
predictor_outputs = outputs.predictor_output.last_hidden_state
```
V-JEPA 2 can also be finetuned for video classification. In the following snippet, we show how use finetuned on Something-Something-V2 video classification model.
```python
import torch
import numpy as np
from torchcodec.decoders import VideoDecoder
from transformers import AutoVideoProcessor, AutoModelForVideoClassification
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load model and video preprocessor
hf_repo = "facebook/vjepa2-vitl-fpc16-256-ssv2"
model = AutoModelForVideoClassification.from_pretrained(hf_repo).to(device)
processor = AutoVideoProcessor.from_pretrained(hf_repo)
# To load a video, sample the number of frames according to the model.
video_url = "https://huggingface.co/datasets/nateraw/kinetics-mini/resolve/main/val/bowling/-WH-lxmGJVY_000005_000015.mp4"
vr = VideoDecoder(video_url)
frame_idx = np.arange(0, model.config.frames_per_clip, 8) # you can define more complex sampling strategy
video = vr.get_frames_at(indices=frame_idx).data # frames x channels x height x width
# Preprocess and run inference
inputs = processor(video, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
print("Top 5 predicted class names:")
top5_indices = logits.topk(5).indices[0]
top5_probs = torch.softmax(logits, dim=-1).topk(5).values[0]
for idx, prob in zip(top5_indices, top5_probs):
text_label = model.config.id2label[idx.item()]
print(f" - {text_label}: {prob:.2f}")
```
## VJEPA2Config
[[autodoc]] VJEPA2Config
@ -77,6 +114,11 @@ predictor_outputs = outputs.predictor_output.last_hidden_state
[[autodoc]] VJEPA2Model
- forward
## VJEPA2ForVideoClassification
[[autodoc]] VJEPA2ForVideoClassification
- forward
## VJEPA2VideoProcessor
[[autodoc]] VJEPA2VideoProcessor

View File

@ -1,107 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# The Transformer model family
Since its introduction in 2017, the [original Transformer](https://huggingface.co/papers/1706.03762) model (see the [Annotated Transformer](http://nlp.seas.harvard.edu/2018/04/03/attention.html) blog post for a gentle technical introduction) has inspired many new and exciting models that extend beyond natural language processing (NLP) tasks. There are models for [predicting the folded structure of proteins](https://huggingface.co/blog/deep-learning-with-proteins), [training a cheetah to run](https://huggingface.co/blog/train-decision-transformers), and [time series forecasting](https://huggingface.co/blog/time-series-transformers). With so many Transformer variants available, it can be easy to miss the bigger picture. What all these models have in common is they're based on the original Transformer architecture. Some models only use the encoder or decoder, while others use both. This provides a useful taxonomy to categorize and examine the high-level differences within models in the Transformer family, and it'll help you understand Transformers you haven't encountered before.
If you aren't familiar with the original Transformer model or need a refresher, check out the [How do Transformers work](https://huggingface.co/course/chapter1/4?fw=pt) chapter from the Hugging Face course.
<div align="center">
<iframe width="560" height="315" src="https://www.youtube.com/embed/H39Z_720T5s" title="YouTube video player"
frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope;
picture-in-picture" allowfullscreen></iframe>
</div>
## Computer vision
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FacQBpeFBVvrDUlzFlkejoz%2FModelscape-timeline%3Fnode-id%3D0%253A1%26t%3Dm0zJ7m2BQ9oe0WtO-1" allowfullscreen></iframe>
### Convolutional network
For a long time, convolutional networks (CNNs) were the dominant paradigm for computer vision tasks until the [Vision Transformer](https://huggingface.co/papers/2010.11929) demonstrated its scalability and efficiency. Even then, some of a CNN's best qualities, like translation invariance, are so powerful (especially for certain tasks) that some Transformers incorporate convolutions in their architecture. [ConvNeXt](model_doc/convnext) flipped this exchange around and incorporated design choices from Transformers to modernize a CNN. For example, ConvNeXt uses non-overlapping sliding windows to patchify an image and a larger kernel to increase its global receptive field. ConvNeXt also makes several layer design choices to be more memory-efficient and improve performance, so it competes favorably with Transformers!
### Encoder[[cv-encoder]]
The [Vision Transformer (ViT)](model_doc/vit) opened the door to computer vision tasks without convolutions. ViT uses a standard Transformer encoder, but its main breakthrough was how it treated an image. It splits an image into fixed-size patches and uses them to create an embedding, just like how a sentence is split into tokens. ViT capitalized on the Transformers' efficient architecture to demonstrate competitive results with the CNNs at the time while requiring fewer resources to train. ViT was soon followed by other vision models that could also handle dense vision tasks like segmentation as well as detection.
One of these models is the [Swin](model_doc/swin) Transformer. It builds hierarchical feature maps (like a CNN 👀 and unlike ViT) from smaller-sized patches and merges them with neighboring patches in deeper layers. Attention is only computed within a local window, and the window is shifted between attention layers to create connections to help the model learn better. Since the Swin Transformer can produce hierarchical feature maps, it is a good candidate for dense prediction tasks like segmentation and detection. The [SegFormer](model_doc/segformer) also uses a Transformer encoder to build hierarchical feature maps, but it adds a simple multilayer perceptron (MLP) decoder on top to combine all the feature maps and make a prediction.
Other vision models, like BeIT and ViTMAE, drew inspiration from BERT's pretraining objective. [BeIT](model_doc/beit) is pretrained by *masked image modeling (MIM)*; the image patches are randomly masked, and the image is also tokenized into visual tokens. BeIT is trained to predict the visual tokens corresponding to the masked patches. [ViTMAE](model_doc/vitmae) has a similar pretraining objective, except it must predict the pixels instead of visual tokens. What's unusual is 75% of the image patches are masked! The decoder reconstructs the pixels from the masked tokens and encoded patches. After pretraining, the decoder is thrown away, and the encoder is ready to be used in downstream tasks.
### Decoder[[cv-decoder]]
Decoder-only vision models are rare because most vision models rely on an encoder to learn an image representation. But for use cases like image generation, the decoder is a natural fit, as we've seen from text generation models like GPT-2. [ImageGPT](model_doc/imagegpt) uses the same architecture as GPT-2, but instead of predicting the next token in a sequence, it predicts the next pixel in an image. In addition to image generation, ImageGPT could also be finetuned for image classification.
### Encoder-decoder[[cv-encoder-decoder]]
Vision models commonly use an encoder (also known as a backbone) to extract important image features before passing them to a Transformer decoder. [DETR](model_doc/detr) has a pretrained backbone, but it also uses the complete Transformer encoder-decoder architecture for object detection. The encoder learns image representations and combines them with object queries (each object query is a learned embedding that focuses on a region or object in an image) in the decoder. DETR predicts the bounding box coordinates and class label for each object query.
## Natural language processing
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FUhbQAZDlpYW5XEpdFy6GoG%2Fnlp-model-timeline%3Fnode-id%3D0%253A1%26t%3D4mZMr4r1vDEYGJ50-1" allowfullscreen></iframe>
### Encoder[[nlp-encoder]]
[BERT](model_doc/bert) is an encoder-only Transformer that randomly masks certain tokens in the input to avoid seeing other tokens, which would allow it to "cheat". The pretraining objective is to predict the masked token based on the context. This allows BERT to fully use the left and right contexts to help it learn a deeper and richer representation of the inputs. However, there was still room for improvement in BERT's pretraining strategy. [RoBERTa](model_doc/roberta) improved upon this by introducing a new pretraining recipe that includes training for longer and on larger batches, randomly masking tokens at each epoch instead of just once during preprocessing, and removing the next-sentence prediction objective.
The dominant strategy to improve performance is to increase the model size. But training large models is computationally expensive. One way to reduce computational costs is using a smaller model like [DistilBERT](model_doc/distilbert). DistilBERT uses [knowledge distillation](https://huggingface.co/papers/1503.02531) - a compression technique - to create a smaller version of BERT while keeping nearly all of its language understanding capabilities.
However, most Transformer models continued to trend towards more parameters, leading to new models focused on improving training efficiency. [ALBERT](model_doc/albert) reduces memory consumption by lowering the number of parameters in two ways: separating the larger vocabulary embedding into two smaller matrices and allowing layers to share parameters. [DeBERTa](model_doc/deberta) added a disentangled attention mechanism where the word and its position are separately encoded in two vectors. The attention is computed from these separate vectors instead of a single vector containing the word and position embeddings. [Longformer](model_doc/longformer) also focused on making attention more efficient, especially for processing documents with longer sequence lengths. It uses a combination of local windowed attention (attention only calculated from fixed window size around each token) and global attention (only for specific task tokens like `[CLS]` for classification) to create a sparse attention matrix instead of a full attention matrix.
### Decoder[[nlp-decoder]]
[GPT-2](model_doc/gpt2) is a decoder-only Transformer that predicts the next word in the sequence. It masks tokens to the right so the model can't "cheat" by looking ahead. By pretraining on a massive body of text, GPT-2 became really good at generating text, even if the text is only sometimes accurate or true. But GPT-2 lacked the bidirectional context from BERT's pretraining, which made it unsuitable for certain tasks. [XLNET](model_doc/xlnet) combines the best of both BERT and GPT-2's pretraining objectives by using a permutation language modeling objective (PLM) that allows it to learn bidirectionally.
After GPT-2, language models grew even bigger and are now known as *large language models (LLMs)*. LLMs demonstrate few- or even zero-shot learning if pretrained on a large enough dataset. [GPT-J](model_doc/gptj) is an LLM with 6B parameters and trained on 400B tokens. GPT-J was followed by [OPT](model_doc/opt), a family of decoder-only models, the largest of which is 175B and trained on 180B tokens. [BLOOM](model_doc/bloom) was released around the same time, and the largest model in the family has 176B parameters and is trained on 366B tokens in 46 languages and 13 programming languages.
### Encoder-decoder[[nlp-encoder-decoder]]
[BART](model_doc/bart) keeps the original Transformer architecture, but it modifies the pretraining objective with *text infilling* corruption, where some text spans are replaced with a single `mask` token. The decoder predicts the uncorrupted tokens (future tokens are masked) and uses the encoder's hidden states to help it. [Pegasus](model_doc/pegasus) is similar to BART, but Pegasus masks entire sentences instead of text spans. In addition to masked language modeling, Pegasus is pretrained by gap sentence generation (GSG). The GSG objective masks whole sentences important to a document, replacing them with a `mask` token. The decoder must generate the output from the remaining sentences. [T5](model_doc/t5) is a more unique model that casts all NLP tasks into a text-to-text problem using specific prefixes. For example, the prefix `Summarize:` indicates a summarization task. T5 is pretrained by supervised (GLUE and SuperGLUE) training and self-supervised training (randomly sample and drop out 15% of tokens).
## Audio
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2Fvrchl8jDV9YwNVPWu2W0kK%2Fspeech-and-audio-model-timeline%3Fnode-id%3D0%253A1%26t%3DmM4H8pPMuK23rClL-1" allowfullscreen></iframe>
### Encoder[[audio-encoder]]
[Wav2Vec2](model_doc/wav2vec2) uses a Transformer encoder to learn speech representations directly from raw audio waveforms. It is pretrained with a contrastive task to determine the true speech representation from a set of false ones. [HuBERT](model_doc/hubert) is similar to Wav2Vec2 but has a different training process. Target labels are created by a clustering step in which segments of similar audio are assigned to a cluster which becomes a hidden unit. The hidden unit is mapped to an embedding to make a prediction.
### Encoder-decoder[[audio-encoder-decoder]]
[Speech2Text](model_doc/speech_to_text) is a speech model designed for automatic speech recognition (ASR) and speech translation. The model accepts log mel-filter bank features extracted from the audio waveform and pretrained autoregressively to generate a transcript or translation. [Whisper](model_doc/whisper) is also an ASR model, but unlike many other speech models, it is pretrained on a massive amount of ✨ labeled ✨ audio transcription data for zero-shot performance. A large chunk of the dataset also contains non-English languages, meaning Whisper can also be used for low-resource languages. Structurally, Whisper is similar to Speech2Text. The audio signal is converted to a log-mel spectrogram encoded by the encoder. The decoder generates the transcript autoregressively from the encoder's hidden states and the previous tokens.
## Multimodal
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FcX125FQHXJS2gxeICiY93p%2Fmultimodal%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe>
### Encoder[[mm-encoder]]
[VisualBERT](model_doc/visual_bert) is a multimodal model for vision-language tasks released shortly after BERT. It combines BERT and a pretrained object detection system to extract image features into visual embeddings, passed alongside text embeddings to BERT. VisualBERT predicts the masked text based on the unmasked text and the visual embeddings, and it also has to predict whether the text is aligned with the image. When ViT was released, [ViLT](model_doc/vilt) adopted ViT in its architecture because it was easier to get the image embeddings this way. The image embeddings are jointly processed with the text embeddings. From there, ViLT is pretrained by image text matching, masked language modeling, and whole word masking.
[CLIP](model_doc/clip) takes a different approach and makes a pair prediction of (`image`, `text`) . An image encoder (ViT) and a text encoder (Transformer) are jointly trained on a 400 million (`image`, `text`) pair dataset to maximize the similarity between the image and text embeddings of the (`image`, `text`) pairs. After pretraining, you can use natural language to instruct CLIP to predict the text given an image or vice versa. [OWL-ViT](model_doc/owlvit) builds on top of CLIP by using it as its backbone for zero-shot object detection. After pretraining, an object detection head is added to make a set prediction over the (`class`, `bounding box`) pairs.
### Encoder-decoder[[mm-encoder-decoder]]
Optical character recognition (OCR) is a long-standing text recognition task that typically involves several components to understand the image and generate the text. [TrOCR](model_doc/trocr) simplifies the process using an end-to-end Transformer. The encoder is a ViT-style model for image understanding and processes the image as fixed-size patches. The decoder accepts the encoder's hidden states and autoregressively generates text. [Donut](model_doc/donut) is a more general visual document understanding model that doesn't rely on OCR-based approaches. It uses a Swin Transformer as the encoder and multilingual BART as the decoder. Donut is pretrained to read text by predicting the next word based on the image and text annotations. The decoder generates a token sequence given a prompt. The prompt is represented by a special token for each downstream task. For example, document parsing has a special `parsing` token that is combined with the encoder hidden states to parse the document into a structured output format (JSON).
## Reinforcement learning
<iframe style="border: 1px solid rgba(0, 0, 0, 0.1);" width="1000" height="450" src="https://www.figma.com/embed?embed_host=share&url=https%3A%2F%2Fwww.figma.com%2Ffile%2FiB3Y6RvWYki7ZuKO6tNgZq%2Freinforcement-learning%3Fnode-id%3D0%253A1%26t%3DhPQwdx3HFPWJWnVf-1" allowfullscreen></iframe>
### Decoder[[rl-decoder]]
The Decision and Trajectory Transformer casts the state, action, and reward as a sequence modeling problem. The [Decision Transformer](model_doc/decision_transformer) generates a series of actions that lead to a future desired return based on returns-to-go, past states, and actions. For the last *K* timesteps, each of the three modalities are converted into token embeddings and processed by a GPT-like model to predict a future action token. [Trajectory Transformer](model_doc/trajectory_transformer) also tokenizes the states, actions, and rewards and processes them with a GPT architecture. Unlike the Decision Transformer, which is focused on reward conditioning, the Trajectory Transformer generates future actions with beam search.

View File

@ -216,12 +216,12 @@ class Olmo2Attention(OlmoAttention):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -294,9 +294,9 @@ class Olmo2DecoderLayer(OlmoDecoderLayer):
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
# Self Attention
@ -494,7 +494,7 @@ class LlamaForCausalLM(nn.Module):
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
@ -520,7 +520,7 @@ class NewModelForCausalLM(LlamaForCausalLM): | class LlamaForCausalLM(nn.M
| input_ids: torch.LongTensor = None,
| attention_mask: Optional[torch.Tensor] = None,
| position_ids: Optional[torch.LongTensor] = None,
| past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = |None,
| past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = |None,
| inputs_embeds: Optional[torch.FloatTensor] = None,
| labels: Optional[torch.LongTensor] = None,
| use_cache: Optional[bool] = None,

View File

@ -1,338 +0,0 @@
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# What 🤗 Transformers can do
🤗 Transformers is a library of pretrained state-of-the-art models for natural language processing (NLP), computer vision, and audio and speech processing tasks. Not only does the library contain Transformer models, but it also has non-Transformer models like modern convolutional networks for computer vision tasks. If you look at some of the most popular consumer products today, like smartphones, apps, and televisions, odds are that some kind of deep learning technology is behind it. Want to remove a background object from a picture taken by your smartphone? This is an example of a panoptic segmentation task (don't worry if you don't know what this means yet, we'll describe it in the following sections!).
This page provides an overview of the different speech and audio, computer vision, and NLP tasks that can be solved with the 🤗 Transformers library in just three lines of code!
## Audio
Audio and speech processing tasks are a little different from the other modalities mainly because audio as an input is a continuous signal. Unlike text, a raw audio waveform can't be neatly split into discrete chunks the way a sentence can be divided into words. To get around this, the raw audio signal is typically sampled at regular intervals. If you take more samples within an interval, the sampling rate is higher, and the audio more closely resembles the original audio source.
Previous approaches preprocessed the audio to extract useful features from it. It is now more common to start audio and speech processing tasks by directly feeding the raw audio waveform to a feature encoder to extract an audio representation. This simplifies the preprocessing step and allows the model to learn the most essential features.
### Audio classification
Audio classification is a task that labels audio data from a predefined set of classes. It is a broad category with many specific applications, some of which include:
* acoustic scene classification: label audio with a scene label ("office", "beach", "stadium")
* acoustic event detection: label audio with a sound event label ("car horn", "whale calling", "glass breaking")
* tagging: label audio containing multiple sounds (birdsongs, speaker identification in a meeting)
* music classification: label music with a genre label ("metal", "hip-hop", "country")
```py
>>> from transformers import pipeline
>>> classifier = pipeline(task="audio-classification", model="superb/hubert-base-superb-er")
>>> preds = classifier("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac")
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
>>> preds
[{'score': 0.4532, 'label': 'hap'},
{'score': 0.3622, 'label': 'sad'},
{'score': 0.0943, 'label': 'neu'},
{'score': 0.0903, 'label': 'ang'}]
```
### Automatic speech recognition
Automatic speech recognition (ASR) transcribes speech into text. It is one of the most common audio tasks due partly to speech being such a natural form of human communication. Today, ASR systems are embedded in "smart" technology products like speakers, phones, and cars. We can ask our virtual assistants to play music, set reminders, and tell us the weather.
But one of the key challenges Transformer architectures have helped with is in low-resource languages. By pretraining on large amounts of speech data, finetuning the model on only one hour of labeled speech data in a low-resource language can still produce high-quality results compared to previous ASR systems trained on 100x more labeled data.
```py
>>> from transformers import pipeline
>>> transcriber = pipeline(task="automatic-speech-recognition", model="openai/whisper-small")
>>> transcriber("https://huggingface.co/datasets/Narsil/asr_dummy/resolve/main/mlk.flac")
{'text': ' I have a dream that one day this nation will rise up and live out the true meaning of its creed.'}
```
## Computer vision
One of the first and earliest successful computer vision tasks was recognizing images of zip code numbers using a [convolutional neural network (CNN)](glossary#convolution). An image is composed of pixels, and each pixel has a numerical value. This makes it easy to represent an image as a matrix of pixel values. Each particular combination of pixel values describes the colors of an image.
Two general ways computer vision tasks can be solved are:
1. Use convolutions to learn the hierarchical features of an image from low-level features to high-level abstract things.
2. Split an image into patches and use a Transformer to gradually learn how each image patch is related to each other to form an image. Unlike the bottom-up approach favored by a CNN, this is kind of like starting out with a blurry image and then gradually bringing it into focus.
### Image classification
Image classification labels an entire image from a predefined set of classes. Like most classification tasks, there are many practical use cases for image classification, some of which include:
* healthcare: label medical images to detect disease or monitor patient health
* environment: label satellite images to monitor deforestation, inform wildland management or detect wildfires
* agriculture: label images of crops to monitor plant health or satellite images for land use monitoring
* ecology: label images of animal or plant species to monitor wildlife populations or track endangered species
```py
>>> from transformers import pipeline
>>> classifier = pipeline(task="image-classification")
>>> preds = classifier(
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
... )
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
>>> print(*preds, sep="\n")
{'score': 0.4335, 'label': 'lynx, catamount'}
{'score': 0.0348, 'label': 'cougar, puma, catamount, mountain lion, painter, panther, Felis concolor'}
{'score': 0.0324, 'label': 'snow leopard, ounce, Panthera uncia'}
{'score': 0.0239, 'label': 'Egyptian cat'}
{'score': 0.0229, 'label': 'tiger cat'}
```
### Object detection
Unlike image classification, object detection identifies multiple objects within an image and the objects' positions in an image (defined by the bounding box). Some example applications of object detection include:
* self-driving vehicles: detect everyday traffic objects such as other vehicles, pedestrians, and traffic lights
* remote sensing: disaster monitoring, urban planning, and weather forecasting
* defect detection: detect cracks or structural damage in buildings, and manufacturing defects
```py
>>> from transformers import pipeline
>>> detector = pipeline(task="object-detection")
>>> preds = detector(
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
... )
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"], "box": pred["box"]} for pred in preds]
>>> preds
[{'score': 0.9865,
'label': 'cat',
'box': {'xmin': 178, 'ymin': 154, 'xmax': 882, 'ymax': 598}}]
```
### Image segmentation
Image segmentation is a pixel-level task that assigns every pixel in an image to a class. It differs from object detection, which uses bounding boxes to label and predict objects in an image because segmentation is more granular. Segmentation can detect objects at a pixel-level. There are several types of image segmentation:
* instance segmentation: in addition to labeling the class of an object, it also labels each distinct instance of an object ("dog-1", "dog-2")
* panoptic segmentation: a combination of semantic and instance segmentation; it labels each pixel with a semantic class **and** each distinct instance of an object
Segmentation tasks are helpful in self-driving vehicles to create a pixel-level map of the world around them so they can navigate safely around pedestrians and other vehicles. It is also useful for medical imaging, where the task's finer granularity can help identify abnormal cells or organ features. Image segmentation can also be used in ecommerce to virtually try on clothes or create augmented reality experiences by overlaying objects in the real world through your camera.
```py
>>> from transformers import pipeline
>>> segmenter = pipeline(task="image-segmentation")
>>> preds = segmenter(
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
... )
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
>>> print(*preds, sep="\n")
{'score': 0.9879, 'label': 'LABEL_184'}
{'score': 0.9973, 'label': 'snow'}
{'score': 0.9972, 'label': 'cat'}
```
### Depth estimation
Depth estimation predicts the distance of each pixel in an image from the camera. This computer vision task is especially important for scene understanding and reconstruction. For example, in self-driving cars, vehicles need to understand how far objects like pedestrians, traffic signs, and other vehicles are to avoid obstacles and collisions. Depth information is also helpful for constructing 3D representations from 2D images and can be used to create high-quality 3D representations of biological structures or buildings.
There are two approaches to depth estimation:
* stereo: depths are estimated by comparing two images of the same image from slightly different angles
* monocular: depths are estimated from a single image
```py
>>> from transformers import pipeline
>>> depth_estimator = pipeline(task="depth-estimation")
>>> preds = depth_estimator(
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
... )
```
## Natural language processing
NLP tasks are among the most common types of tasks because text is such a natural way for us to communicate. To get text into a format recognized by a model, it needs to be tokenized. This means dividing a sequence of text into separate words or subwords (tokens) and then converting these tokens into numbers. As a result, you can represent a sequence of text as a sequence of numbers, and once you have a sequence of numbers, it can be input into a model to solve all sorts of NLP tasks!
### Text classification
Like classification tasks in any modality, text classification labels a sequence of text (it can be sentence-level, a paragraph, or a document) from a predefined set of classes. There are many practical applications for text classification, some of which include:
* sentiment analysis: label text according to some polarity like `positive` or `negative` which can inform and support decision-making in fields like politics, finance, and marketing
* content classification: label text according to some topic to help organize and filter information in news and social media feeds (`weather`, `sports`, `finance`, etc.)
```py
>>> from transformers import pipeline
>>> classifier = pipeline(task="sentiment-analysis")
>>> preds = classifier("Hugging Face is the best thing since sliced bread!")
>>> preds = [{"score": round(pred["score"], 4), "label": pred["label"]} for pred in preds]
>>> preds
[{'score': 0.9991, 'label': 'POSITIVE'}]
```
### Token classification
In any NLP task, text is preprocessed by separating the sequence of text into individual words or subwords. These are known as [tokens](glossary#token). Token classification assigns each token a label from a predefined set of classes.
Two common types of token classification are:
* named entity recognition (NER): label a token according to an entity category like organization, person, location or date. NER is especially popular in biomedical settings, where it can label genes, proteins, and drug names.
* part-of-speech tagging (POS): label a token according to its part-of-speech like noun, verb, or adjective. POS is useful for helping translation systems understand how two identical words are grammatically different (bank as a noun versus bank as a verb).
```py
>>> from transformers import pipeline
>>> classifier = pipeline(task="ner")
>>> preds = classifier("Hugging Face is a French company based in New York City.")
>>> preds = [
... {
... "entity": pred["entity"],
... "score": round(pred["score"], 4),
... "index": pred["index"],
... "word": pred["word"],
... "start": pred["start"],
... "end": pred["end"],
... }
... for pred in preds
... ]
>>> print(*preds, sep="\n")
{'entity': 'I-ORG', 'score': 0.9968, 'index': 1, 'word': 'Hu', 'start': 0, 'end': 2}
{'entity': 'I-ORG', 'score': 0.9293, 'index': 2, 'word': '##gging', 'start': 2, 'end': 7}
{'entity': 'I-ORG', 'score': 0.9763, 'index': 3, 'word': 'Face', 'start': 8, 'end': 12}
{'entity': 'I-MISC', 'score': 0.9983, 'index': 6, 'word': 'French', 'start': 18, 'end': 24}
{'entity': 'I-LOC', 'score': 0.999, 'index': 10, 'word': 'New', 'start': 42, 'end': 45}
{'entity': 'I-LOC', 'score': 0.9987, 'index': 11, 'word': 'York', 'start': 46, 'end': 50}
{'entity': 'I-LOC', 'score': 0.9992, 'index': 12, 'word': 'City', 'start': 51, 'end': 55}
```
### Question answering
Question answering is another token-level task that returns an answer to a question, sometimes with context (open-domain) and other times without context (closed-domain). This task happens whenever we ask a virtual assistant something like whether a restaurant is open. It can also provide customer or technical support and help search engines retrieve the relevant information you're asking for.
There are two common types of question answering:
* extractive: given a question and some context, the answer is a span of text from the context the model must extract
* abstractive: given a question and some context, the answer is generated from the context; this approach is handled by the [`Text2TextGenerationPipeline`] instead of the [`QuestionAnsweringPipeline`] shown below
```py
>>> from transformers import pipeline
>>> question_answerer = pipeline(task="question-answering")
>>> preds = question_answerer(
... question="What is the name of the repository?",
... context="The name of the repository is huggingface/transformers",
... )
>>> print(
... f"score: {round(preds['score'], 4)}, start: {preds['start']}, end: {preds['end']}, answer: {preds['answer']}"
... )
score: 0.9327, start: 30, end: 54, answer: huggingface/transformers
```
### Summarization
Summarization creates a shorter version of a text from a longer one while trying to preserve most of the meaning of the original document. Summarization is a sequence-to-sequence task; it outputs a shorter text sequence than the input. There are a lot of long-form documents that can be summarized to help readers quickly understand the main points. Legislative bills, legal and financial documents, patents, and scientific papers are a few examples of documents that could be summarized to save readers time and serve as a reading aid.
Like question answering, there are two types of summarization:
* extractive: identify and extract the most important sentences from the original text
* abstractive: generate the target summary (which may include new words not in the input document) from the original text; the [`SummarizationPipeline`] uses the abstractive approach
```py
>>> from transformers import pipeline
>>> summarizer = pipeline(task="summarization")
>>> summarizer(
... "In this work, we presented the Transformer, the first sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention. For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers. On both WMT 2014 English-to-German and WMT 2014 English-to-French translation tasks, we achieve a new state of the art. In the former task our best model outperforms even all previously reported ensembles."
... )
[{'summary_text': ' The Transformer is the first sequence transduction model based entirely on attention . It replaces the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention . For translation tasks, the Transformer can be trained significantly faster than architectures based on recurrent or convolutional layers .'}]
```
### Translation
Translation converts a sequence of text in one language to another. It is important in helping people from different backgrounds communicate with each other, help translate content to reach wider audiences, and even be a learning tool to help people learn a new language. Along with summarization, translation is a sequence-to-sequence task, meaning the model receives an input sequence and returns a target output sequence.
In the early days, translation models were mostly monolingual, but recently, there has been increasing interest in multilingual models that can translate between many pairs of languages.
```py
>>> from transformers import pipeline
>>> text = "translate English to French: Hugging Face is a community-based open-source platform for machine learning."
>>> translator = pipeline(task="translation", model="google-t5/t5-small")
>>> translator(text)
[{'translation_text': "Hugging Face est une tribune communautaire de l'apprentissage des machines."}]
```
### Language modeling
Language modeling is a task that predicts a word in a sequence of text. It has become a very popular NLP task because a pretrained language model can be finetuned for many other downstream tasks. Lately, there has been a lot of interest in large language models (LLMs) which demonstrate zero- or few-shot learning. This means the model can solve tasks it wasn't explicitly trained to do! Language models can be used to generate fluent and convincing text, though you need to be careful since the text may not always be accurate.
There are two types of language modeling:
* causal: the model's objective is to predict the next token in a sequence, and future tokens are masked
```py
>>> from transformers import pipeline
>>> prompt = "Hugging Face is a community-based open-source platform for machine learning."
>>> generator = pipeline(task="text-generation")
>>> generator(prompt) # doctest: +SKIP
```
* masked: the model's objective is to predict a masked token in a sequence with full access to the tokens in the sequence
```py
>>> text = "Hugging Face is a community-based open-source <mask> for machine learning."
>>> fill_mask = pipeline(task="fill-mask")
>>> preds = fill_mask(text, top_k=1)
>>> preds = [
... {
... "score": round(pred["score"], 4),
... "token": pred["token"],
... "token_str": pred["token_str"],
... "sequence": pred["sequence"],
... }
... for pred in preds
... ]
>>> preds
[{'score': 0.224, 'token': 3944, 'token_str': ' tool', 'sequence': 'Hugging Face is a community-based open-source tool for machine learning.'}]
```
## Multimodal
Multimodal tasks require a model to process multiple data modalities (text, image, audio, video) to solve a particular problem. Image captioning is an example of a multimodal task where the model takes an image as input and outputs a sequence of text describing the image or some properties of the image.
Although multimodal models work with different data types or modalities, internally, the preprocessing steps help the model convert all the data types into embeddings (vectors or list of numbers that holds meaningful information about the data). For a task like image captioning, the model learns relationships between image embeddings and text embeddings.
### Document question answering
Document question answering is a task that answers natural language questions from a document. Unlike a token-level question answering task which takes text as input, document question answering takes an image of a document as input along with a question about the document and returns an answer. Document question answering can be used to parse structured documents and extract key information from it. In the example below, the total amount and change due can be extracted from a receipt.
```py
>>> from transformers import pipeline
>>> from PIL import Image
>>> import requests
>>> url = "https://huggingface.co/datasets/hf-internal-testing/example-documents/resolve/main/jpeg_images/2.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> doc_question_answerer = pipeline("document-question-answering", model="magorshunov/layoutlm-invoices")
>>> preds = doc_question_answerer(
... question="What is the total amount?",
... image=image,
... )
>>> preds
[{'score': 0.8531, 'answer': '17,000', 'start': 4, 'end': 4}]
```
Hopefully, this page has given you some more background information about all the types of tasks in each modality and the practical importance of each one. In the next [section](tasks_explained), you'll learn **how** 🤗 Transformers work to solve these tasks.

View File

@ -170,7 +170,7 @@ Unlike other data collators, this specific data collator needs to apply a differ
... processor: AutoProcessor
... padding: Union[bool, str] = "longest"
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: list[dict[str, Union[list[int], torch.Tensor]]]) -> dict[str, torch.Tensor]:
... # split inputs and labels since they have to be of different lengths and need
... # different padding methods
... input_features = [{"input_values": feature["input_values"][0]} for feature in features]

View File

@ -243,7 +243,7 @@ and it uses the exact same dataset as an example. Apply some geometric and color
... )
```
The `image_processor` expects the annotations to be in the following format: `{'image_id': int, 'annotations': List[Dict]}`,
The `image_processor` expects the annotations to be in the following format: `{'image_id': int, 'annotations': list[Dict]}`,
where each dictionary is a COCO object annotation. Let's add a function to reformat annotations for a single example:
```py
@ -252,9 +252,9 @@ The `image_processor` expects the annotations to be in the following format: `{'
... Args:
... image_id (str): image id. e.g. "0001"
... categories (List[int]): list of categories/class labels corresponding to provided bounding boxes
... areas (List[float]): list of corresponding areas to provided bounding boxes
... bboxes (List[Tuple[float]]): list of bounding boxes provided in COCO format
... categories (list[int]): list of categories/class labels corresponding to provided bounding boxes
... areas (list[float]): list of corresponding areas to provided bounding boxes
... bboxes (list[tuple[float]]): list of bounding boxes provided in COCO format
... ([center_x, center_y, width, height] in absolute coordinates)
... Returns:
@ -397,7 +397,7 @@ Intermediate format of boxes used for training is `YOLO` (normalized) but we wil
... Args:
... boxes (torch.Tensor): Bounding boxes in YOLO format
... image_size (Tuple[int, int]): Image size in format (height, width)
... image_size (tuple[int, int]): Image size in format (height, width)
... Returns:
... torch.Tensor: Bounding boxes in Pascal VOC format (x_min, y_min, x_max, y_max)

View File

@ -408,7 +408,7 @@ instructs the model to ignore that part of the spectrogram when calculating the
... class TTSDataCollatorWithPadding:
... processor: Any
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: list[dict[str, Union[list[int], torch.Tensor]]]) -> dict[str, torch.Tensor]:
... input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
... label_features = [{"input_values": feature["labels"]} for feature in features]
... speaker_features = [feature["speaker_embeddings"] for feature in features]

View File

@ -1,295 +0,0 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# How 🤗 Transformers solve tasks
In [What 🤗 Transformers can do](task_summary), you learned about natural language processing (NLP), speech and audio, computer vision tasks, and some important applications of them. This page will look closely at how models solve these tasks and explain what's happening under the hood. There are many ways to solve a given task, some models may implement certain techniques or even approach the task from a new angle, but for Transformer models, the general idea is the same. Owing to its flexible architecture, most models are a variant of an encoder, a decoder, or an encoder-decoder structure. In addition to Transformer models, our library also has several convolutional neural networks (CNNs), which are still used today for computer vision tasks. We'll also explain how a modern CNN works.
To explain how tasks are solved, we'll walk through what goes on inside the model to output useful predictions.
- [Wav2Vec2](model_doc/wav2vec2) for audio classification and automatic speech recognition (ASR)
- [Vision Transformer (ViT)](model_doc/vit) and [ConvNeXT](model_doc/convnext) for image classification
- [DETR](model_doc/detr) for object detection
- [Mask2Former](model_doc/mask2former) for image segmentation
- [GLPN](model_doc/glpn) for depth estimation
- [BERT](model_doc/bert) for NLP tasks like text classification, token classification and question answering that use an encoder
- [GPT2](model_doc/gpt2) for NLP tasks like text generation that use a decoder
- [BART](model_doc/bart) for NLP tasks like summarization and translation that use an encoder-decoder
<Tip>
Before you go further, it is good to have some basic knowledge of the original Transformer architecture. Knowing how encoders, decoders, and attention work will aid you in understanding how different Transformer models work. If you're just getting started or need a refresher, check out our [course](https://huggingface.co/course/chapter1/4?fw=pt) for more information!
</Tip>
## Speech and audio
[Wav2Vec2](model_doc/wav2vec2) is a self-supervised model pretrained on unlabeled speech data and finetuned on labeled data for audio classification and automatic speech recognition.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/wav2vec2_architecture.png"/>
</div>
This model has four main components:
1. A *feature encoder* takes the raw audio waveform, normalizes it to zero mean and unit variance, and converts it into a sequence of feature vectors that are each 20ms long.
2. Waveforms are continuous by nature, so they can't be divided into separate units like a sequence of text can be split into words. That's why the feature vectors are passed to a *quantization module*, which aims to learn discrete speech units. The speech unit is chosen from a collection of codewords, known as a *codebook* (you can think of this as the vocabulary). From the codebook, the vector or speech unit, that best represents the continuous audio input is chosen and forwarded through the model.
3. About half of the feature vectors are randomly masked, and the masked feature vector is fed to a *context network*, which is a Transformer encoder that also adds relative positional embeddings.
4. The pretraining objective of the context network is a *contrastive task*. The model has to predict the true quantized speech representation of the masked prediction from a set of false ones, encouraging the model to find the most similar context vector and quantized speech unit (the target label).
Now that wav2vec2 is pretrained, you can finetune it on your data for audio classification or automatic speech recognition!
### Audio classification
To use the pretrained model for audio classification, add a sequence classification head on top of the base Wav2Vec2 model. The classification head is a linear layer that accepts the encoder's hidden states. The hidden states represent the learned features from each audio frame which can have varying lengths. To create one vector of fixed-length, the hidden states are pooled first and then transformed into logits over the class labels. The cross-entropy loss is calculated between the logits and target to find the most likely class.
Ready to try your hand at audio classification? Check out our complete [audio classification guide](tasks/audio_classification) to learn how to finetune Wav2Vec2 and use it for inference!
### Automatic speech recognition
To use the pretrained model for automatic speech recognition, add a language modeling head on top of the base Wav2Vec2 model for [connectionist temporal classification (CTC)](glossary#connectionist-temporal-classification-ctc). The language modeling head is a linear layer that accepts the encoder's hidden states and transforms them into logits. Each logit represents a token class (the number of tokens comes from the task vocabulary). The CTC loss is calculated between the logits and targets to find the most likely sequence of tokens, which are then decoded into a transcription.
Ready to try your hand at automatic speech recognition? Check out our complete [automatic speech recognition guide](tasks/asr) to learn how to finetune Wav2Vec2 and use it for inference!
## Computer vision
There are two ways to approach computer vision tasks:
1. Split an image into a sequence of patches and process them in parallel with a Transformer.
2. Use a modern CNN, like [ConvNeXT](model_doc/convnext), which relies on convolutional layers but adopts modern network designs.
<Tip>
A third approach mixes Transformers with convolutions (for example, [Convolutional Vision Transformer](model_doc/cvt) or [LeViT](model_doc/levit)). We won't discuss those because they just combine the two approaches we examine here.
</Tip>
ViT and ConvNeXT are commonly used for image classification, but for other vision tasks like object detection, segmentation, and depth estimation, we'll look at DETR, Mask2Former and GLPN, respectively; these models are better suited for those tasks.
### Image classification
ViT and ConvNeXT can both be used for image classification; the main difference is that ViT uses an attention mechanism while ConvNeXT uses convolutions.
#### Transformer
[ViT](model_doc/vit) replaces convolutions entirely with a pure Transformer architecture. If you're familiar with the original Transformer, then you're already most of the way toward understanding ViT.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vit_architecture.jpg"/>
</div>
The main change ViT introduced was in how images are fed to a Transformer:
1. An image is split into square non-overlapping patches, each of which gets turned into a vector or *patch embedding*. The patch embeddings are generated from a convolutional 2D layer which creates the proper input dimensions (which for a base Transformer is 768 values for each patch embedding). If you had a 224x224 pixel image, you could split it into 196 16x16 image patches. Just like how text is tokenized into words, an image is "tokenized" into a sequence of patches.
2. A *learnable embedding* - a special `[CLS]` token - is added to the beginning of the patch embeddings just like BERT. The final hidden state of the `[CLS]` token is used as the input to the attached classification head; other outputs are ignored. This token helps the model learn how to encode a representation of the image.
3. The last thing to add to the patch and learnable embeddings are the *position embeddings* because the model doesn't know how the image patches are ordered. The position embeddings are also learnable and have the same size as the patch embeddings. Finally, all of the embeddings are passed to the Transformer encoder.
4. The output, specifically only the output with the `[CLS]` token, is passed to a multilayer perceptron head (MLP). ViT's pretraining objective is simply classification. Like other classification heads, the MLP head converts the output into logits over the class labels and calculates the cross-entropy loss to find the most likely class.
Ready to try your hand at image classification? Check out our complete [image classification guide](tasks/image_classification) to learn how to finetune ViT and use it for inference!
#### CNN
<Tip>
This section briefly explains convolutions, but it'd be helpful to have a prior understanding of how they change an image's shape and size. If you're unfamiliar with convolutions, check out the [Convolution Neural Networks chapter](https://github.com/fastai/fastbook/blob/master/13_convolutions.ipynb) from the fastai book!
</Tip>
[ConvNeXT](model_doc/convnext) is a CNN architecture that adopts new and modern network designs to improve performance. However, convolutions are still at the core of the model. From a high-level perspective, a [convolution](glossary#convolution) is an operation where a smaller matrix (*kernel*) is multiplied by a small window of the image pixels. It computes some features from it, such as a particular texture or curvature of a line. Then it slides over to the next window of pixels; the distance the convolution travels is known as the *stride*.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convolution.gif"/>
</div>
<small>A basic convolution without padding or stride, taken from <a href="https://huggingface.co/papers/1603.07285">A guide to convolution arithmetic for deep learning.</a></small>
You can feed this output to another convolutional layer, and with each successive layer, the network learns more complex and abstract things like hotdogs or rockets. Between convolutional layers, it is common to add a pooling layer to reduce dimensionality and make the model more robust to variations of a feature's position.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.png"/>
</div>
ConvNeXT modernizes a CNN in five ways:
1. Change the number of blocks in each stage and "patchify" an image with a larger stride and corresponding kernel size. The non-overlapping sliding window makes this patchifying strategy similar to how ViT splits an image into patches.
2. A *bottleneck* layer shrinks the number of channels and then restores it because it is faster to do a 1x1 convolution, and you can increase the depth. An inverted bottleneck does the opposite by expanding the number of channels and shrinking them, which is more memory efficient.
3. Replace the typical 3x3 convolutional layer in the bottleneck layer with *depthwise convolution*, which applies a convolution to each input channel separately and then stacks them back together at the end. This widens the network width for improved performance.
4. ViT has a global receptive field which means it can see more of an image at once thanks to its attention mechanism. ConvNeXT attempts to replicate this effect by increasing the kernel size to 7x7.
5. ConvNeXT also makes several layer design changes that imitate Transformer models. There are fewer activation and normalization layers, the activation function is switched to GELU instead of ReLU, and it uses LayerNorm instead of BatchNorm.
The output from the convolution blocks is passed to a classification head which converts the outputs into logits and calculates the cross-entropy loss to find the most likely label.
### Object detection
[DETR](model_doc/detr), *DEtection TRansformer*, is an end-to-end object detection model that combines a CNN with a Transformer encoder-decoder.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/detr_architecture.png"/>
</div>
1. A pretrained CNN *backbone* takes an image, represented by its pixel values, and creates a low-resolution feature map of it. A 1x1 convolution is applied to the feature map to reduce dimensionality and it creates a new feature map with a high-level image representation. Since the Transformer is a sequential model, the feature map is flattened into a sequence of feature vectors that are combined with positional embeddings.
2. The feature vectors are passed to the encoder, which learns the image representations using its attention layers. Next, the encoder hidden states are combined with *object queries* in the decoder. Object queries are learned embeddings that focus on the different regions of an image, and they're updated as they progress through each attention layer. The decoder hidden states are passed to a feedforward network that predicts the bounding box coordinates and class label for each object query, or `no object` if there isn't one.
DETR decodes each object query in parallel to output *N* final predictions, where *N* is the number of queries. Unlike a typical autoregressive model that predicts one element at a time, object detection is a set prediction task (`bounding box`, `class label`) that makes *N* predictions in a single pass.
3. DETR uses a *bipartite matching loss* during training to compare a fixed number of predictions with a fixed set of ground truth labels. If there are fewer ground truth labels in the set of *N* labels, then they're padded with a `no object` class. This loss function encourages DETR to find a one-to-one assignment between the predictions and ground truth labels. If either the bounding boxes or class labels aren't correct, a loss is incurred. Likewise, if DETR predicts an object that doesn't exist, it is penalized. This encourages DETR to find other objects in an image instead of focusing on one really prominent object.
An object detection head is added on top of DETR to find the class label and the coordinates of the bounding box. There are two components to the object detection head: a linear layer to transform the decoder hidden states into logits over the class labels, and a MLP to predict the bounding box.
Ready to try your hand at object detection? Check out our complete [object detection guide](tasks/object_detection) to learn how to finetune DETR and use it for inference!
### Image segmentation
[Mask2Former](model_doc/mask2former) is a universal architecture for solving all types of image segmentation tasks. Traditional segmentation models are typically tailored towards a particular subtask of image segmentation, like instance, semantic or panoptic segmentation. Mask2Former frames each of those tasks as a *mask classification* problem. Mask classification groups pixels into *N* segments, and predicts *N* masks and their corresponding class label for a given image. We'll explain how Mask2Former works in this section, and then you can try finetuning SegFormer at the end.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/mask2former_architecture.png"/>
</div>
There are three main components to Mask2Former:
1. A [Swin](model_doc/swin) backbone accepts an image and creates a low-resolution image feature map from 3 consecutive 3x3 convolutions.
2. The feature map is passed to a *pixel decoder* which gradually upsamples the low-resolution features into high-resolution per-pixel embeddings. The pixel decoder actually generates multi-scale features (contains both low- and high-resolution features) with resolutions 1/32, 1/16, and 1/8th of the original image.
3. Each of these feature maps of differing scales is fed successively to one Transformer decoder layer at a time in order to capture small objects from the high-resolution features. The key to Mask2Former is the *masked attention* mechanism in the decoder. Unlike cross-attention which can attend to the entire image, masked attention only focuses on a certain area of the image. This is faster and leads to better performance because the local features of an image are enough for the model to learn from.
4. Like [DETR](tasks_explained#object-detection), Mask2Former also uses learned object queries and combines them with the image features from the pixel decoder to make a set prediction (`class label`, `mask prediction`). The decoder hidden states are passed into a linear layer and transformed into logits over the class labels. The cross-entropy loss is calculated between the logits and class label to find the most likely one.
The mask predictions are generated by combining the pixel-embeddings with the final decoder hidden states. The sigmoid cross-entropy and dice loss is calculated between the logits and the ground truth mask to find the most likely mask.
Ready to try your hand at image segmentation? Check out our complete [image segmentation guide](tasks/semantic_segmentation) to learn how to finetune SegFormer and use it for inference!
### Depth estimation
[GLPN](model_doc/glpn), *Global-Local Path Network*, is a Transformer for depth estimation that combines a [SegFormer](model_doc/segformer) encoder with a lightweight decoder.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/glpn_architecture.jpg"/>
</div>
1. Like ViT, an image is split into a sequence of patches, except these image patches are smaller. This is better for dense prediction tasks like segmentation or depth estimation. The image patches are transformed into patch embeddings (see the [image classification](#image-classification) section for more details about how patch embeddings are created), which are fed to the encoder.
2. The encoder accepts the patch embeddings, and passes them through several encoder blocks. Each block consists of attention and Mix-FFN layers. The purpose of the latter is to provide positional information. At the end of each encoder block is a *patch merging* layer for creating hierarchical representations. The features of each group of neighboring patches are concatenated, and a linear layer is applied to the concatenated features to reduce the number of patches to a resolution of 1/4. This becomes the input to the next encoder block, where this whole process is repeated until you have image features with resolutions of 1/8, 1/16, and 1/32.
3. A lightweight decoder takes the last feature map (1/32 scale) from the encoder and upsamples it to 1/16 scale. From here, the feature is passed into a *Selective Feature Fusion (SFF)* module, which selects and combines local and global features from an attention map for each feature and then upsamples it to 1/8th. This process is repeated until the decoded features are the same size as the original image. The output is passed through two convolution layers and then a sigmoid activation is applied to predict the depth of each pixel.
## Natural language processing
The Transformer was initially designed for machine translation, and since then, it has practically become the default architecture for solving all NLP tasks. Some tasks lend themselves to the Transformer's encoder structure, while others are better suited for the decoder. Still, other tasks make use of both the Transformer's encoder-decoder structure.
### Text classification
[BERT](model_doc/bert) is an encoder-only model and is the first model to effectively implement deep bidirectionality to learn richer representations of the text by attending to words on both sides.
1. BERT uses [WordPiece](tokenizer_summary#wordpiece) tokenization to generate a token embedding of the text. To tell the difference between a single sentence and a pair of sentences, a special `[SEP]` token is added to differentiate them. A special `[CLS]` token is added to the beginning of every sequence of text. The final output with the `[CLS]` token is used as the input to the classification head for classification tasks. BERT also adds a segment embedding to denote whether a token belongs to the first or second sentence in a pair of sentences.
2. BERT is pretrained with two objectives: masked language modeling and next-sentence prediction. In masked language modeling, some percentage of the input tokens are randomly masked, and the model needs to predict these. This solves the issue of bidirectionality, where the model could cheat and see all the words and "predict" the next word. The final hidden states of the predicted mask tokens are passed to a feedforward network with a softmax over the vocabulary to predict the masked word.
The second pretraining object is next-sentence prediction. The model must predict whether sentence B follows sentence A. Half of the time sentence B is the next sentence, and the other half of the time, sentence B is a random sentence. The prediction, whether it is the next sentence or not, is passed to a feedforward network with a softmax over the two classes (`IsNext` and `NotNext`).
3. The input embeddings are passed through multiple encoder layers to output some final hidden states.
To use the pretrained model for text classification, add a sequence classification head on top of the base BERT model. The sequence classification head is a linear layer that accepts the final hidden states and performs a linear transformation to convert them into logits. The cross-entropy loss is calculated between the logits and target to find the most likely label.
Ready to try your hand at text classification? Check out our complete [text classification guide](tasks/sequence_classification) to learn how to finetune DistilBERT and use it for inference!
### Token classification
To use BERT for token classification tasks like named entity recognition (NER), add a token classification head on top of the base BERT model. The token classification head is a linear layer that accepts the final hidden states and performs a linear transformation to convert them into logits. The cross-entropy loss is calculated between the logits and each token to find the most likely label.
Ready to try your hand at token classification? Check out our complete [token classification guide](tasks/token_classification) to learn how to finetune DistilBERT and use it for inference!
### Question answering
To use BERT for question answering, add a span classification head on top of the base BERT model. This linear layer accepts the final hidden states and performs a linear transformation to compute the `span` start and end logits corresponding to the answer. The cross-entropy loss is calculated between the logits and the label position to find the most likely span of text corresponding to the answer.
Ready to try your hand at question answering? Check out our complete [question answering guide](tasks/question_answering) to learn how to finetune DistilBERT and use it for inference!
<Tip>
💡 Notice how easy it is to use BERT for different tasks once it's been pretrained. You only need to add a specific head to the pretrained model to manipulate the hidden states into your desired output!
</Tip>
### Text generation
[GPT-2](model_doc/gpt2) is a decoder-only model pretrained on a large amount of text. It can generate convincing (though not always true!) text given a prompt and complete other NLP tasks like question answering despite not being explicitly trained to.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gpt2_architecture.png"/>
</div>
1. GPT-2 uses [byte pair encoding (BPE)](tokenizer_summary#bytepair-encoding-bpe) to tokenize words and generate a token embedding. Positional encodings are added to the token embeddings to indicate the position of each token in the sequence. The input embeddings are passed through multiple decoder blocks to output some final hidden state. Within each decoder block, GPT-2 uses a *masked self-attention* layer which means GPT-2 can't attend to future tokens. It is only allowed to attend to tokens on the left. This is different from BERT's [`mask`] token because, in masked self-attention, an attention mask is used to set the score to `0` for future tokens.
2. The output from the decoder is passed to a language modeling head, which performs a linear transformation to convert the hidden states into logits. The label is the next token in the sequence, which are created by shifting the logits to the right by one. The cross-entropy loss is calculated between the shifted logits and the labels to output the next most likely token.
GPT-2's pretraining objective is based entirely on [causal language modeling](glossary#causal-language-modeling), predicting the next word in a sequence. This makes GPT-2 especially good at tasks that involve generating text.
Ready to try your hand at text generation? Check out our complete [causal language modeling guide](tasks/language_modeling#causal-language-modeling) to learn how to finetune DistilGPT-2 and use it for inference!
<Tip>
For more information about text generation, check out the [text generation strategies](generation_strategies) guide!
</Tip>
### Summarization
Encoder-decoder models like [BART](model_doc/bart) and [T5](model_doc/t5) are designed for the sequence-to-sequence pattern of a summarization task. We'll explain how BART works in this section, and then you can try finetuning T5 at the end.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bart_architecture.png"/>
</div>
1. BART's encoder architecture is very similar to BERT and accepts a token and positional embedding of the text. BART is pretrained by corrupting the input and then reconstructing it with the decoder. Unlike other encoders with specific corruption strategies, BART can apply any type of corruption. The *text infilling* corruption strategy works the best though. In text infilling, a number of text spans are replaced with a **single** [`mask`] token. This is important because the model has to predict the masked tokens, and it teaches the model to predict the number of missing tokens. The input embeddings and masked spans are passed through the encoder to output some final hidden states, but unlike BERT, BART doesn't add a final feedforward network at the end to predict a word.
2. The encoder's output is passed to the decoder, which must predict the masked tokens and any uncorrupted tokens from the encoder's output. This gives additional context to help the decoder restore the original text. The output from the decoder is passed to a language modeling head, which performs a linear transformation to convert the hidden states into logits. The cross-entropy loss is calculated between the logits and the label, which is just the token shifted to the right.
Ready to try your hand at summarization? Check out our complete [summarization guide](tasks/summarization) to learn how to finetune T5 and use it for inference!
<Tip>
For more information about text generation, check out the [text generation strategies](generation_strategies) guide!
</Tip>
### Translation
Translation is another example of a sequence-to-sequence task, which means you can use an encoder-decoder model like [BART](model_doc/bart) or [T5](model_doc/t5) to do it. We'll explain how BART works in this section, and then you can try finetuning T5 at the end.
BART adapts to translation by adding a separate randomly initialized encoder to map a source language to an input that can be decoded into the target language. This new encoder's embeddings are passed to the pretrained encoder instead of the original word embeddings. The source encoder is trained by updating the source encoder, positional embeddings, and input embeddings with the cross-entropy loss from the model output. The model parameters are frozen in this first step, and all the model parameters are trained together in the second step.
BART has since been followed up by a multilingual version, mBART, intended for translation and pretrained on many different languages.
Ready to try your hand at translation? Check out our complete [translation guide](tasks/translation) to learn how to finetune T5 and use it for inference!
<Tip>
For more information about text generation, check out the [text generation strategies](generation_strategies) guide!
</Tip>

View File

@ -493,6 +493,33 @@ training_args = TrainingArguments(
)
```
You can also configure which specific kernels to apply using the `liger_kernel_config` parameter. This dict is passed as keyword arguments to the `_apply_liger_kernel_to_instance` function, allowing fine-grained control over kernel usage. Available options vary by model but typically include: `rope`, `swiglu`, `cross_entropy`, `fused_linear_cross_entropy`, `rms_norm`, etc.
```py
from transformers import TrainingArguments
# Apply only specific kernels
training_args = TrainingArguments(
output_dir="your-model",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=2,
weight_decay=0.01,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
push_to_hub=True,
use_liger_kernel=True,
liger_kernel_config={
"rope": True,
"cross_entropy": True,
"rms_norm": False, # Don't apply Liger's RMSNorm kernel
"swiglu": True,
}
)
```
### NEFTune
[NEFTune](https://hf.co/papers/2310.05914) adds noise to the embedding vectors during training to improve model performance. Enable it in [`Trainer`] with the `neftune_noise_alpha` parameter in [`TrainingArguments`] to control how much noise is added.

View File

@ -48,7 +48,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers: list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -166,7 +166,7 @@ A diferencia de otros collators de datos, este tiene que aplicarle un método de
... processor: AutoProcessor
... padding: Union[bool, str] = "longest"
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: list[dict[str, Union[list[int], torch.Tensor]]]) -> dict[str, torch.Tensor]:
... # particiona las entradas y las etiquetas ya que tienen que tener longitudes distintas y
... # requieren métodos de padding diferentes
... input_features = [{"input_values": feature["input_values"][0]} for feature in features]

View File

@ -47,7 +47,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers: list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -373,4 +373,4 @@ Per altri esempi sul fine-tuning, fai riferimento a:
- [🤗 Transformers Examples](https://github.com/huggingface/transformers/tree/main/examples) include scripts per addestrare compiti comuni di NLP in PyTorch e TensorFlow.
- [🤗 Transformers Notebooks](notebooks) contiene diversi notebooks su come mettere a punto un modello per compiti specifici in PyTorch e TensorFlow.
- [🤗 Transformers Notebooks](https://github.com/huggingface/notebooks) contiene diversi notebooks su come mettere a punto un modello per compiti specifici in PyTorch e TensorFlow.

View File

@ -39,7 +39,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers: list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -56,7 +56,7 @@ Optunaに関しては、[object_parameter](https://optuna.readthedocs.io/en/stab
... }
```
Optunaは、多目的のハイパーパラメータ最適化HPOを提供しています。 `hyperparameter_search``direction` を渡し、複数の目的関数値を返すための独自の `compute_objective` を定義することができます。 Pareto Front`List[BestRun]`)は `hyperparameter_search` で返され、[test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py) のテストケース `TrainerHyperParameterMultiObjectOptunaIntegrationTest` を参照する必要があります。これは以下のようになります。
Optunaは、多目的のハイパーパラメータ最適化HPOを提供しています。 `hyperparameter_search``direction` を渡し、複数の目的関数値を返すための独自の `compute_objective` を定義することができます。 Pareto Front`list[BestRun]`)は `hyperparameter_search` で返され、[test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py) のテストケース `TrainerHyperParameterMultiObjectOptunaIntegrationTest` を参照する必要があります。これは以下のようになります。
```py

View File

@ -57,11 +57,11 @@ def make_box_first_token_mask(bboxes, words, tokenizer, max_seq_length=512):
box_first_token_mask = np.zeros(max_seq_length, dtype=np.bool_)
# encode(tokenize) each word from words (List[str])
input_ids_list: List[List[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words]
# encode(tokenize) each word from words (list[str])
input_ids_list: list[list[int]] = [tokenizer.encode(e, add_special_tokens=False) for e in words]
# get the length of each box
tokens_length_list: List[int] = [len(l) for l in input_ids_list]
tokens_length_list: list[int] = [len(l) for l in input_ids_list]
box_end_token_indices = np.array(list(itertools.accumulate(tokens_length_list)))
box_start_token_indices = box_end_token_indices - np.array(tokens_length_list)

View File

@ -149,7 +149,7 @@ DETR モデルをインスタンス化するには 3 つの方法があります
| **Description** |画像内のオブジェクトの周囲の境界ボックスとクラス ラベルを予測する | 画像内のオブジェクト (つまりインスタンス) の周囲のマスクを予測する | 画像内のオブジェクト (インスタンス) と「もの」 (木や道路などの背景) の両方の周囲のマスクを予測します |
| **Model** | [`~transformers.DetrForObjectDetection`] | [`~transformers.DetrForSegmentation`] | [`~transformers.DetrForSegmentation`] |
| **Example dataset** | COCO detection | COCO detection, COCO panoptic | COCO panoptic | |
| **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': `List[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': `List[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': `List[Dict]`} and masks_path (path to directory containing PNG files of the masks) |
| **Format of annotations to provide to** [`~transformers.DetrImageProcessor`] | {'image_id': `int`, 'annotations': `list[Dict]`} each Dict being a COCO object annotation | {'image_id': `int`, 'annotations': `list[Dict]`} (in case of COCO detection) or {'file_name': `str`, 'image_id': `int`, 'segments_info': `list[Dict]`} (in case of COCO panoptic) | {'file_name': `str`, 'image_id': `int`, 'segments_info': `list[Dict]`} and masks_path (path to directory containing PNG files of the masks) |
| **Postprocessing** (i.e. converting the output of the model to Pascal VOC format) | [`~transformers.DetrImageProcessor.post_process`] | [`~transformers.DetrImageProcessor.post_process_segmentation`] | [`~transformers.DetrImageProcessor.post_process_segmentation`], [`~transformers.DetrImageProcessor.post_process_panoptic`] |
| **evaluators** | `CocoEvaluator` with `iou_types="bbox"` | `CocoEvaluator` with `iou_types="bbox"` or `"segm"` | `CocoEvaluator` with `iou_tupes="bbox"` or `"segm"`, `PanopticEvaluator` |

View File

@ -170,7 +170,7 @@ MInDS-14 データセットのサンプリング レートは 8000kHz です (
... processor: AutoProcessor
... padding: Union[bool, str] = "longest"
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: list[dict[str, Union[list[int], torch.Tensor]]]) -> dict[str, torch.Tensor]:
... # split inputs and labels since they have to be of different lengths and need
... # different padding methods
... input_features = [{"input_values": feature["input_values"][0]} for feature in features]

View File

@ -208,7 +208,7 @@ DETR モデルをトレーニングできる「ラベル」。画像プロセッ
... )
```
`image_processor` は、注釈が次の形式であることを期待します: `{'image_id': int, 'annotations': List[Dict]}`,
`image_processor` は、注釈が次の形式であることを期待します: `{'image_id': int, 'annotations': list[Dict]}`,
ここで、各辞書は COCO オブジェクトの注釈です。 1 つの例として、注釈を再フォーマットする関数を追加してみましょう。
```py

View File

@ -408,7 +408,7 @@ Y 軸が反転され、スペクトログラムが上下逆に表示されます
... class TTSDataCollatorWithPadding:
... processor: Any
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: list[dict[str, Union[list[int], torch.Tensor]]]) -> dict[str, torch.Tensor]:
... input_ids = [{"input_ids": feature["input_ids"]} for feature in features]
... label_features = [{"input_values": feature["labels"]} for feature in features]
... speaker_features = [feature["speaker_embeddings"] for feature in features]

View File

@ -46,7 +46,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers: list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -172,7 +172,7 @@ MInDS-14 데이터 세트의 샘플링 레이트는 8000kHz이므로([데이터
... processor: AutoProcessor
... padding: Union[bool, str] = "longest"
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: list[dict[str, Union[list[int], torch.Tensor]]]) -> dict[str, torch.Tensor]:
... # 입력과 레이블을 분할합니다
... # 길이가 다르고, 각각 다른 패딩 방법을 사용해야 하기 때문입니다
... input_features = [{"input_values": feature["input_values"][0]} for feature in features]

View File

@ -201,7 +201,7 @@ DatasetDict({
... )
```
이미지 프로세서는 어노테이션이 다음과 같은 형식일 것으로 예상합니다: `{'image_id': int, 'annotations': List[Dict]}`, 여기서 각 딕셔너리는 COCO 객체 어노테이션입니다. 단일 예제에 대해 어노테이션의 형식을 다시 지정하는 함수를 추가해 보겠습니다:
이미지 프로세서는 어노테이션이 다음과 같은 형식일 것으로 예상합니다: `{'image_id': int, 'annotations': list[Dict]}`, 여기서 각 딕셔너리는 COCO 객체 어노테이션입니다. 단일 예제에 대해 어노테이션의 형식을 다시 지정하는 함수를 추가해 보겠습니다:
```py
>>> def formatted_anns(image_id, category, area, bbox):

View File

@ -47,7 +47,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers: list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -39,7 +39,7 @@ class ResnetConfig(PretrainedConfig):
def __init__(
self,
block_type="bottleneck",
layers: List[int] = [3, 4, 6, 3],
layers: list[int] = [3, 4, 6, 3],
num_classes: int = 1000,
input_channels: int = 3,
cardinality: int = 1,

View File

@ -56,7 +56,7 @@ pip install optuna/sigopt/wandb/ray[tune]
... }
```
Optuna提供了多目标HPO。您可以在`hyperparameter_search`中传递`direction`参数,并定义自己的`compute_objective`以返回多个目标值。在`hyperparameter_search`中将返回Pareto Front`List[BestRun]`),您应该参考[test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py)中的测试用例`TrainerHyperParameterMultiObjectOptunaIntegrationTest`。它类似于以下内容:
Optuna提供了多目标HPO。您可以在`hyperparameter_search`中传递`direction`参数,并定义自己的`compute_objective`以返回多个目标值。在`hyperparameter_search`中将返回Pareto Front`list[BestRun]`),您应该参考[test_trainer](https://github.com/huggingface/transformers/blob/main/tests/trainer/test_trainer.py)中的测试用例`TrainerHyperParameterMultiObjectOptunaIntegrationTest`。它类似于以下内容:
```py
>>> best_trials = trainer.hyperparameter_search(

View File

@ -181,7 +181,7 @@ Wav2Vec2 分词器仅训练了大写字符,因此您需要确保文本与分
... processor: AutoProcessor
... padding: Union[bool, str] = "longest"
... def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
... def __call__(self, features: list[dict[str, Union[list[int], torch.Tensor]]]) -> dict[str, torch.Tensor]:
... # split inputs and labels since they have to be of different lengths and need
... # different padding methods
... input_features = [{"input_values": feature["input_values"][0]} for feature in features]

View File

@ -47,7 +47,7 @@ def postprocess_qa_predictions(
Args:
examples: The non-preprocessed dataset (see the main script for more information).
features: The processed dataset (see the main script for more information).
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
predictions (:obj:`tuple[np.ndarray, np.ndarray]`):
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
first dimension must match the number of elements of :obj:`features`.
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
@ -270,7 +270,7 @@ def postprocess_qa_predictions_with_beam_search(
Args:
examples: The non-preprocessed dataset (see the main script for more information).
features: The processed dataset (see the main script for more information).
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
predictions (:obj:`tuple[np.ndarray, np.ndarray]`):
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
first dimension must match the number of elements of :obj:`features`.
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):

View File

@ -184,7 +184,7 @@ class Seq2SeqTrainer(Trainer):
Args:
model (:obj:`nn.Module`):
The model to evaluate.
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
inputs (:obj:`dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
@ -193,7 +193,7 @@ class Seq2SeqTrainer(Trainer):
Whether or not to return the loss only.
Return:
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
A tuple with the loss, logits and labels (each being optional).
"""
inputs = self._prepare_inputs(inputs)

View File

@ -530,7 +530,7 @@ def calculate_rouge(
on multi sentence summaries (CNN/DM dataset).
Returns:
Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys
dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys
"""
scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer)

View File

@ -91,11 +91,11 @@ class MyNewModelConfig(PretrainedConfig):
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
`short_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
`long_factor` (`list[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2

View File

@ -4,7 +4,7 @@
# the file from the modular. If any change should be done, please apply the change to the
# modular_new_imgproc_model.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Dict, List, Optional, Union
from typing import Optional, Union
import numpy as np
import torch
@ -57,11 +57,11 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
method. Can be overridden by the `do_normalize` parameter in the `preprocess` method.
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
image_mean (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be
overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
image_std (`float` or `list[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
Can be overridden by the `image_std` parameter in the `preprocess` method.
@ -74,13 +74,13 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
def __init__(
self,
do_resize: bool = True,
size: Optional[Dict[str, int]] = None,
size: Optional[dict[str, int]] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
image_mean: Optional[Union[float, list[float]]] = None,
image_std: Optional[Union[float, list[float]]] = None,
do_convert_rgb: bool = True,
**kwargs,
) -> None:
@ -101,7 +101,7 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
size: dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
@ -113,7 +113,7 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
size (`dict[str, int]`):
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.BICUBIC`.
@ -151,13 +151,13 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
size: Optional[dict[str, int]] = None,
resample: PILImageResampling = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
image_mean: Optional[Union[float, list[float]]] = None,
image_std: Optional[Union[float, list[float]]] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
do_convert_rgb: Optional[bool] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
@ -172,7 +172,7 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
size (`dict[str, int]`, *optional*, defaults to `self.size`):
Controls the size of the image after `resize`. The shortest edge of the image is resized to
`size["shortest_edge"]` whilst preserving the aspect ratio. If the longest edge of this resized image
is > `int(size["shortest_edge"] * (1333 / 800))`, then the image is resized again to make the longest
@ -185,9 +185,9 @@ class ImgprocModelImageProcessor(BaseImageProcessor):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
Image mean to normalize the image by if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to normalize the image by if `do_normalize` is set to `True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.

View File

@ -5,7 +5,7 @@
# modular_add_function.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Note that zamba does not have the `apply_rotary_pos_emb` function!
from typing import Optional, Tuple
from typing import Optional
import torch
from torch import nn
@ -62,5 +62,5 @@ class TestAttention(nn.Module):
def __init__(self):
pass
def forward(self) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
def forward(self) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
_ = apply_rotary_pos_emb(1, 1, 1, 1)

View File

@ -4,7 +4,7 @@
# the file from the modular. If any change should be done, please apply the change to the
# modular_dummy.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional, Tuple, Union
from typing import Callable, Optional, Union
import torch
from torch import nn
@ -210,12 +210,12 @@ class DummyAttention(nn.Module):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -278,9 +278,9 @@ class DummyDecoderLayer(GradientCheckpointingLayer):
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)

View File

@ -6,7 +6,7 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
import math
import os
from typing import Optional, Tuple, Union
from typing import Optional, Union
import torch
from packaging import version
@ -136,9 +136,9 @@ class DummyBertSelfAttention(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
@ -245,9 +245,9 @@ class DummyBertSdpaSelfAttention(DummyBertSelfAttention):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented.
logger.warning_once(
@ -386,9 +386,9 @@ class DummyBertAttention(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
@ -454,9 +454,9 @@ class DummyBertLayer(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
@ -532,12 +532,12 @@ class DummyBertEncoder(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None

View File

@ -4,7 +4,7 @@
# the file from the modular. If any change should be done, please apply the change to the
# modular_from_uppercase_model.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional, Tuple, Union
from typing import Callable, Optional, Union
import torch
from torch import nn
@ -71,7 +71,7 @@ class FromUppercaseModelAttention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
@ -153,7 +153,7 @@ class FromUppercaseModelEncoderLayer(nn.Module):
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
) -> tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`

View File

@ -4,7 +4,7 @@
# the file from the modular. If any change should be done, please apply the change to the
# modular_multimodal1.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional, Tuple, Union
from typing import Callable, Optional, Union
import torch
from torch import nn
@ -210,12 +210,12 @@ class Multimodal1TextAttention(nn.Module):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -278,9 +278,9 @@ class Multimodal1TextDecoderLayer(GradientCheckpointingLayer):
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)

View File

@ -5,7 +5,7 @@
# modular_multimodal2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional, Tuple, Union
from typing import Callable, Optional, Union
import torch
from torch import nn
@ -81,7 +81,7 @@ class Multimodal2VisionAttention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
@ -177,7 +177,7 @@ class Multimodal2Attention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
@ -244,7 +244,7 @@ class Multimodal2VisionEncoderLayer(nn.Module):
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
) -> tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`

View File

@ -4,7 +4,7 @@
# the file from the modular. If any change should be done, please apply the change to the
# modular_my_new_model2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, List, Optional, Tuple, Union
from typing import Callable, Optional, Union
import torch
from torch import nn
@ -208,12 +208,12 @@ class MyNewModel2Attention(nn.Module):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -276,9 +276,9 @@ class MyNewModel2DecoderLayer(GradientCheckpointingLayer):
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
@ -469,7 +469,7 @@ class MyNewModel2Model(MyNewModel2PreTrainedModel):
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
past_key_values: Optional[Union[Cache, list[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,

View File

@ -5,7 +5,7 @@
# modular_new_task_model.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from dataclasses import dataclass
from typing import ClassVar, List, Optional, Tuple, Union
from typing import ClassVar, Optional, Union
import torch
from torch import nn
@ -88,9 +88,9 @@ class NewTaskModelCausalLMOutputWithPast(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
@ -249,7 +249,7 @@ class NewTaskModelModel(NewTaskModelPreTrainedModel):
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[List[torch.FloatTensor], Cache]] = None,
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
token_type_ids: Optional[torch.LongTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
@ -259,7 +259,7 @@ class NewTaskModelModel(NewTaskModelPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, NewTaskModelModelOutputWithPast]:
) -> Union[tuple, NewTaskModelModelOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
@ -442,7 +442,7 @@ class NewTaskModelForNewTask(NewTaskModelPreTrainedModel, GenerationMixin):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
num_logits_to_keep: int = 0,
) -> Union[Tuple, NewTaskModelCausalLMOutputWithPast]:
) -> Union[tuple, NewTaskModelCausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,

View File

@ -6,7 +6,7 @@
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
import math
import os
from typing import List, Optional, Tuple, Union
from typing import Optional, Union
import torch
import torch.nn as nn
@ -139,9 +139,9 @@ class RobertaSelfAttention(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
@ -248,9 +248,9 @@ class RobertaSdpaSelfAttention(RobertaSelfAttention):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
if self.position_embedding_type != "absolute" or output_attentions or head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once implemented.
logger.warning_once(
@ -389,9 +389,9 @@ class RobertaAttention(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
@ -457,9 +457,9 @@ class RobertaLayer(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
@ -535,12 +535,12 @@ class RobertaEncoder(nn.Module):
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
@ -903,12 +903,12 @@ class RobertaModel(RobertaPreTrainedModel):
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
past_key_values: Optional[list[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if

View File

@ -4,7 +4,7 @@
# the file from the modular. If any change should be done, please apply the change to the
# modular_super.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from typing import Callable, Optional, Tuple, Union
from typing import Callable, Optional, Union
import torch
from torch import nn
@ -211,12 +211,12 @@ class SuperAttention(nn.Module):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
@ -279,9 +279,9 @@ class SuperDecoderLayer(GradientCheckpointingLayer):
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)

View File

@ -5,7 +5,7 @@
# modular_switch_function.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Note that llama and cohere have different definitions for rotate_half
from typing import Callable, Optional, Tuple
from typing import Callable, Optional
import torch
from torch import nn
@ -123,12 +123,12 @@ class SwitchFunctionAttention(nn.Module):
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
position_embeddings: tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)

View File

@ -7,7 +7,7 @@
import math
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
from typing import Optional, Union
import torch
import torch.nn.functional as F
@ -43,7 +43,7 @@ class MultiScaleDeformableAttention(nn.Module):
self,
value: Tensor,
value_spatial_shapes: Tensor,
value_spatial_shapes_list: List[Tuple],
value_spatial_shapes_list: list[tuple],
level_start_index: Tensor,
sampling_locations: Tensor,
attention_weights: Tensor,
@ -124,9 +124,9 @@ class TestDetrDecoderOutput(ModelOutput):
last_hidden_state: Optional[torch.FloatTensor] = None
intermediate_hidden_states: Optional[torch.FloatTensor] = None
intermediate_reference_points: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
hidden_states: Optional[tuple[torch.FloatTensor]] = None
attentions: Optional[tuple[torch.FloatTensor]] = None
cross_attentions: Optional[tuple[torch.FloatTensor]] = None
@dataclass
@ -177,12 +177,12 @@ class TestDetrModelOutput(ModelOutput):
last_hidden_state: Optional[torch.FloatTensor] = None
intermediate_hidden_states: Optional[torch.FloatTensor] = None
intermediate_reference_points: Optional[torch.FloatTensor] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor]] = None
decoder_hidden_states: Optional[tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[tuple[torch.FloatTensor]] = None
cross_attentions: Optional[tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[tuple[torch.FloatTensor]] = None
enc_outputs_class: Optional[torch.FloatTensor] = None
enc_outputs_coord_logits: Optional[torch.FloatTensor] = None
@ -557,7 +557,7 @@ class TestDetrMultiheadAttention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
batch_size, target_len, embed_dim = hidden_states.size()
@ -1431,7 +1431,7 @@ class TestDetrModel(TestDetrPreTrainedModel):
Args:
enc_output (Tensor[batch_size, sequence_length, hidden_size]): Output of the encoder.
padding_mask (Tensor[batch_size, sequence_length]): Padding mask for `enc_output`.
spatial_shapes (List[Tuple[int, int]]): Spatial shapes of the feature maps.
spatial_shapes (list[tuple[int, int]]): Spatial shapes of the feature maps.
Returns:
`tuple(torch.FloatTensor)`: A tuple of feature map and bbox prediction.
@ -1499,7 +1499,7 @@ class TestDetrModel(TestDetrPreTrainedModel):
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], TestDetrModelOutput]:
) -> Union[tuple[torch.FloatTensor], TestDetrModelOutput]:
r"""
Returns:

View File

@ -33,7 +33,7 @@ import logging
import os
from collections.abc import Iterable
from contextlib import nullcontext
from typing import Dict, Optional
from typing import Optional
import torch
import torch.distributed as dist
@ -589,7 +589,7 @@ class ContextParallelCollator:
def __init__(self, cp_mesh: Optional[DeviceMesh] = None):
self.cp_mesh = cp_mesh
def __call__(self, batch: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
def __call__(self, batch: dict[str, torch.Tensor]) -> dict[str, torch.Tensor]:
batch = default_collate(batch)
if self.cp_mesh is not None and self.cp_mesh.size() > 1:
# Get sequence length from the input batch

View File

@ -66,9 +66,9 @@ def format_image_annotations_as_coco(
Args:
image_id (str): image id. e.g. "0001"
categories (List[int]): list of categories/class labels corresponding to provided bounding boxes
areas (List[float]): list of corresponding areas to provided bounding boxes
bboxes (List[Tuple[float]]): list of bounding boxes provided in COCO format
categories (list[int]): list of categories/class labels corresponding to provided bounding boxes
areas (list[float]): list of corresponding areas to provided bounding boxes
bboxes (list[tuple[float]]): list of bounding boxes provided in COCO format
([center_x, center_y, width, height] in absolute coordinates)
Returns:
@ -101,7 +101,7 @@ def convert_bbox_yolo_to_pascal(boxes: torch.Tensor, image_size: tuple[int, int]
Args:
boxes (torch.Tensor): Bounding boxes in YOLO format
image_size (Tuple[int, int]): Image size in format (height, width)
image_size (tuple[int, int]): Image size in format (height, width)
Returns:
torch.Tensor: Bounding boxes in Pascal VOC format (x_min, y_min, x_max, y_max)

View File

@ -67,9 +67,9 @@ def format_image_annotations_as_coco(
Args:
image_id (str): image id. e.g. "0001"
categories (List[int]): list of categories/class labels corresponding to provided bounding boxes
areas (List[float]): list of corresponding areas to provided bounding boxes
bboxes (List[Tuple[float]]): list of bounding boxes provided in COCO format
categories (list[int]): list of categories/class labels corresponding to provided bounding boxes
areas (list[float]): list of corresponding areas to provided bounding boxes
bboxes (list[tuple[float]]): list of bounding boxes provided in COCO format
([center_x, center_y, width, height] in absolute coordinates)
Returns:
@ -103,7 +103,7 @@ def convert_bbox_yolo_to_pascal(boxes: torch.Tensor, image_size: tuple[int, int]
Args:
boxes (torch.Tensor): Bounding boxes in YOLO format
image_size (Tuple[int, int]): Image size in format (height, width)
image_size (tuple[int, int]): Image size in format (height, width)
Returns:
torch.Tensor: Bounding boxes in Pascal VOC format (x_min, y_min, x_max, y_max)

View File

@ -47,7 +47,7 @@ def postprocess_qa_predictions(
Args:
examples: The non-preprocessed dataset (see the main script for more information).
features: The processed dataset (see the main script for more information).
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
predictions (:obj:`tuple[np.ndarray, np.ndarray]`):
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
first dimension must match the number of elements of :obj:`features`.
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
@ -270,7 +270,7 @@ def postprocess_qa_predictions_with_beam_search(
Args:
examples: The non-preprocessed dataset (see the main script for more information).
features: The processed dataset (see the main script for more information).
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
predictions (:obj:`tuple[np.ndarray, np.ndarray]`):
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
first dimension must match the number of elements of :obj:`features`.
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):

View File

@ -47,7 +47,7 @@ def postprocess_qa_predictions(
Args:
examples: The non-preprocessed dataset (see the main script for more information).
features: The processed dataset (see the main script for more information).
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
predictions (:obj:`tuple[np.ndarray, np.ndarray]`):
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
first dimension must match the number of elements of :obj:`features`.
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):
@ -270,7 +270,7 @@ def postprocess_qa_predictions_with_beam_search(
Args:
examples: The non-preprocessed dataset (see the main script for more information).
features: The processed dataset (see the main script for more information).
predictions (:obj:`Tuple[np.ndarray, np.ndarray]`):
predictions (:obj:`tuple[np.ndarray, np.ndarray]`):
The predictions of the model: two arrays containing the start logits and the end logits respectively. Its
first dimension must match the number of elements of :obj:`features`.
version_2_with_negative (:obj:`bool`, `optional`, defaults to :obj:`False`):

View File

@ -22,7 +22,8 @@ line-length = 119
ignore = ["C901", "E501", "E741", "F402", "F823" ]
# RUF013: Checks for the use of implicit Optional
# in type annotations when the default parameter value is None.
select = ["C", "E", "F", "I", "W", "RUF013"]
select = ["C", "E", "F", "I", "W", "RUF013", "UP006"]
extend-safe-fixes = ["UP006"]
# Ignore import violations in all `__init__.py` files.
[tool.ruff.lint.per-file-ignores]

View File

@ -232,6 +232,7 @@ _import_structure = {
"is_faiss_available",
"is_flax_available",
"is_keras_nlp_available",
"is_matplotlib_available",
"is_phonemizer_available",
"is_psutil_available",
"is_py3nvml_available",
@ -730,6 +731,7 @@ if TYPE_CHECKING:
is_faiss_available,
is_flax_available,
is_keras_nlp_available,
is_matplotlib_available,
is_phonemizer_available,
is_psutil_available,
is_py3nvml_available,

View File

@ -19,7 +19,7 @@ and remove unnecessary dependencies.
import os
import warnings
from io import BytesIO
from typing import List, Optional, Tuple, Union
from typing import Optional, Union
import numpy as np
import requests
@ -70,7 +70,7 @@ def load_audio(audio: Union[str, np.ndarray], sampling_rate=16000, timeout=None)
AudioInput = Union[
np.ndarray, "torch.Tensor", List[np.ndarray], Tuple[np.ndarray], List["torch.Tensor"], Tuple["torch.Tensor"] # noqa: F821
np.ndarray, "torch.Tensor", list[np.ndarray], tuple[np.ndarray], list["torch.Tensor"], tuple["torch.Tensor"] # noqa: F821
]
@ -88,7 +88,7 @@ def make_list_of_audio(
"""
Ensure that the output is a list of audio.
Args:
audio (`Union[List[AudioInput], AudioInput]`):
audio (`Union[list[AudioInput], AudioInput]`):
The input audio.
Returns:
list: A list of audio.
@ -246,7 +246,7 @@ def chroma_filter_bank(
Tuning deviation from A440 in fractions of a chroma bin.
power (`float`, *optional*, defaults to 2.0):
If 12.0, normalizes each column with their L2 norm. If 1.0, normalizes each column with their L1 norm.
weighting_parameters (`Tuple[float, float]`, *optional*, defaults to `(5., 2.)`):
weighting_parameters (`tuple[float, float]`, *optional*, defaults to `(5., 2.)`):
If specified, apply a Gaussian weighting parameterized by the first element of the tuple being the center and
the second element being the Gaussian half-width.
start_at_c_chroma (`float`, *optional*, defaults to `True`):
@ -733,7 +733,7 @@ def spectrogram_batch(
Note: This function is designed for efficient batch processing of multiple waveforms but retains compatibility with individual waveform processing methods like `librosa.stft`.
Args:
waveform_list (`List[np.ndarray]` with arrays of shape `(length,)`):
waveform_list (`list[np.ndarray]` with arrays of shape `(length,)`):
The list of input waveforms, each a single-channel (mono) signal.
window (`np.ndarray` of shape `(frame_length,)`):
The windowing function to apply, including zero-padding if necessary.
@ -775,7 +775,7 @@ def spectrogram_batch(
Data type of the output spectrogram.
Returns:
List[`np.ndarray`]: A list of spectrogram arrays, one for each input waveform.
list[`np.ndarray`]: A list of spectrogram arrays, one for each input waveform.
"""
window_length = len(window)

View File

@ -4,7 +4,7 @@ import json
import os
from collections.abc import Iterable
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union
from typing import Any, Optional, Union
import torch
from packaging import version
@ -28,7 +28,7 @@ def _static_cache_update(
key_states: torch.Tensor,
value_states: torch.Tensor,
cache_position: Optional[torch.LongTensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Updates the static cache tensors in place.
@ -41,7 +41,7 @@ def _static_cache_update(
If None, the entire cache is overwritten (prefill).
Returns:
Tuple[`torch.Tensor`, `torch.Tensor`]: The updated key and value cache tensors (modified in-place).
tuple[`torch.Tensor`, `torch.Tensor`]: The updated key and value cache tensors (modified in-place).
"""
if cache_position is None:
# Prefill phase where seq_len potentially equals max_cache_len. Directly copy.
@ -67,7 +67,7 @@ def _sliding_cache_update(
value_states: torch.Tensor,
cache_position: torch.LongTensor,
max_cache_len: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Updates the sliding window cache tensors, returning the potentially modified tensors.
@ -80,7 +80,7 @@ def _sliding_cache_update(
max_cache_len (`int`): The maximum length of the sliding window cache.
Returns:
Tuple[`torch.Tensor`, `torch.Tensor`]: The key and value tensors representing the cache state after the update.
tuple[`torch.Tensor`, `torch.Tensor`]: The key and value tensors representing the cache state after the update.
For prefill > window, these are the full input states.
Otherwise, they are the updated cache tensors.
"""
@ -134,8 +134,8 @@ class Cache:
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
@ -146,7 +146,7 @@ class Cache:
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
cache_kwargs (`dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
cache to be created.
@ -222,7 +222,7 @@ class CacheConfig:
"""
Constructs a CacheConfig instance from a dictionary of parameters.
Args:
config_dict (Dict[str, Any]): Dictionary containing configuration parameters.
config_dict (dict[str, Any]): Dictionary containing configuration parameters.
**kwargs: Additional keyword arguments to override dictionary values.
Returns:
@ -257,10 +257,10 @@ class CacheConfig:
writer.write(json_string)
# Copied from transformers.utils.quantization_config.QuantizationConfigMixin.to_dict
def to_dict(self) -> Dict[str, Any]:
def to_dict(self) -> dict[str, Any]:
"""
Serializes this instance to a Python dictionary. Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
`dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
"""
return copy.deepcopy(self.__dict__)
@ -289,11 +289,11 @@ class CacheConfig:
returning all the unused kwargs.
Args:
kwargs (`Dict[str, Any]`):
kwargs (`dict[str, Any]`):
Dictionary of attributes to tentatively update this class.
Returns:
`Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
`dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
"""
to_remove = []
for key, value in kwargs.items():
@ -473,8 +473,8 @@ class DynamicCache(Cache):
def __init__(self, _distributed_cache_data: Optional[Iterable] = None) -> None:
super().__init__()
self._seen_tokens = 0 # Used in `generate` to keep tally of how many tokens the cache has seen
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self.key_cache: list[torch.Tensor] = []
self.value_cache: list[torch.Tensor] = []
# `_distributed_cache_data` was originally added for compatibility with `torch.distributed` (DDP). See #36121
# and #36373 for more information. In a nutshell, it is `map(gather_map, zip(*caches))`, i.e. each item in the
@ -487,7 +487,7 @@ class DynamicCache(Cache):
self.key_cache.append(key_states)
self.value_cache.append(value_states)
def __getitem__(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
def __getitem__(self, layer_idx: int) -> tuple[torch.Tensor, torch.Tensor]:
"""
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
sequence length.
@ -517,8 +517,8 @@ class DynamicCache(Cache):
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
@ -529,7 +529,7 @@ class DynamicCache(Cache):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
cache_kwargs (`dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `DynamicCache`.
Return:
@ -574,7 +574,7 @@ class DynamicCache(Cache):
"""Returns the maximum sequence length of the cache object. DynamicCache does not have a maximum length."""
return None
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
def to_legacy_cache(self) -> tuple[tuple[torch.Tensor, torch.Tensor]]:
"""Converts the `DynamicCache` instance into the its equivalent in the legacy cache format. Used for
backward compatibility."""
legacy_cache = ()
@ -584,7 +584,7 @@ class DynamicCache(Cache):
@classmethod
def from_legacy_cache(
cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor, torch.FloatTensor]]] = None
cls, past_key_values: Optional[tuple[tuple[torch.FloatTensor, torch.FloatTensor]]] = None
) -> "DynamicCache":
"""Converts a cache in the legacy cache format into an equivalent `DynamicCache`. Used for
backward compatibility."""
@ -611,7 +611,7 @@ class DynamicCache(Cache):
self.key_cache[idx] = self.key_cache[idx][..., :max_length, :]
self.value_cache[idx] = self.value_cache[idx][..., :max_length, :]
def batch_split(self, full_batch_size: int, split_size: int) -> List["DynamicCache"]:
def batch_split(self, full_batch_size: int, split_size: int) -> list["DynamicCache"]:
"""Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
`_split_model_inputs()` in `generation.utils`"""
out = []
@ -624,7 +624,7 @@ class DynamicCache(Cache):
return out
@classmethod
def from_batch_splits(cls, splits: List["DynamicCache"]) -> "DynamicCache":
def from_batch_splits(cls, splits: list["DynamicCache"]) -> "DynamicCache":
"""This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
`generation.utils`"""
cache = cls()
@ -762,7 +762,7 @@ class OffloadedCache(DynamicCache):
self.key_cache[prev_layer_idx] = self.key_cache[prev_layer_idx].to("cpu", non_blocking=True)
self.value_cache[prev_layer_idx] = self.value_cache[prev_layer_idx].to("cpu", non_blocking=True)
def __getitem__(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor]:
def __getitem__(self, layer_idx: int) -> tuple[torch.Tensor, torch.Tensor]:
"Gets the cache for this layer to the device. Prefetches the next and evicts the previous layer."
if layer_idx < len(self):
# Evict the previous layer if necessary
@ -799,8 +799,8 @@ class OffloadedCache(DynamicCache):
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
@ -810,7 +810,7 @@ class OffloadedCache(DynamicCache):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
cache_kwargs (`dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. No additional arguments are used in `OffloadedCache`.
Return:
A tuple containing the updated key and value states.
@ -857,8 +857,8 @@ class QuantizedCache(DynamicCache):
def __init__(self, cache_config: QuantizedCacheConfig) -> None:
super().__init__()
self._quantized_key_cache: List[torch.Tensor] = []
self._quantized_value_cache: List[torch.Tensor] = []
self._quantized_key_cache: list[torch.Tensor] = []
self._quantized_value_cache: list[torch.Tensor] = []
self.nbits = cache_config.nbits
self.residual_length = cache_config.residual_length
@ -875,8 +875,8 @@ class QuantizedCache(DynamicCache):
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += key_states.shape[-2]
@ -1094,7 +1094,7 @@ class StaticCache(Cache):
should pass the `layer_device_map` argument instead.
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
The default `dtype` to use when initializing the layer.
layer_device_map (`Optional[Dict[int, Union[str, torch.device, int]]]]`, *optional*):
layer_device_map (`Optional[dict[int, Union[str, torch.device, int]]]]`, *optional*):
Mapping between the layers and its device. This is required when you are manually initializing the cache
and the model is split between different gpus. You can know which layers mapped to which device by
checking the associated device_map: `model.hf_device_map`.
@ -1129,7 +1129,7 @@ class StaticCache(Cache):
max_cache_len: Optional[int] = None,
device: Union[torch.device, str, None] = None,
dtype: torch.dtype = torch.float32,
layer_device_map: Optional[Dict[int, Union[str, torch.device, int]]] = None,
layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None,
) -> None:
super().__init__()
self.max_batch_size = max_batch_size
@ -1145,8 +1145,8 @@ class StaticCache(Cache):
else config.num_key_value_heads
)
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self.key_cache: list[torch.Tensor] = []
self.value_cache: list[torch.Tensor] = []
# Note: There will be significant perf decrease if switching to use 5D tensors instead.
cache_shape = (self.max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
device = torch.device(device) if device is not None else None
@ -1169,8 +1169,8 @@ class StaticCache(Cache):
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
@ -1182,7 +1182,7 @@ class StaticCache(Cache):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, `optional`):
cache_kwargs (`dict[str, Any]`, `optional`):
Additional arguments for the cache subclass. The `StaticCache` needs the `cache_position` input
to know how where to write in the cache.
@ -1260,7 +1260,7 @@ class SlidingWindowCache(StaticCache):
should pass the `layer_device_map` argument instead.
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
The default `dtype` to use when initializing the layer.
layer_device_map (`Optional[Dict[int, Union[str, torch.device, int]]]]`, *optional*):
layer_device_map (`Optional[dict[int, Union[str, torch.device, int]]]]`, *optional*):
Mapping between the layers and its device. This is required when you are manually initializing the cache
and the model is split between different gpus. You can know which layers mapped to which device by
checking the associated device_map: `model.hf_device_map`.
@ -1294,7 +1294,7 @@ class SlidingWindowCache(StaticCache):
max_cache_len: Optional[int] = None,
device: Union[torch.device, str, None] = None,
dtype: torch.dtype = torch.float32,
layer_device_map: Optional[Dict[int, Union[str, torch.device, int]]] = None,
layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None,
) -> None:
if not hasattr(config, "sliding_window") or config.sliding_window is None:
raise ValueError(
@ -1318,8 +1318,8 @@ class SlidingWindowCache(StaticCache):
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
if cache_kwargs is None:
cache_kwargs = {}
cache_position = cache_kwargs.get("cache_position")
@ -1400,7 +1400,7 @@ class EncoderDecoderCache(Cache):
for layer_idx in range(len(cross_attention_cache.key_cache)):
self.is_updated[layer_idx] = bool(cross_attention_cache.get_seq_length(layer_idx) > 0)
def __getitem__(self, layer_idx: int) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
def __getitem__(self, layer_idx: int) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Support for backwards-compatible `past_key_value` indexing, e.g. `past_key_value[0][0].shape[2]` to get the
sequence length.
@ -1422,7 +1422,7 @@ class EncoderDecoderCache(Cache):
"""
return len(self.self_attention_cache)
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor]]:
def to_legacy_cache(self) -> tuple[tuple[torch.Tensor]]:
"""Converts the `EncoderDecoderCache` instance into its equivalent in the legacy cache format."""
legacy_cache = ()
if len(self.cross_attention_cache) > 0:
@ -1436,7 +1436,7 @@ class EncoderDecoderCache(Cache):
@classmethod
def from_legacy_cache(
cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
cls, past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None
) -> "EncoderDecoderCache":
"""Converts a cache in the legacy cache format into an equivalent `EncoderDecoderCache`."""
cache = cls(
@ -1495,7 +1495,7 @@ class EncoderDecoderCache(Cache):
self.check_dynamic_cache(self.crop.__name__)
self.self_attention_cache.crop(maximum_length)
def batch_split(self, full_batch_size: int, split_size: int) -> "List[EncoderDecoderCache]":
def batch_split(self, full_batch_size: int, split_size: int) -> "list[EncoderDecoderCache]":
"""Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
`_split_model_inputs()` in `generation.utils`"""
self.check_dynamic_cache(self.batch_split.__name__)
@ -1508,7 +1508,7 @@ class EncoderDecoderCache(Cache):
return out
@classmethod
def from_batch_splits(cls, splits: List["EncoderDecoderCache"]) -> "EncoderDecoderCache":
def from_batch_splits(cls, splits: list["EncoderDecoderCache"]) -> "EncoderDecoderCache":
"""This is the opposite of the above `batch_split()` method. This will be used by `stack_model_outputs` in
`generation.utils`"""
self_attention_cache = DynamicCache()
@ -1569,7 +1569,7 @@ class HybridCache(Cache):
should pass the `layer_device_map` argument instead.
dtype (torch.dtype, *optional*, defaults to `torch.float32`):
The default `dtype` to use when initializing the layer.
layer_device_map (`Optional[Dict[int, Union[str, torch.device, int]]]]`, *optional*):
layer_device_map (`Optional[dict[int, Union[str, torch.device, int]]]]`, *optional*):
Mapping between the layers and its device. This is required when you are manually initializing the cache
and the model is split between different gpus. You can know which layers mapped to which device by
checking the associated device_map: `model.hf_device_map`.
@ -1603,7 +1603,7 @@ class HybridCache(Cache):
max_cache_len: Optional[int] = None,
device: Union[torch.device, str, None] = None,
dtype: torch.dtype = torch.float32,
layer_device_map: Optional[Dict[int, Union[str, torch.device, int]]] = None,
layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None,
) -> None:
super().__init__()
if not hasattr(config, "sliding_window") or config.sliding_window is None:
@ -1634,8 +1634,8 @@ class HybridCache(Cache):
else:
self.is_sliding = [False] * config.num_hidden_layers
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self.key_cache: list[torch.Tensor] = []
self.value_cache: list[torch.Tensor] = []
global_cache_shape = (self.max_batch_size, self.num_key_value_heads, self.max_cache_len, self.head_dim)
sliding_cache_shape = (self.max_batch_size, self.num_key_value_heads, self.sliding_window_len, self.head_dim)
self.sliding_window = min(config.sliding_window, max_cache_len)
@ -1660,8 +1660,8 @@ class HybridCache(Cache):
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
if cache_kwargs is None:
cache_kwargs = {}
cache_position = cache_kwargs.get("cache_position")
@ -1757,7 +1757,7 @@ class HybridChunkedCache(Cache):
should pass the `layer_device_map` argument instead.
dtype (torch.dtype, *optional*, defaults to `torch.bfloat16`):
The default `dtype` to use when initializing the layer.
layer_device_map (`Optional[Dict[int, Union[str, torch.device, int]]]]`, *optional*):
layer_device_map (`Optional[dict[int, Union[str, torch.device, int]]]]`, *optional*):
Mapping between the layers and its device. This is required when you are manually initializing the cache
and the model is split between different gpus. You can know which layers mapped to which device by
checking the associated device_map: `model.hf_device_map`.
@ -1791,7 +1791,7 @@ class HybridChunkedCache(Cache):
max_cache_len: Optional[int] = None,
device: Union[torch.device, str, None] = None,
dtype: torch.dtype = torch.bfloat16,
layer_device_map: Optional[Dict[int, Union[str, torch.device, int]]] = None,
layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None,
) -> None:
super().__init__()
if not hasattr(config, "sliding_window") or config.sliding_window is None:
@ -1811,8 +1811,8 @@ class HybridChunkedCache(Cache):
else:
self.is_sliding = [False] * config.num_hidden_layers
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self.key_cache: list[torch.Tensor] = []
self.value_cache: list[torch.Tensor] = []
self.cumulative_length = [0 for _ in range(config.num_hidden_layers)]
def initialise_cache_layer(self, layer_idx, key_states):
@ -1880,8 +1880,8 @@ class HybridChunkedCache(Cache):
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
if cache_kwargs is None:
cache_kwargs = {}
cache_position = cache_kwargs.get("cache_position")
@ -1968,7 +1968,7 @@ class OffloadedHybridCache(HybridChunkedCache):
device: Union[torch.device, str, None] = None,
dtype: torch.dtype = torch.bfloat16,
offload_device: Union[str, torch.device] = torch.device("cpu"),
layer_device_map: Optional[Dict[int, Union[str, torch.device, int]]] = None,
layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None,
):
super().__init__(config, max_batch_size, max_cache_len, device, dtype, layer_device_map)
@ -2121,8 +2121,8 @@ class MambaCache:
self.ssm_state_size = config.state_size
self.conv_kernel_size = config.conv_kernel
self.conv_states: List[torch.Tensor] = []
self.ssm_states: List[torch.Tensor] = []
self.conv_states: list[torch.Tensor] = []
self.ssm_states: list[torch.Tensor] = []
device = torch.device(device) if device is not None else None
for _ in range(config.num_hidden_layers):
conv_state: torch.Tensor = torch.zeros(
@ -2193,7 +2193,7 @@ class OffloadedStaticCache(StaticCache):
The default `dtype` to use when initializing the cache.
offload_device (`Union[str, torch.device]`, *optional*, defaults to `cpu`):
The device to offload to. Defaults to CPU.
layer_device_map (`Dict[int, Union[str, torch.device, int]]`, *optional*):
layer_device_map (`dict[int, Union[str, torch.device, int]]`, *optional*):
Mapping between the layers and its device. This is required when you are manually initializing the cache
and the model is split between different gpus. You can know which layers mapped to which device by
checking the associated device_map: `model.hf_device_map`.
@ -2227,7 +2227,7 @@ class OffloadedStaticCache(StaticCache):
device: Union[str, torch.device],
dtype: Optional[torch.dtype] = None,
offload_device: Union[str, torch.device] = torch.device("cpu"),
layer_device_map: Optional[Dict[int, Union[str, torch.device, int]]] = None,
layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None,
) -> None:
super(Cache, self).__init__()
@ -2255,8 +2255,8 @@ class OffloadedStaticCache(StaticCache):
cache_shape = (max_batch_size, num_key_value_heads, self.max_cache_len, head_dim)
# Create offloaded CPU tensors.
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self.key_cache: list[torch.Tensor] = []
self.value_cache: list[torch.Tensor] = []
for i in range(config.num_hidden_layers):
# First layer is always on-device.
@ -2268,8 +2268,8 @@ class OffloadedStaticCache(StaticCache):
self.value_cache.append(value_cache)
# Create device tensors.
self._device_key_cache: List[torch.Tensor] = []
self._device_value_cache: List[torch.Tensor] = []
self._device_key_cache: list[torch.Tensor] = []
self._device_value_cache: list[torch.Tensor] = []
for i in range(2):
key_cache, value_cache = self._create_key_value_cache_tensors(cache_shape, self.device)
@ -2289,8 +2289,8 @@ class OffloadedStaticCache(StaticCache):
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
It is VERY important to index using a tensor, otherwise you introduce a copy to the device.
@ -2302,7 +2302,7 @@ class OffloadedStaticCache(StaticCache):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`Dict[str, Any]`, *optional*):
cache_kwargs (`dict[str, Any]`, *optional*):
Additional arguments for the cache subclass. The `OffloadedStaticCache` needs the
`cache_position` input to know how where to write in the cache.
@ -2401,13 +2401,13 @@ class OffloadedStaticCache(StaticCache):
return self._seen_tokens
def _create_key_value_cache_tensors(
self, shape: Tuple[int, ...], device: torch.device
) -> Tuple[torch.Tensor, torch.Tensor]:
self, shape: tuple[int, ...], device: torch.device
) -> tuple[torch.Tensor, torch.Tensor]:
"""Creates K/V cache tensors on a device. Pins memory for CPU tensors. Marks them as static
addresses for non-CPU tensors.
Args:
shape (`Tuple[int, ...]`): Shape.
shape (`tuple[int, ...]`): Shape.
device (`torch.device`): Device.
Returns:

View File

@ -23,7 +23,7 @@ from datetime import date
from itertools import chain
from pathlib import Path
from re import Pattern
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from typing import Any, Callable, Optional, Union
import yaml
@ -148,7 +148,7 @@ def find_indent(line: str) -> int:
return len(search.groups()[0])
def parse_module_content(content: str) -> List[str]:
def parse_module_content(content: str) -> list[str]:
"""
Parse the content of a module in the list of objects it defines.
@ -156,7 +156,7 @@ def parse_module_content(content: str) -> List[str]:
content (`str`): The content to parse
Returns:
`List[str]`: The list of objects defined in the module.
`list[str]`: The list of objects defined in the module.
"""
objects = []
current_object = []
@ -336,7 +336,7 @@ def add_content_to_file(
def replace_model_patterns(
text: str, old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns
) -> Tuple[str, str]:
) -> tuple[str, str]:
"""
Replace all patterns present in a given text.
@ -414,10 +414,10 @@ def simplify_replacements(replacements):
"BertConfig->BertNewConfig" is implied by "Bert->BertNew" so not needed.
Args:
replacements (`List[Tuple[str, str]]`): List of patterns (old, new)
replacements (`list[tuple[str, str]]`): List of patterns (old, new)
Returns:
`List[Tuple[str, str]]`: The list of patterns simplified.
`list[tuple[str, str]]`: The list of patterns simplified.
"""
if len(replacements) <= 1:
# Nothing to simplify
@ -519,7 +519,7 @@ def duplicate_module(
new_model_patterns: ModelPatterns,
dest_file: Optional[str] = None,
add_copied_from: bool = True,
attrs_to_remove: Optional[List[str]] = None,
attrs_to_remove: Optional[list[str]] = None,
):
"""
Create a new module from an existing one and adapting all function and classes names from old patterns to new ones.
@ -585,17 +585,17 @@ def duplicate_module(
def filter_framework_files(
files: List[Union[str, os.PathLike]], frameworks: Optional[List[str]] = None
) -> List[Union[str, os.PathLike]]:
files: list[Union[str, os.PathLike]], frameworks: Optional[list[str]] = None
) -> list[Union[str, os.PathLike]]:
"""
Filter a list of files to only keep the ones corresponding to a list of frameworks.
Args:
files (`List[Union[str, os.PathLike]]`): The list of files to filter.
frameworks (`List[str]`, *optional*): The list of allowed frameworks.
files (`list[Union[str, os.PathLike]]`): The list of files to filter.
frameworks (`list[str]`, *optional*): The list of allowed frameworks.
Returns:
`List[Union[str, os.PathLike]]`: The list of filtered files.
`list[Union[str, os.PathLike]]`: The list of filtered files.
"""
if frameworks is None:
frameworks = get_default_frameworks()
@ -617,17 +617,17 @@ def filter_framework_files(
return [framework_to_file[f] for f in frameworks if f in framework_to_file] + others
def get_model_files(model_type: str, frameworks: Optional[List[str]] = None) -> Dict[str, Union[Path, List[Path]]]:
def get_model_files(model_type: str, frameworks: Optional[list[str]] = None) -> dict[str, Union[Path, list[Path]]]:
"""
Retrieves all the files associated to a model.
Args:
model_type (`str`): A valid model type (like "bert" or "gpt2")
frameworks (`List[str]`, *optional*):
frameworks (`list[str]`, *optional*):
If passed, will only keep the model files corresponding to the passed frameworks.
Returns:
`Dict[str, Union[Path, List[Path]]]`: A dictionary with the following keys:
`dict[str, Union[Path, list[Path]]]`: A dictionary with the following keys:
- **doc_file** -- The documentation file for the model.
- **model_files** -- All the files in the model module.
- **test_files** -- The test files for the model.
@ -663,14 +663,14 @@ _re_checkpoint_for_doc = re.compile(r"^_CHECKPOINT_FOR_DOC\s+=\s+(\S*)\s*$", fla
def find_base_model_checkpoint(
model_type: str, model_files: Optional[Dict[str, Union[Path, List[Path]]]] = None
model_type: str, model_files: Optional[dict[str, Union[Path, list[Path]]]] = None
) -> str:
"""
Finds the model checkpoint used in the docstrings for a given model.
Args:
model_type (`str`): A valid model type (like "bert" or "gpt2")
model_files (`Dict[str, Union[Path, List[Path]]`, *optional*):
model_files (`dict[str, Union[Path, list[Path]]`, *optional*):
The files associated to `model_type`. Can be passed to speed up the function, otherwise will be computed.
Returns:
@ -713,18 +713,18 @@ def get_default_frameworks():
_re_model_mapping = re.compile("MODEL_([A-Z_]*)MAPPING_NAMES")
def retrieve_model_classes(model_type: str, frameworks: Optional[List[str]] = None) -> Dict[str, List[str]]:
def retrieve_model_classes(model_type: str, frameworks: Optional[list[str]] = None) -> dict[str, list[str]]:
"""
Retrieve the model classes associated to a given model.
Args:
model_type (`str`): A valid model type (like "bert" or "gpt2")
frameworks (`List[str]`, *optional*):
frameworks (`list[str]`, *optional*):
The frameworks to look for. Will default to `["pt", "tf", "flax"]`, passing a smaller list will restrict
the classes returned.
Returns:
`Dict[str, List[str]]`: A dictionary with one key per framework and the list of model classes associated to
`dict[str, list[str]]`: A dictionary with one key per framework and the list of model classes associated to
that framework as values.
"""
if frameworks is None:
@ -754,20 +754,20 @@ def retrieve_model_classes(model_type: str, frameworks: Optional[List[str]] = No
return model_classes
def retrieve_info_for_model(model_type, frameworks: Optional[List[str]] = None):
def retrieve_info_for_model(model_type, frameworks: Optional[list[str]] = None):
"""
Retrieves all the information from a given model_type.
Args:
model_type (`str`): A valid model type (like "bert" or "gpt2")
frameworks (`List[str]`, *optional*):
frameworks (`list[str]`, *optional*):
If passed, will only keep the info corresponding to the passed frameworks.
Returns:
`Dict`: A dictionary with the following keys:
- **frameworks** (`List[str]`): The list of frameworks that back this model type.
- **model_classes** (`Dict[str, List[str]]`): The model classes implemented for that model type.
- **model_files** (`Dict[str, Union[Path, List[Path]]]`): The files associated with that model type.
- **frameworks** (`list[str]`): The list of frameworks that back this model type.
- **model_classes** (`dict[str, list[str]]`): The model classes implemented for that model type.
- **model_files** (`dict[str, Union[Path, list[Path]]]`): The files associated with that model type.
- **model_patterns** (`ModelPatterns`): The various patterns for the model.
"""
if model_type not in auto_module.MODEL_NAMES_MAPPING:
@ -833,7 +833,7 @@ def retrieve_info_for_model(model_type, frameworks: Optional[List[str]] = None):
def clean_frameworks_in_init(
init_file: Union[str, os.PathLike], frameworks: Optional[List[str]] = None, keep_processing: bool = True
init_file: Union[str, os.PathLike], frameworks: Optional[list[str]] = None, keep_processing: bool = True
):
"""
Removes all the import lines that don't belong to a given list of frameworks or concern tokenizers/feature
@ -841,7 +841,7 @@ def clean_frameworks_in_init(
Args:
init_file (`str` or `os.PathLike`): The path to the init to treat.
frameworks (`List[str]`, *optional*):
frameworks (`list[str]`, *optional*):
If passed, this will remove all imports that are subject to a framework not in frameworks
keep_processing (`bool`, *optional*, defaults to `True`):
Whether or not to keep the preprocessing (tokenizer, feature extractor, image processor, processor) imports
@ -914,7 +914,7 @@ def clean_frameworks_in_init(
def add_model_to_main_init(
old_model_patterns: ModelPatterns,
new_model_patterns: ModelPatterns,
frameworks: Optional[List[str]] = None,
frameworks: Optional[list[str]] = None,
with_processing: bool = True,
):
"""
@ -923,7 +923,7 @@ def add_model_to_main_init(
Args:
old_model_patterns (`ModelPatterns`): The patterns for the old model.
new_model_patterns (`ModelPatterns`): The patterns for the new model.
frameworks (`List[str]`, *optional*):
frameworks (`list[str]`, *optional*):
If specified, only the models implemented in those frameworks will be added.
with_processing (`bool`, *optional*, defaults to `True`):
Whether the tokenizer/feature extractor/processor of the model should also be added to the init or not.
@ -1068,7 +1068,7 @@ AUTO_CLASSES_PATTERNS = {
def add_model_to_auto_classes(
old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns, model_classes: Dict[str, List[str]]
old_model_patterns: ModelPatterns, new_model_patterns: ModelPatterns, model_classes: dict[str, list[str]]
):
"""
Add a model to the relevant mappings in the auto module.
@ -1076,7 +1076,7 @@ def add_model_to_auto_classes(
Args:
old_model_patterns (`ModelPatterns`): The patterns for the old model.
new_model_patterns (`ModelPatterns`): The patterns for the new model.
model_classes (`Dict[str, List[str]]`): A dictionary framework to list of model classes implemented.
model_classes (`dict[str, list[str]]`): A dictionary framework to list of model classes implemented.
"""
for filename in AUTO_CLASSES_PATTERNS:
# Extend patterns with all model classes if necessary
@ -1169,7 +1169,7 @@ def duplicate_doc_file(
old_model_patterns: ModelPatterns,
new_model_patterns: ModelPatterns,
dest_file: Optional[Union[str, os.PathLike]] = None,
frameworks: Optional[List[str]] = None,
frameworks: Optional[list[str]] = None,
):
"""
Duplicate a documentation file and adapts it for a new model.
@ -1180,7 +1180,7 @@ def duplicate_doc_file(
new_model_patterns (`ModelPatterns`): The patterns for the new model.
dest_file (`str` or `os.PathLike`, *optional*): Path to the new doc file.
Will default to the a file named `{new_model_patterns.model_type}.md` in the same folder as `module_file`.
frameworks (`List[str]`, *optional*):
frameworks (`list[str]`, *optional*):
If passed, will only keep the model classes corresponding to this list of frameworks in the new doc file.
"""
with open(doc_file, "r", encoding="utf-8") as f:
@ -1320,7 +1320,7 @@ def create_new_model_like(
model_type: str,
new_model_patterns: ModelPatterns,
add_copied_from: bool = True,
frameworks: Optional[List[str]] = None,
frameworks: Optional[list[str]] = None,
old_checkpoint: Optional[str] = None,
create_fast_image_processor: bool = False,
):
@ -1332,7 +1332,7 @@ def create_new_model_like(
new_model_patterns (`ModelPatterns`): The patterns for the new model.
add_copied_from (`bool`, *optional*, defaults to `True`):
Whether or not to add "Copied from" statements to all classes in the new model modeling files.
frameworks (`List[str]`, *optional*):
frameworks (`list[str]`, *optional*):
If passed, will limit the duplicate to the frameworks specified.
old_checkpoint (`str`, *optional*):
The name of the base checkpoint for the old model. Should be passed along when it can't be automatically

View File

@ -13,7 +13,7 @@
# limitations under the License.
from argparse import ArgumentParser, Namespace
from typing import Any, List, Optional
from typing import Any, Optional
from ..pipelines import Pipeline, get_supported_tasks, pipeline
from ..utils import logging
@ -69,8 +69,8 @@ class ServeTokenizeResult(BaseModel):
Tokenize result model
"""
tokens: List[str]
tokens_ids: Optional[List[int]]
tokens: list[str]
tokens_ids: Optional[list[int]]
class ServeDeTokenizeResult(BaseModel):
@ -196,7 +196,7 @@ class ServeCommand(BaseTransformersCLICommand):
def detokenize(
self,
tokens_ids: List[int] = Body(None, embed=True),
tokens_ids: list[int] = Body(None, embed=True),
skip_special_tokens: bool = Body(False, embed=True),
cleanup_tokenization_spaces: bool = Body(True, embed=True),
):

View File

@ -63,13 +63,13 @@ class PretrainedConfig(PushToHubMixin):
Some configurations requires inputs to be defined at init and have no default values, usually these are composite configs,
(but not necessarily) such as [`~transformers.EncoderDecoderConfig`] or [`~RagConfig`]. They have to be initialized from
two or more configs of type [`~transformers.PretrainedConfig`].
- **keys_to_ignore_at_inference** (`List[str]`) -- A list of keys to ignore by default when looking at dictionary
- **keys_to_ignore_at_inference** (`list[str]`) -- A list of keys to ignore by default when looking at dictionary
outputs of the model during inference.
- **attribute_map** (`Dict[str, str]`) -- A dict that maps model specific attribute names to the standardized
- **attribute_map** (`dict[str, str]`) -- A dict that maps model specific attribute names to the standardized
naming of attributes.
- **base_model_tp_plan** (`Dict[str, Any]`) -- A dict that maps sub-modules FQNs of a base model to a tensor
- **base_model_tp_plan** (`dict[str, Any]`) -- A dict that maps sub-modules FQNs of a base model to a tensor
parallel plan applied to the sub-module when `model.tensor_parallel` is called.
- **base_model_pp_plan** (`Dict[str, Tuple[List[str]]]`) -- A dict that maps child-modules of a base model to a
- **base_model_pp_plan** (`dict[str, tuple[list[str]]]`) -- A dict that maps child-modules of a base model to a
pipeline parallel plan that enables users to place the child-module on the appropriate device.
Common attributes (present in all subclasses):
@ -115,7 +115,7 @@ class PretrainedConfig(PushToHubMixin):
tie_encoder_decoder (`bool`, *optional*, defaults to `False`):
Whether all encoder weights should be tied to their equivalent decoder weights. This requires the encoder
and decoder model to have the exact same parameter names.
prune_heads (`Dict[int, List[int]]`, *optional*, defaults to `{}`):
prune_heads (`dict[int, list[int]]`, *optional*, defaults to `{}`):
Pruned heads of the model. The keys are the selected layer indices and the associated values, the list of
heads to prune in said layer.
@ -128,17 +128,17 @@ class PretrainedConfig(PushToHubMixin):
> Parameters for fine-tuning tasks
architectures (`List[str]`, *optional*):
architectures (`list[str]`, *optional*):
Model architectures that can be used with the model pretrained weights.
finetuning_task (`str`, *optional*):
Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow
or PyTorch) checkpoint.
id2label (`Dict[int, str]`, *optional*):
id2label (`dict[int, str]`, *optional*):
A map from index (for instance prediction index, or target index) to label.
label2id (`Dict[str, int]`, *optional*): A map from label to index for the model.
label2id (`dict[str, int]`, *optional*): A map from label to index for the model.
num_labels (`int`, *optional*):
Number of labels to use in the last layer added to the model, typically for a classification task.
task_specific_params (`Dict[str, Any]`, *optional*):
task_specific_params (`dict[str, Any]`, *optional*):
Additional keyword arguments to store for the current task.
problem_type (`str`, *optional*):
Problem type for `XxxForSequenceClassification` models. Can be one of `"regression"`,
@ -394,7 +394,7 @@ class PretrainedConfig(PushToHubMixin):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
kwargs (`dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
self._set_token_in_kwargs(kwargs)
@ -505,7 +505,7 @@ class PretrainedConfig(PushToHubMixin):
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
proxies (`dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or `bool`, *optional*):
@ -531,7 +531,7 @@ class PretrainedConfig(PushToHubMixin):
subfolder (`str`, *optional*, defaults to `""`):
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
specify the folder name here.
kwargs (`Dict[str, Any]`, *optional*):
kwargs (`dict[str, Any]`, *optional*):
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the `return_unused_kwargs` keyword parameter.
@ -599,7 +599,7 @@ class PretrainedConfig(PushToHubMixin):
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
Returns:
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the configuration object.
`tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the configuration object.
"""
cls._set_token_in_kwargs(kwargs)
@ -723,10 +723,10 @@ class PretrainedConfig(PushToHubMixin):
Instantiates a [`PretrainedConfig`] from a Python dictionary of parameters.
Args:
config_dict (`Dict[str, Any]`):
config_dict (`dict[str, Any]`):
Dictionary that will be used to instantiate the configuration object. Such a dictionary can be
retrieved from a pretrained checkpoint by leveraging the [`~PretrainedConfig.get_config_dict`] method.
kwargs (`Dict[str, Any]`):
kwargs (`dict[str, Any]`):
Additional parameters from which to initialize the configuration object.
Returns:
@ -816,7 +816,7 @@ class PretrainedConfig(PushToHubMixin):
Python dictionary.
Returns:
Dict[str, Any]: Dictionary of all the attributes that make up this configuration instance.
dict[str, Any]: Dictionary of all the attributes that make up this configuration instance.
"""
config_dict = self.to_dict()
@ -874,7 +874,7 @@ class PretrainedConfig(PushToHubMixin):
Serializes this instance to a Python dictionary.
Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
`dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self.__dict__)
if hasattr(self.__class__, "model_type"):
@ -940,7 +940,7 @@ class PretrainedConfig(PushToHubMixin):
Updates attributes of this class with attributes from `config_dict`.
Args:
config_dict (`Dict[str, Any]`): Dictionary of attributes that should be updated for this class.
config_dict (`dict[str, Any]`): Dictionary of attributes that should be updated for this class.
"""
for key, value in config_dict.items():
setattr(self, key, value)
@ -1163,7 +1163,7 @@ def get_configuration_file(configuration_files: list[str]) -> str:
Get the configuration file to use for this version of transformers.
Args:
configuration_files (`List[str]`): The list of available configuration files.
configuration_files (`list[str]`): The list of available configuration files.
Returns:
`str`: The configuration file to use.

View File

@ -18,7 +18,7 @@ import warnings
from collections.abc import Mapping
from dataclasses import dataclass
from random import randint
from typing import Any, Callable, Dict, List, NewType, Optional, Tuple, Union
from typing import Any, Callable, NewType, Optional, Union
import numpy as np
@ -33,7 +33,7 @@ InputDataClass = NewType("InputDataClass", Any)
A DataCollator is a function that takes a list of samples from a Dataset and collate them into a batch, as a dictionary
of PyTorch/TensorFlow tensors or NumPy arrays.
"""
DataCollator = NewType("DataCollator", Callable[[List[InputDataClass]], Dict[str, Any]])
DataCollator = NewType("DataCollator", Callable[[list[InputDataClass]], dict[str, Any]])
class DataCollatorMixin:
@ -72,7 +72,7 @@ def pad_without_fast_tokenizer_warning(tokenizer, *pad_args, **pad_kwargs):
return padded
def default_data_collator(features: List[InputDataClass], return_tensors="pt") -> Dict[str, Any]:
def default_data_collator(features: list[InputDataClass], return_tensors="pt") -> dict[str, Any]:
"""
Very simple data collator that simply collates batches of dict-like objects and performs special handling for
potential keys named:
@ -119,13 +119,13 @@ class DefaultDataCollator(DataCollatorMixin):
return_tensors: str = "pt"
def __call__(self, features: List[Dict[str, Any]], return_tensors=None) -> Dict[str, Any]:
def __call__(self, features: list[dict[str, Any]], return_tensors=None) -> dict[str, Any]:
if return_tensors is None:
return_tensors = self.return_tensors
return default_data_collator(features, return_tensors)
def torch_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
def torch_default_data_collator(features: list[InputDataClass]) -> dict[str, Any]:
import torch
if not isinstance(features[0], Mapping):
@ -161,7 +161,7 @@ def torch_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any
return batch
def tf_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
def tf_default_data_collator(features: list[InputDataClass]) -> dict[str, Any]:
import tensorflow as tf
if not isinstance(features[0], Mapping):
@ -202,7 +202,7 @@ def tf_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
return batch
def numpy_default_data_collator(features: List[InputDataClass]) -> Dict[str, Any]:
def numpy_default_data_collator(features: list[InputDataClass]) -> dict[str, Any]:
if not isinstance(features[0], Mapping):
features = [vars(f) for f in features]
first = features[0]
@ -268,7 +268,7 @@ class DataCollatorWithPadding:
pad_to_multiple_of: Optional[int] = None
return_tensors: str = "pt"
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
batch = pad_without_fast_tokenizer_warning(
self.tokenizer,
features,
@ -569,7 +569,7 @@ class DataCollatorForMultipleChoice(DataCollatorMixin):
pad_to_multiple_of: Optional[int] = None
return_tensors: str = "pt"
def torch_call(self, examples: List[Dict[str, Any]]): # Refactored implementation from the docs.
def torch_call(self, examples: list[dict[str, Any]]): # Refactored implementation from the docs.
import torch
# Take labels out of the examples beforehand, because they aren't nested.
@ -911,7 +911,7 @@ class DataCollatorForLanguageModeling(DataCollatorMixin):
def tf_mask_tokens(
self, inputs: Any, vocab_size, mask_token_id, special_tokens_mask: Optional[Any] = None
) -> Tuple[Any, Any]:
) -> tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
@ -956,7 +956,7 @@ class DataCollatorForLanguageModeling(DataCollatorMixin):
# The rest of the time ((1-random_replace_prob-mask_replace_prob)% of the time) we keep the masked input tokens unchanged
return inputs, labels
def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
def tf_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
import tensorflow as tf
if self.seed and self.generator is None:
@ -1002,7 +1002,7 @@ class DataCollatorForLanguageModeling(DataCollatorMixin):
batch["labels"] = labels
return batch
def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
# Handle dict or lists with proper padding and conversion to tensor.
if self.seed and self.generator is None:
@ -1032,7 +1032,7 @@ class DataCollatorForLanguageModeling(DataCollatorMixin):
batch["labels"] = labels
return batch
def torch_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any]:
def torch_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
@ -1081,7 +1081,7 @@ class DataCollatorForLanguageModeling(DataCollatorMixin):
# The rest of the time ((1-random_replace_prob-mask_replace_prob)% of the time) we keep the masked input tokens unchanged
return inputs, labels
def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
def numpy_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
# Handle dict or lists with proper padding and conversion to tensor.
if self.seed and self.generator is None:
@ -1111,7 +1111,7 @@ class DataCollatorForLanguageModeling(DataCollatorMixin):
batch["labels"] = labels
return batch
def numpy_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> Tuple[Any, Any]:
def numpy_mask_tokens(self, inputs: Any, special_tokens_mask: Optional[Any] = None) -> tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
@ -1193,7 +1193,7 @@ class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling):
</Tip>"""
def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
if self.seed and self.generator is None:
# If we have a seed, we need to create a generator object. Subsequent calls to this function will use the same generator.
# If no seed supplied, we will use the global RNG
@ -1226,7 +1226,7 @@ class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling):
inputs, labels = self.torch_mask_tokens(batch_input, batch_mask)
return {"input_ids": inputs, "labels": labels}
def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
def tf_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
import tensorflow as tf
if self.seed and self.generator is None:
@ -1261,7 +1261,7 @@ class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling):
inputs, labels = self.tf_mask_tokens(tf.cast(batch_input, tf.int64), batch_mask)
return {"input_ids": inputs, "labels": labels}
def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
def numpy_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
if self.seed and self.generator is None:
# If we have a seed, we need to create a generator object. Subsequent calls to this function will use the same generator.
# If no seed supplied, we will use the global RNG
@ -1318,7 +1318,7 @@ class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling):
self.generator.shuffle(cand_indexes)
return cand_indexes
def _whole_word_mask(self, input_tokens: List[str], max_predictions=512):
def _whole_word_mask(self, input_tokens: list[str], max_predictions=512):
"""
Get 0/1 labels for masked tokens with whole word mask proxy
"""
@ -1358,7 +1358,7 @@ class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling):
mask_labels = [1 if i in covered_indexes else 0 for i in range(len(input_tokens))]
return mask_labels
def torch_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]:
def torch_mask_tokens(self, inputs: Any, mask_labels: Any) -> tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
@ -1414,7 +1414,7 @@ class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling):
# The rest of the time ((1-random_replacement_prob-mask_replace_prob)% of the time) we keep the masked input tokens unchanged
return inputs, labels
def tf_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]:
def tf_mask_tokens(self, inputs: Any, mask_labels: Any) -> tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
@ -1474,7 +1474,7 @@ class DataCollatorForWholeWordMask(DataCollatorForLanguageModeling):
# The rest of the time ((1-mask_replace_prob-random_replace_prob)% of the time) we keep the masked input tokens unchanged
return inputs, labels
def numpy_mask_tokens(self, inputs: Any, mask_labels: Any) -> Tuple[Any, Any]:
def numpy_mask_tokens(self, inputs: Any, mask_labels: Any) -> tuple[Any, Any]:
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original. Set
'mask_labels' means we use whole word mask (wwm), we directly mask idxs according to it's ref.
@ -1564,7 +1564,7 @@ class DataCollatorForSOP(DataCollatorForLanguageModeling):
FutureWarning,
)
def __call__(self, examples: List[Dict[str, Any]]) -> Dict[str, Any]:
def __call__(self, examples: list[dict[str, Any]]) -> dict[str, Any]:
import torch
from torch.nn.utils.rnn import pad_sequence
@ -1587,7 +1587,7 @@ class DataCollatorForSOP(DataCollatorForLanguageModeling):
"sentence_order_label": sentence_order_label,
}
def mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any]:
def mask_tokens(self, inputs: Any) -> tuple[Any, Any, Any]:
"""
Prepare masked tokens inputs/labels/attention_mask for masked language modeling: 80% MASK, 10% random, 10%
original. N-gram not applied yet.
@ -1645,28 +1645,28 @@ class DataCollatorForPermutationLanguageModeling(DataCollatorMixin):
max_span_length: int = 5 # maximum length of a span of masked tokens
return_tensors: str = "pt"
def torch_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
if isinstance(examples[0], Mapping):
examples = [e["input_ids"] for e in examples]
batch = _torch_collate_batch(examples, self.tokenizer)
inputs, perm_mask, target_mapping, labels = self.torch_mask_tokens(batch)
return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
def tf_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
def tf_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
if isinstance(examples[0], Mapping):
examples = [e["input_ids"] for e in examples]
batch = _tf_collate_batch(examples, self.tokenizer)
inputs, perm_mask, target_mapping, labels = self.tf_mask_tokens(batch)
return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
def numpy_call(self, examples: List[Union[List[int], Any, Dict[str, Any]]]) -> Dict[str, Any]:
def numpy_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]:
if isinstance(examples[0], Mapping):
examples = [e["input_ids"] for e in examples]
batch = _numpy_collate_batch(examples, self.tokenizer)
inputs, perm_mask, target_mapping, labels = self.numpy_mask_tokens(batch)
return {"input_ids": inputs, "perm_mask": perm_mask, "target_mapping": target_mapping, "labels": labels}
def torch_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]:
def torch_mask_tokens(self, inputs: Any) -> tuple[Any, Any, Any, Any]:
"""
The masked tokens to be predicted for a particular sequence are determined by the following algorithm:
@ -1765,7 +1765,7 @@ class DataCollatorForPermutationLanguageModeling(DataCollatorMixin):
return inputs.long(), perm_mask, target_mapping, labels.long()
def tf_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]:
def tf_mask_tokens(self, inputs: Any) -> tuple[Any, Any, Any, Any]:
"""
The masked tokens to be predicted for a particular sequence are determined by the following algorithm:
@ -1872,7 +1872,7 @@ class DataCollatorForPermutationLanguageModeling(DataCollatorMixin):
return tf.cast(inputs, tf.int64), tf.cast(perm_mask, tf.float32), target_mapping, tf.cast(labels, tf.int64)
def numpy_mask_tokens(self, inputs: Any) -> Tuple[Any, Any, Any, Any]:
def numpy_mask_tokens(self, inputs: Any) -> tuple[Any, Any, Any, Any]:
"""
The masked tokens to be predicted for a particular sequence are determined by the following algorithm:

View File

@ -17,7 +17,7 @@ import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
from typing import Optional, Union
import torch
from filelock import FileLock
@ -75,7 +75,7 @@ class GlueDataset(Dataset):
args: GlueDataTrainingArguments
output_mode: str
features: List[InputFeatures]
features: list[InputFeatures]
def __init__(
self,

View File

@ -18,7 +18,7 @@ import pickle
import random
import time
import warnings
from typing import Dict, List, Optional
from typing import Optional
import torch
from filelock import FileLock
@ -139,7 +139,7 @@ class LineByLineTextDataset(Dataset):
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
def __getitem__(self, i) -> dict[str, torch.tensor]:
return self.examples[i]
@ -187,7 +187,7 @@ class LineByLineWithRefDataset(Dataset):
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
def __getitem__(self, i) -> dict[str, torch.tensor]:
return self.examples[i]
@ -339,7 +339,7 @@ class LineByLineWithSOPTextDataset(Dataset):
def __len__(self):
return len(self.examples)
def __getitem__(self, i) -> Dict[str, torch.tensor]:
def __getitem__(self, i) -> dict[str, torch.tensor]:
return self.examples[i]
@ -433,7 +433,7 @@ class TextDatasetForNextSentencePrediction(Dataset):
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]"
)
def create_examples_from_document(self, document: List[List[int]], doc_index: int, block_size: int):
def create_examples_from_document(self, document: list[list[int]], doc_index: int, block_size: int):
"""Creates examples for a single document."""
max_num_tokens = block_size - self.tokenizer.num_special_tokens_to_add(pair=True)

View File

@ -16,7 +16,7 @@ import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
from typing import Optional, Union
import torch
from filelock import FileLock
@ -112,7 +112,7 @@ class SquadDataset(Dataset):
"""
args: SquadDataTrainingArguments
features: List[SquadFeatures]
features: list[SquadFeatures]
mode: Split
is_language_sensitive: bool
@ -195,7 +195,7 @@ class SquadDataset(Dataset):
def __len__(self):
return len(self.features)
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
def __getitem__(self, i) -> dict[str, torch.Tensor]:
# Convert to Tensors and build dataset
feature = self.features[i]

View File

@ -19,7 +19,7 @@ import os
import warnings
from dataclasses import asdict
from enum import Enum
from typing import List, Optional, Union
from typing import Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_tf_available, logging
@ -39,7 +39,7 @@ DEPRECATION_WARNING = (
def glue_convert_examples_to_features(
examples: Union[List[InputExample], "tf.data.Dataset"],
examples: Union[list[InputExample], "tf.data.Dataset"],
tokenizer: PreTrainedTokenizer,
max_length: Optional[int] = None,
task=None,
@ -107,7 +107,7 @@ if is_tf_available():
def _glue_convert_examples_to_features(
examples: List[InputExample],
examples: list[InputExample],
tokenizer: PreTrainedTokenizer,
max_length: Optional[int] = None,
task=None,

View File

@ -18,7 +18,7 @@ import csv
import dataclasses
import json
from dataclasses import dataclass
from typing import List, Optional, Union
from typing import Optional, Union
from ...utils import is_tf_available, is_torch_available, logging
@ -67,9 +67,9 @@ class InputFeatures:
float for regression problems.
"""
input_ids: List[int]
attention_mask: Optional[List[int]] = None
token_type_ids: Optional[List[int]] = None
input_ids: list[int]
attention_mask: Optional[list[int]] = None
token_type_ids: Optional[list[int]] = None
label: Optional[Union[int, float]] = None
def to_json_string(self):

View File

@ -136,7 +136,7 @@ class DebugUnderflowOverflow:
The model to debug.
max_frames_to_save (`int`, *optional*, defaults to 21):
How many frames back to record
trace_batch_nums(`List[int]`, *optional*, defaults to `[]`):
trace_batch_nums(`list[int]`, *optional*, defaults to `[]`):
Which batch numbers to trace (turns detection off)
abort_after_batch_num (`int``, *optional*):
Whether to abort after a certain batch number has finished

View File

@ -317,7 +317,7 @@ def get_cached_module_file(
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
proxies (`dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
@ -507,7 +507,7 @@ def get_class_from_dynamic_module(
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
proxies (`dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or `bool`, *optional*):
@ -593,7 +593,7 @@ def custom_object_save(obj: Any, folder: Union[str, os.PathLike], config: Option
A config in which to register the auto_map corresponding to this custom object.
Returns:
`List[str]`: The list of files saved.
`list[str]`: The list of files saved.
"""
if obj.__module__ == "__main__":
logger.warning(
@ -762,7 +762,7 @@ def check_python_requirements(path_or_repo_id, requirements_file="requirements.t
This can be either:
- a string, the *model id* of a model repo on huggingface.co.
- a path to a *directory* potentially containing the file.
kwargs (`Dict[str, Any]`, *optional*):
kwargs (`dict[str, Any]`, *optional*):
Additional arguments to pass to `cached_file`.
"""
failed = [] # error messages regarding requirements

View File

@ -81,13 +81,13 @@ class SequenceFeatureExtractor(FeatureExtractionMixin):
</Tip>
Args:
processed_features ([`BatchFeature`], list of [`BatchFeature`], `Dict[str, List[float]]`, `Dict[str, List[List[float]]` or `List[Dict[str, List[float]]]`):
Processed inputs. Can represent one input ([`BatchFeature`] or `Dict[str, List[float]]`) or a batch of
input values / vectors (list of [`BatchFeature`], *Dict[str, List[List[float]]]* or *List[Dict[str,
List[float]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
processed_features ([`BatchFeature`], list of [`BatchFeature`], `dict[str, list[float]]`, `dict[str, list[list[float]]` or `list[dict[str, list[float]]]`):
Processed inputs. Can represent one input ([`BatchFeature`] or `dict[str, list[float]]`) or a batch of
input values / vectors (list of [`BatchFeature`], *dict[str, list[list[float]]]* or *list[dict[str,
list[float]]]*) so you can use this method during preprocessing as well as in a PyTorch Dataloader
collate function.
Instead of `List[float]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
Instead of `list[float]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
see the note above for the return type.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
@ -235,9 +235,9 @@ class SequenceFeatureExtractor(FeatureExtractionMixin):
Pad inputs (on left/right and up to predefined length or max length in the batch)
Args:
processed_features (`Union[Dict[str, np.ndarray], BatchFeature]`):
Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch
of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`)
processed_features (`Union[dict[str, np.ndarray], BatchFeature]`):
Dictionary of input values (`np.ndarray[float]`) / input vectors (`list[np.ndarray[float]]`) or batch
of inputs values (`list[np.ndarray[int]]`) / input vectors (`list[np.ndarray[int]]`)
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see below)
padding_strategy (`PaddingStrategy`, *optional*, default to `PaddingStrategy.DO_NOT_PAD`):
@ -306,9 +306,9 @@ class SequenceFeatureExtractor(FeatureExtractionMixin):
Truncate inputs to predefined length or max length in the batch
Args:
processed_features(`Union[Dict[str, np.ndarray], BatchFeature]`):
Dictionary of input values (`np.ndarray[float]`) / input vectors (`List[np.ndarray[float]]`) or batch
of inputs values (`List[np.ndarray[int]]`) / input vectors (`List[np.ndarray[int]]`)
processed_features(`Union[dict[str, np.ndarray], BatchFeature]`):
Dictionary of input values (`np.ndarray[float]`) / input vectors (`list[np.ndarray[float]]`) or batch
of inputs values (`list[np.ndarray[int]]`) / input vectors (`list[np.ndarray[int]]`)
max_length (`int`, *optional*):
maximum length of the returned list and optionally padding length (see below)
pad_to_multiple_of (`int`, *optional*) :

View File

@ -303,7 +303,7 @@ class FeatureExtractionMixin(PushToHubMixin):
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
proxies (`dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or `bool`, *optional*):
@ -326,7 +326,7 @@ class FeatureExtractionMixin(PushToHubMixin):
functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary
consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of
`kwargs` which has not been used to update `feature_extractor` and is otherwise ignored.
kwargs (`Dict[str, Any]`, *optional*):
kwargs (`dict[str, Any]`, *optional*):
The values in kwargs of any keys which are feature extractor attributes will be used to override the
loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is
controlled by the `return_unused_kwargs` keyword parameter.
@ -392,7 +392,7 @@ class FeatureExtractionMixin(PushToHubMixin):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
kwargs (`dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
use_auth_token = kwargs.pop("use_auth_token", None)
@ -454,7 +454,7 @@ class FeatureExtractionMixin(PushToHubMixin):
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
Returns:
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the feature extractor object.
`tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the feature extractor object.
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
@ -555,11 +555,11 @@ class FeatureExtractionMixin(PushToHubMixin):
parameters.
Args:
feature_extractor_dict (`Dict[str, Any]`):
feature_extractor_dict (`dict[str, Any]`):
Dictionary that will be used to instantiate the feature extractor object. Such a dictionary can be
retrieved from a pretrained checkpoint by leveraging the
[`~feature_extraction_utils.FeatureExtractionMixin.to_dict`] method.
kwargs (`Dict[str, Any]`):
kwargs (`dict[str, Any]`):
Additional parameters from which to initialize the feature extractor object.
Returns:
@ -588,7 +588,7 @@ class FeatureExtractionMixin(PushToHubMixin):
def to_dict(self) -> dict[str, Any]:
"""
Serializes this instance to a Python dictionary. Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
`dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self.__dict__)
output["feature_extractor_type"] = self.__class__.__name__

View File

@ -1,5 +1,5 @@
from abc import ABC, abstractmethod
from typing import List, Optional
from typing import Optional
class Constraint(ABC):
@ -51,7 +51,7 @@ class Constraint(ABC):
When called, returns the token(s) that would take this constraint one step closer to being fulfilled.
Return:
token_ids (Union[int, List[int], None]):
token_ids (Union[int, list[int], None]):
- A single token ID (int) that advances the constraint, or
- A list of token IDs that could advance the constraint
- None if the constraint is completed or cannot be advanced
@ -134,11 +134,11 @@ class PhrasalConstraint(Constraint):
[`Constraint`] enforcing that an ordered sequence of tokens is included in the output.
Args:
token_ids (`List[int]`):
token_ids (`list[int]`):
The id of the token that must be generated by the output.
"""
def __init__(self, token_ids: List[int]):
def __init__(self, token_ids: list[int]):
super(Constraint, self).__init__()
if not isinstance(token_ids, list) or len(token_ids) == 0:
@ -205,7 +205,7 @@ class PhrasalConstraint(Constraint):
class DisjunctiveTrie:
def __init__(self, nested_token_ids: List[List[int]], no_subsets=True):
def __init__(self, nested_token_ids: list[list[int]], no_subsets=True):
r"""
A helper class that builds a trie with the words represented in `nested_token_ids`.
"""
@ -266,12 +266,12 @@ class DisjunctiveConstraint(Constraint):
A special [`Constraint`] that is fulfilled by fulfilling just one of several constraints.
Args:
nested_token_ids (`List[List[int]]`):
nested_token_ids (`list[list[int]]`):
A list of words, where each word is a list of ids. This constraint is fulfilled by generating just one from
the list of words.
"""
def __init__(self, nested_token_ids: List[List[int]]):
def __init__(self, nested_token_ids: list[list[int]]):
super(Constraint, self).__init__()
if not isinstance(nested_token_ids, list) or len(nested_token_ids) == 0:
@ -356,11 +356,11 @@ class ConstraintListState:
A class for beam scorers to track its progress through a list of constraints.
Args:
constraints (`List[Constraint]`):
constraints (`list[Constraint]`):
A list of [`Constraint`] objects that must be fulfilled by the beam scorer.
"""
def __init__(self, constraints: List[Constraint]):
def __init__(self, constraints: list[Constraint]):
self.constraints = constraints
# max # of steps required to fulfill a given constraint
@ -418,7 +418,7 @@ class ConstraintListState:
else:
return token_list
def reset(self, token_ids: Optional[List[int]]):
def reset(self, token_ids: Optional[list[int]]):
"""
token_ids: the tokens generated thus far to reset the state of the progress through constraints.
"""

View File

@ -15,7 +15,7 @@
from abc import ABC, abstractmethod
from collections import UserDict
from typing import Dict, List, Optional, Tuple, Union
from typing import Optional, Union
import numpy as np
import torch
@ -41,7 +41,7 @@ PROCESS_INPUTS_DOCSTRING = r"""
Beam indices indicating to which beam hypothesis the `next_tokens` correspond.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
eos_token_id (`Union[int, List[int]]`, *optional*):
eos_token_id (`Union[int, list[int]]`, *optional*):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
beam_indices (`torch.LongTensor`, *optional*):
Beam indices indicating to which beam hypothesis each token correspond.
@ -77,7 +77,7 @@ FINALIZE_INPUTS_DOCSTRING = r"""
The beam indices indicating to which beam the `final_beam_tokens` shall be added.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
eos_token_id (`Union[int, List[int]]`, *optional*):
eos_token_id (`Union[int, list[int]]`, *optional*):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
Return:
@ -103,7 +103,7 @@ class BeamScorer(ABC):
next_tokens: torch.LongTensor,
next_indices: torch.LongTensor,
**kwargs,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
raise NotImplementedError("This is an abstract method.")
@abstractmethod
@ -219,11 +219,11 @@ class BeamSearchScorer(BeamScorer):
next_tokens: torch.LongTensor,
next_indices: torch.LongTensor,
pad_token_id: Optional[Union[int, torch.Tensor]] = None,
eos_token_id: Optional[Union[int, List[int], torch.Tensor]] = None,
eos_token_id: Optional[Union[int, list[int], torch.Tensor]] = None,
beam_indices: Optional[torch.LongTensor] = None,
group_index: Optional[int] = 0,
decoder_prompt_len: Optional[int] = 0,
) -> Dict[str, torch.Tensor]:
) -> dict[str, torch.Tensor]:
# add up to the length which the next_scores is calculated on (including decoder prompt)
cur_len = input_ids.shape[-1] + 1
batch_size = len(self._beam_hyps) // self.num_beam_groups
@ -325,10 +325,10 @@ class BeamSearchScorer(BeamScorer):
final_beam_indices: torch.LongTensor,
max_length: int,
pad_token_id: Optional[Union[int, torch.Tensor]] = None,
eos_token_id: Optional[Union[int, List[int], torch.Tensor]] = None,
eos_token_id: Optional[Union[int, list[int], torch.Tensor]] = None,
beam_indices: Optional[torch.LongTensor] = None,
decoder_prompt_len: Optional[int] = 0,
) -> Tuple[torch.LongTensor]:
) -> tuple[torch.LongTensor]:
batch_size = len(self._beam_hyps) // self.num_beam_groups
if eos_token_id is not None and not isinstance(eos_token_id, torch.Tensor):
@ -426,7 +426,7 @@ class ConstrainedBeamSearchScorer(BeamScorer):
Batch Size of `input_ids` for which standard beam search decoding is run in parallel.
num_beams (`int`):
Number of beams for beam search.
constraints (`List[Constraint]`):
constraints (`list[Constraint]`):
A list of positive constraints represented as `Constraint` objects that must be fulfilled in the generation
output. For more information, the documentation of [`Constraint`] should be read.
device (`torch.device`):
@ -457,7 +457,7 @@ class ConstrainedBeamSearchScorer(BeamScorer):
self,
batch_size: int,
num_beams: int,
constraints: List[Constraint],
constraints: list[Constraint],
device: torch.device,
length_penalty: Optional[float] = 1.0,
do_early_stopping: Optional[Union[bool, str]] = False,
@ -518,10 +518,10 @@ class ConstrainedBeamSearchScorer(BeamScorer):
next_indices: torch.LongTensor,
scores_for_all_vocab: torch.FloatTensor,
pad_token_id: Optional[Union[int, torch.Tensor]] = None,
eos_token_id: Optional[Union[int, List[int], torch.Tensor]] = None,
eos_token_id: Optional[Union[int, list[int], torch.Tensor]] = None,
beam_indices: Optional[torch.LongTensor] = None,
decoder_prompt_len: Optional[int] = 0,
) -> Tuple[torch.Tensor]:
) -> tuple[torch.Tensor]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`):
@ -541,7 +541,7 @@ class ConstrainedBeamSearchScorer(BeamScorer):
The scores of all tokens in the vocabulary for each of the beam hypotheses.
pad_token_id (`int`, *optional*):
The id of the *padding* token.
eos_token_id (`Union[int, List[int]]`, *optional*):
eos_token_id (`Union[int, list[int]]`, *optional*):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
beam_indices (`torch.LongTensor`, *optional*):
Beam indices indicating to which beam hypothesis each token correspond.
@ -818,10 +818,10 @@ class ConstrainedBeamSearchScorer(BeamScorer):
final_beam_indices: torch.LongTensor,
max_length: int,
pad_token_id: Optional[Union[int, torch.Tensor]] = None,
eos_token_id: Optional[Union[int, List[int], torch.Tensor]] = None,
eos_token_id: Optional[Union[int, list[int], torch.Tensor]] = None,
beam_indices: Optional[torch.LongTensor] = None,
decoder_prompt_len: Optional[int] = 0,
) -> Tuple[torch.LongTensor]:
) -> tuple[torch.LongTensor]:
batch_size = len(self._beam_hyps)
if eos_token_id is not None and not isinstance(eos_token_id, torch.Tensor):

View File

@ -15,7 +15,7 @@
import copy
import weakref
from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple
from typing import TYPE_CHECKING, Any, Optional
import numpy as np
import torch
@ -44,7 +44,7 @@ from ..utils.deprecation import deprecate_kwarg
class CandidateGenerator:
"""Abstract base class for all candidate generators that can be applied during assisted generation."""
def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
def get_candidates(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Fetches the candidates to be tried for the current input.
@ -108,7 +108,7 @@ class AssistedCandidateGenerator(CandidateGenerator):
input_ids: torch.LongTensor,
assistant_model: "PreTrainedModel",
generation_config: "GenerationConfig",
model_kwargs: Dict,
model_kwargs: dict,
inputs_tensor: Optional[torch.Tensor] = None,
logits_processor: "LogitsProcessorList" = None,
):
@ -198,7 +198,7 @@ class AssistedCandidateGenerator(CandidateGenerator):
self.probs = []
self.matches = []
def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
def get_candidates(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Fetches the candidates to be tried for the current input.
@ -281,7 +281,7 @@ class AssistedCandidateGenerator(CandidateGenerator):
self.assistant_model.generation_config.assistant_confidence_threshold = best_threshold
def _calculate_new_tokens(self, input_ids: torch.LongTensor) -> Tuple[int, int]:
def _calculate_new_tokens(self, input_ids: torch.LongTensor) -> tuple[int, int]:
"""Calculate the minimum and maximum number of new tokens to generate."""
new_cur_len = input_ids.shape[-1]
max_new_tokens = min(int(self.num_assistant_tokens), self.generation_config.max_length - new_cur_len - 1)
@ -305,7 +305,7 @@ class AssistedCandidateGenerator(CandidateGenerator):
return has_past_key_values
def _prepare_generation_args(self, input_ids: torch.LongTensor, min_new_tokens: int, max_new_tokens: int) -> Dict:
def _prepare_generation_args(self, input_ids: torch.LongTensor, min_new_tokens: int, max_new_tokens: int) -> dict:
"""Prepare arguments for the generation call."""
return {
self.input_ids_key: input_ids,
@ -315,7 +315,7 @@ class AssistedCandidateGenerator(CandidateGenerator):
"logits_processor": self.logits_processor,
}
def _generate_candidates(self, generation_args: Dict) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
def _generate_candidates(self, generation_args: dict) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""Generate candidate sequences using the assistant model."""
assistant_output = self.assistant_model.generate(**generation_args, **self.assistant_kwargs)
self.assistant_kwargs["past_key_values"] = assistant_output.past_key_values
@ -374,7 +374,7 @@ class AssistedCandidateGeneratorDifferentTokenizers(AssistedCandidateGenerator):
target_tokenizer: "PreTrainedTokenizerBase",
assistant_tokenizer: "PreTrainedTokenizerBase",
generation_config: "GenerationConfig",
model_kwargs: Dict,
model_kwargs: dict,
inputs_tensor: Optional[torch.Tensor] = None,
logits_processor: "LogitsProcessorList" = None,
):
@ -495,7 +495,7 @@ class AssistedCandidateGeneratorDifferentTokenizers(AssistedCandidateGenerator):
dest_ids = destination_tokenizer(text, add_special_tokens=True, return_tensors="pt")["input_ids"]
return dest_ids.to(input_ids.device)
def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
def get_candidates(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Fetches the candidates to be tried for the current input.
@ -537,7 +537,7 @@ class AssistedCandidateGeneratorDifferentTokenizers(AssistedCandidateGenerator):
return new_target_ids, None
def _prepare_assistant_input_ids(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, int]:
def _prepare_assistant_input_ids(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, int]:
"""Converts target input IDs to assistant input IDs, handling discrepancies."""
convert_kwargs = {
"source_tokenizer": self.target_tokenizer,
@ -710,8 +710,8 @@ class AssistantToTargetTranslator:
assistant_model: Optional["PreTrainedModel"] = None,
assistant_prune_lm_head: bool = False,
):
self._target_tokenizer: "PreTrainedTokenizerBase" = target_tokenizer
self._assistant_tokenizer: "PreTrainedTokenizerBase" = assistant_tokenizer
self._target_tokenizer: PreTrainedTokenizerBase = target_tokenizer
self._assistant_tokenizer: PreTrainedTokenizerBase = assistant_tokenizer
self._assistant_model_device: str = (
assistant_model_device if assistant_model is None else assistant_model.device
)
@ -782,7 +782,7 @@ class AssistantToTargetTranslator:
max_assistant_index = max(assistant_vocab.values())
assistant_to_target_input_ids = torch.full((max_assistant_index + 1,), self.SUPPRESS_TOKEN_ID, dtype=int)
target_to_assistant_input_ids: Dict[int, int] = {}
target_to_assistant_input_ids: dict[int, int] = {}
for tok, assistant_id in assistant_vocab.items():
target_id = target_vocab.get(tok)
if target_id is not None:
@ -909,7 +909,7 @@ class UniversalSpeculativeDecodingGenerator(AssistedCandidateGeneratorDifferentT
target_tokenizer: "PreTrainedTokenizerBase",
assistant_tokenizer: "PreTrainedTokenizerBase",
generation_config: "GenerationConfig",
model_kwargs: Dict,
model_kwargs: dict,
atm_translator: AssistantToTargetTranslator,
inputs_tensor: Optional[torch.Tensor] = None,
logits_processor: "LogitsProcessorList" = None,
@ -930,7 +930,7 @@ class UniversalSpeculativeDecodingGenerator(AssistedCandidateGeneratorDifferentT
self._target_seq_len_with_candidates: int = 0
self._prev_assistant_ids: Optional[torch.LongTensor] = None
def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
def get_candidates(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Simplified version of get_candidates that uses the translator cache for token conversion.
"""
@ -1043,7 +1043,7 @@ class PromptLookupCandidateGenerator(CandidateGenerator):
if self.max_matching_ngram_size <= 0 or self.num_output_tokens <= 0:
raise ValueError("Invalid max_matching_ngram_size or num_output_tokens")
def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
def get_candidates(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
"""
Fetches the candidates to be tried for the current input.
@ -1153,7 +1153,7 @@ class EarlyExitCandidateGenerator(AssistedCandidateGenerator):
input_ids: torch.LongTensor,
assistant_model: "PreTrainedModel",
generation_config: "GenerationConfig",
model_kwargs: Dict,
model_kwargs: dict,
inputs_tensor: Optional[torch.Tensor] = None,
logits_processor: "LogitsProcessorList" = None,
):
@ -1170,7 +1170,7 @@ class EarlyExitCandidateGenerator(AssistedCandidateGenerator):
self.assistant_early_exit = self.generation_config.assistant_early_exit
self.generation_config.assistant_early_exit = None
def get_candidates(self, input_ids: torch.LongTensor) -> Tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
def get_candidates(self, input_ids: torch.LongTensor) -> tuple[torch.LongTensor, Optional[torch.FloatTensor]]:
# Temporarily sets the number of hidden layers to the early exit value
base_model = getattr(self.assistant_model, self.assistant_model.base_model_prefix)
original_num_hidden_layers = base_model.config.num_hidden_layers
@ -1221,7 +1221,7 @@ def _crop_past_key_values(model, past_key_values, max_length):
return past_key_values
def _prepare_attention_mask(model_kwargs: Dict[str, Any], new_length: int, is_encoder_decoder: bool) -> Dict[str, Any]:
def _prepare_attention_mask(model_kwargs: dict[str, Any], new_length: int, is_encoder_decoder: bool) -> dict[str, Any]:
"""Expands or crops the model's mask for decoding purposes, to the defined length"""
mask_key = "decoder_attention_mask" if is_encoder_decoder else "attention_mask"
@ -1257,7 +1257,7 @@ def _prepare_attention_mask(model_kwargs: Dict[str, Any], new_length: int, is_en
return model_kwargs
def _prepare_token_type_ids(model_kwargs: Dict[str, Any], new_length: int) -> Dict[str, Any]:
def _prepare_token_type_ids(model_kwargs: dict[str, Any], new_length: int) -> dict[str, Any]:
"""Expands or crops the model's token_type_ids for decoding purposes, to the defined length"""
if "token_type_ids" not in model_kwargs or model_kwargs["token_type_ids"] is None:
return model_kwargs

View File

@ -20,7 +20,7 @@ import os
import warnings
from abc import ABC, abstractmethod
from dataclasses import dataclass, is_dataclass
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Union
from typing import TYPE_CHECKING, Any, Callable, Optional, Union
from .. import __version__
from ..configuration_utils import PretrainedConfig
@ -149,7 +149,7 @@ class GenerationConfig(PushToHubMixin):
max_time (`float`, *optional*):
The maximum amount of time you allow the computation to run for in seconds. generation will still finish
the current pass after allocated time has been passed.
stop_strings (`str or List[str]`, *optional*):
stop_strings (`str or list[str]`, *optional*):
A string or a list of strings that should terminate generation if the model outputs them.
> Parameters that control the generation strategy used
@ -163,7 +163,7 @@ class GenerationConfig(PushToHubMixin):
[this paper](https://huggingface.co/papers/1610.02424) for more details.
penalty_alpha (`float`, *optional*):
The values balance the model confidence and the degeneration penalty in contrastive search decoding.
dola_layers (`str` or `List[int]`, *optional*):
dola_layers (`str` or `list[int]`, *optional*):
The layers to use for DoLa decoding. If `None`, DoLa decoding is not used. If a string, it must
be one of "low" or "high", which means using the lower part or higher part of the model layers, respectively.
"low" means the first half of the layers up to the first 20 layers, and "high" means the last half of the
@ -245,26 +245,26 @@ class GenerationConfig(PushToHubMixin):
`length_penalty` < 0.0 encourages shorter sequences.
no_repeat_ngram_size (`int`, *optional*, defaults to 0):
If set to int > 0, all ngrams of that size can only occur once.
bad_words_ids (`List[List[int]]`, *optional*):
bad_words_ids (`list[list[int]]`, *optional*):
List of list of token ids that are not allowed to be generated. Check
[`~generation.NoBadWordsLogitsProcessor`] for further documentation and examples.
force_words_ids (`List[List[int]]` or `List[List[List[int]]]`, *optional*):
List of token ids that must be generated. If given a `List[List[int]]`, this is treated as a simple list of
words that must be included, the opposite to `bad_words_ids`. If given `List[List[List[int]]]`, this
force_words_ids (`list[list[int]]` or `list[list[list[int]]]`, *optional*):
List of token ids that must be generated. If given a `list[list[int]]`, this is treated as a simple list of
words that must be included, the opposite to `bad_words_ids`. If given `list[list[list[int]]]`, this
triggers a [disjunctive constraint](https://github.com/huggingface/transformers/issues/14081), where one
can allow different forms of each word.
renormalize_logits (`bool`, *optional*, defaults to `False`):
Whether to renormalize the logits after applying all the logits processors (including the custom
ones). It's highly recommended to set this flag to `True` as the search algorithms suppose the score logits
are normalized but some logit processors break the normalization.
constraints (`List[Constraint]`, *optional*):
constraints (`list[Constraint]`, *optional*):
Custom constraints that can be added to the generation to ensure that the output will contain the use of
certain tokens as defined by `Constraint` objects, in the most sensible way possible.
forced_bos_token_id (`int`, *optional*, defaults to `model.config.forced_bos_token_id`):
The id of the token to force as the first generated token after the `decoder_start_token_id`. Useful for
multilingual models like [mBART](../model_doc/mbart) where the first generated token needs to be the target
language token.
forced_eos_token_id (`int` or List[int]`, *optional*, defaults to `model.config.forced_eos_token_id`):
forced_eos_token_id (`int` or list[int]`, *optional*, defaults to `model.config.forced_eos_token_id`):
The id of the token to force as the last generated token when `max_length` is reached. Optionally, use a
list to set multiple *end-of-sequence* tokens.
remove_invalid_values (`bool`, *optional*, defaults to `model.config.remove_invalid_values`):
@ -274,13 +274,13 @@ class GenerationConfig(PushToHubMixin):
This Tuple adds an exponentially increasing length penalty, after a certain amount of tokens have been
generated. The tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where
penalty starts and `decay_factor` represents the factor of exponential decay
suppress_tokens (`List[int]`, *optional*):
suppress_tokens (`list[int]`, *optional*):
A list of tokens that will be suppressed at generation. The `SupressTokens` logit processor will set their
log probs to `-inf` so that they are not sampled.
begin_suppress_tokens (`List[int]`, *optional*):
begin_suppress_tokens (`list[int]`, *optional*):
A list of tokens that will be suppressed at the beginning of the generation. The `SupressBeginTokens` logit
processor will set their log probs to `-inf` so that they are not sampled.
sequence_bias (`Dict[Tuple[int], float]`, *optional*)):
sequence_bias (`dict[tuple[int], float]`, *optional*)):
Dictionary that maps a sequence of tokens to its bias term. Positive biases increase the odds of the
sequence being selected, while negative biases do the opposite. Check
[`~generation.SequenceBiasLogitsProcessor`] for further documentation and examples.
@ -325,7 +325,7 @@ class GenerationConfig(PushToHubMixin):
The id of the *padding* token.
bos_token_id (`int`, *optional*):
The id of the *beginning-of-sequence* token.
eos_token_id (`Union[int, List[int]]`, *optional*):
eos_token_id (`Union[int, list[int]]`, *optional*):
The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
> Generation parameters exclusive to encoder-decoder models
@ -333,7 +333,7 @@ class GenerationConfig(PushToHubMixin):
encoder_no_repeat_ngram_size (`int`, *optional*, defaults to 0):
If set to int > 0, all ngrams of that size that occur in the `encoder_input_ids` cannot occur in the
`decoder_input_ids`.
decoder_start_token_id (`int` or `List[int]`, *optional*):
decoder_start_token_id (`int` or `list[int]`, *optional*):
If an encoder-decoder model starts decoding with a different token than *bos*, the id of that token or a list of length
`batch_size`. Indicating a list enables different start ids for each element in the batch
(e.g. multilingual models with different target languages in one batch)
@ -846,7 +846,7 @@ class GenerationConfig(PushToHubMixin):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
kwargs (`dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
@ -933,7 +933,7 @@ class GenerationConfig(PushToHubMixin):
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
proxies (`dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or `bool`, *optional*):
@ -959,7 +959,7 @@ class GenerationConfig(PushToHubMixin):
subfolder (`str`, *optional*, defaults to `""`):
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
specify the folder name here.
kwargs (`Dict[str, Any]`, *optional*):
kwargs (`dict[str, Any]`, *optional*):
The values in kwargs of any keys which are configuration attributes will be used to override the loaded
values. Behavior concerning key/value pairs whose keys are *not* configuration attributes is controlled
by the `return_unused_kwargs` keyword parameter.
@ -1090,14 +1090,14 @@ class GenerationConfig(PushToHubMixin):
return json.loads(text)
@classmethod
def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "GenerationConfig":
def from_dict(cls, config_dict: dict[str, Any], **kwargs) -> "GenerationConfig":
"""
Instantiates a [`GenerationConfig`] from a Python dictionary of parameters.
Args:
config_dict (`Dict[str, Any]`):
config_dict (`dict[str, Any]`):
Dictionary that will be used to instantiate the configuration object.
kwargs (`Dict[str, Any]`):
kwargs (`dict[str, Any]`):
Additional parameters from which to initialize the configuration object.
Returns:
@ -1123,7 +1123,7 @@ class GenerationConfig(PushToHubMixin):
else:
return config
def dict_torch_dtype_to_str(self, d: Dict[str, Any]) -> None:
def dict_torch_dtype_to_str(self, d: dict[str, Any]) -> None:
"""
Checks whether the passed dictionary and its nested dicts have a *torch_dtype* key and if it's not None,
converts torch.dtype to a string of just the type. For example, `torch.float32` get converted into *"float32"*
@ -1135,13 +1135,13 @@ class GenerationConfig(PushToHubMixin):
if isinstance(value, dict):
self.dict_torch_dtype_to_str(value)
def to_diff_dict(self) -> Dict[str, Any]:
def to_diff_dict(self) -> dict[str, Any]:
"""
Removes all attributes from config which correspond to the default config attributes for better readability and
serializes to a Python dictionary.
Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
`dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance,
"""
config_dict = self.to_dict()
@ -1158,12 +1158,12 @@ class GenerationConfig(PushToHubMixin):
self.dict_torch_dtype_to_str(serializable_config_dict)
return serializable_config_dict
def to_dict(self) -> Dict[str, Any]:
def to_dict(self) -> dict[str, Any]:
"""
Serializes this instance to a Python dictionary.
Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
`dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self.__dict__)
@ -1289,11 +1289,11 @@ class GenerationConfig(PushToHubMixin):
returning all the unused kwargs.
Args:
kwargs (`Dict[str, Any]`):
kwargs (`dict[str, Any]`):
Dictionary of attributes to tentatively update this class.
Returns:
`Dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
`dict[str, Any]`: Dictionary containing all the key-value pairs that were not used to update the instance.
"""
to_remove = []
for key, value in kwargs.items():
@ -1319,7 +1319,7 @@ class BaseWatermarkingConfig(ABC):
Constructs a BaseWatermarkingConfig instance from a dictionary of parameters.
Args:
config_dict (Dict[str, Any]): Dictionary containing configuration parameters.
config_dict (dict[str, Any]): Dictionary containing configuration parameters.
**kwargs: Additional keyword arguments to override dictionary values.
Returns:
@ -1348,12 +1348,12 @@ class BaseWatermarkingConfig(ABC):
writer.write(json_string)
def to_dict(self) -> Dict[str, Any]:
def to_dict(self) -> dict[str, Any]:
"""
Serializes this instance to a Python dictionary.
Returns:
Dict[str, Any]: Dictionary of all the attributes that make up this configuration instance.
dict[str, Any]: Dictionary of all the attributes that make up this configuration instance.
"""
output = copy.deepcopy(self.__dict__)
return output
@ -1479,7 +1479,7 @@ class SynthIDTextWatermarkingConfig(BaseWatermarkingConfig):
Args:
ngram_len (`int`):
Ngram length.
keys (`List[int]`):
keys (`list[int]`):
A sequence of watermarking keys, one for each depth.
context_history_size (`int`, *optional*, defaults to 1024):
Size of the tensor to keep track of seen contexts.
@ -1518,7 +1518,7 @@ class SynthIDTextWatermarkingConfig(BaseWatermarkingConfig):
def __init__(
self,
ngram_len: int,
keys: List[int],
keys: list[int],
context_history_size: int = 1024,
sampling_table_seed: int = 0,
sampling_table_size: int = 2**16,
@ -1605,6 +1605,6 @@ class CompileConfig:
# Used to flag our `generate` call to compile on e.g. CPU. Often not optimal, but useful for testing purposes.
_compile_all_devices = None
def to_dict(self) -> Dict[str, Any]:
def to_dict(self) -> dict[str, Any]:
"""Serializes this instance to a Python dictionary."""
return copy.deepcopy({key: value for key, value in self.__dict__.items() if key != "_compile_all_devices"})

View File

@ -23,7 +23,7 @@ from collections import deque
from dataclasses import dataclass, field
from enum import Enum
from functools import partial
from typing import Deque, Dict, List, Optional, Set, Tuple, Union
from typing import Optional, Union
import torch
import torch.nn as nn
@ -59,16 +59,16 @@ class GenerationOutput:
Attributes:
request_id (str): The ID of the generation request.
prompt_ids (List[int]): The IDs of the prompt tokens.
generated_tokens (List[int]): The generated tokens.
logprobs (List[float]): The log probabilities of the generated tokens.
prompt_ids (list[int]): The IDs of the prompt tokens.
generated_tokens (list[int]): The generated tokens.
logprobs (list[float]): The log probabilities of the generated tokens.
error (Optional[str]): Any error message associated with the request. When None, the request was successful.
"""
request_id: str
prompt_ids: List[int] = field(default_factory=list)
generated_tokens: List[int] = field(default_factory=list)
logprobs: List[float] = field(default_factory=list)
prompt_ids: list[int] = field(default_factory=list)
generated_tokens: list[int] = field(default_factory=list)
logprobs: list[float] = field(default_factory=list)
error: Optional[str] = None
status: RequestStatus = RequestStatus.PENDING
created_time: float = field(default_factory=time.time)
@ -85,11 +85,11 @@ class RequestState:
# Required fields
request_id: str
prompt_ids: Optional[List[int]] = None # the one being processed
full_prompt_ids: Optional[List[int]] = None # the full prompt
remaining_prompt_ids: List[int] = field(default_factory=list) # For split requests
static_outputs: List[int] = field(default_factory=list)
allocated_blocks: List[int] = field(default_factory=list)
prompt_ids: Optional[list[int]] = None # the one being processed
full_prompt_ids: Optional[list[int]] = None # the full prompt
remaining_prompt_ids: list[int] = field(default_factory=list) # For split requests
static_outputs: list[int] = field(default_factory=list)
allocated_blocks: list[int] = field(default_factory=list)
position_offset: int = 0 # Current position in the sequence for position_ids
status: RequestStatus = RequestStatus.PENDING
max_new_tokens: int = 20
@ -150,8 +150,8 @@ class PagedAttentionCache(Cache):
generation_config: GenerationConfig,
device: torch.device,
dtype: torch.dtype = torch.float16,
layer_device_map: Optional[Dict[int, Union[str, torch.device, int]]] = None,
initial_prompt_shapes: Optional[List[List[int]]] = None,
layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None,
initial_prompt_shapes: Optional[list[list[int]]] = None,
) -> None:
"""Initialize a paged attention cache for efficient memory usage.
@ -191,8 +191,8 @@ class PagedAttentionCache(Cache):
self.dtype = dtype
self.device = device
self.key_cache: List[torch.Tensor] = []
self.value_cache: List[torch.Tensor] = []
self.key_cache: list[torch.Tensor] = []
self.value_cache: list[torch.Tensor] = []
for idx in range(config.num_hidden_layers):
layer_device = layer_device_map[idx] if layer_device_map is not None else device
new_layer_key_cache = torch.zeros(self.cache_shape, dtype=self.dtype, device=layer_device)
@ -206,10 +206,10 @@ class PagedAttentionCache(Cache):
# Block management data structures
self._free_blocks = deque(range(num_blocks))
self._block_tables: Dict[str, List[int]] = {}
self._block_tables: dict[str, list[int]] = {}
@traced
def allocate_blocks(self, n_blocks: int, request_id: str) -> List[int]:
def allocate_blocks(self, n_blocks: int, request_id: str) -> list[int]:
"""Allocates n_blocks for a given request_id."""
if len(self._free_blocks) < n_blocks:
return False
@ -236,12 +236,12 @@ class PagedAttentionCache(Cache):
"""Returns the number of free blocks available."""
return len(self._free_blocks)
def get_block_table(self, request_id: str) -> List[int]:
def get_block_table(self, request_id: str) -> list[int]:
"""Returns the block table for a request."""
return self._block_tables.get(request_id, [])
@traced
def _get_physical_indices(self, state: RequestState, logical_indices: List[int]) -> List[int]:
def _get_physical_indices(self, state: RequestState, logical_indices: list[int]) -> list[int]:
"""
Maps logical sequence indices to physical cache indices using the block table, using PyTorch.
@ -289,7 +289,7 @@ class PagedAttentionCache(Cache):
read_index,
write_index,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
) -> tuple[torch.Tensor, torch.Tensor]:
# Reshape cache for easier indexing
total_slots = self.num_blocks * self.block_size
k_cache_flat = self.key_cache[layer_idx].view(self.num_key_value_heads, total_slots, self.head_dim)
@ -306,9 +306,9 @@ class Scheduler(ABC):
"""
def __init__(self, cache: PagedAttentionCache, retain_cache_on_finish: bool = False):
self.active_requests: Dict[str, RequestState] = {}
self.waiting_requests: Dict[str, RequestState] = {}
self.waiting_requests_order: Deque[str] = deque()
self.active_requests: dict[str, RequestState] = {}
self.waiting_requests: dict[str, RequestState] = {}
self.waiting_requests_order: deque[str] = deque()
self.cache = cache
self.retain_cache_on_finish = retain_cache_on_finish
@ -318,7 +318,7 @@ class Scheduler(ABC):
pass
@abstractmethod
def schedule_batch(self, token_budget: int) -> List[RequestState]:
def schedule_batch(self, token_budget: int) -> list[RequestState]:
pass
@traced
@ -332,7 +332,7 @@ class Scheduler(ABC):
pass
@traced
def get_active_request_static_outputs(self, request_id: str) -> List[int]:
def get_active_request_static_outputs(self, request_id: str) -> list[int]:
if request_id in self.active_requests:
return self.active_requests[request_id].static_outputs
return []
@ -356,7 +356,7 @@ class FIFOScheduler(Scheduler):
@traced(span_name="prepare_request")
def _prepare_request_for_processing(
self, state: RequestState, token_budget: int, request_ids_to_remove_from_waiting: Set[str]
self, state: RequestState, token_budget: int, request_ids_to_remove_from_waiting: set[str]
):
"""Prepare a request for processing in the current batch."""
request_tokens = (
@ -395,9 +395,9 @@ class FIFOScheduler(Scheduler):
self.waiting_requests_order.append(state.request_id)
@traced
def schedule_batch(self, token_budget: int) -> List[RequestState]:
priority_states: List[RequestState] = []
second_priority_states: List[RequestState] = []
def schedule_batch(self, token_budget: int) -> list[RequestState]:
priority_states: list[RequestState] = []
second_priority_states: list[RequestState] = []
scheduled_requests = []
for state in self.active_requests.values():
@ -475,7 +475,7 @@ class PrefillFirstScheduler(Scheduler):
@traced(span_name="prepare_request")
def _prepare_request_for_processing(
self, state: RequestState, token_budget: int, request_ids_to_remove_from_waiting: Set[str]
self, state: RequestState, token_budget: int, request_ids_to_remove_from_waiting: set[str]
):
"""Prepare a request for processing in the current batch."""
request_tokens = (
@ -514,9 +514,9 @@ class PrefillFirstScheduler(Scheduler):
self.waiting_requests_order.append(state.request_id)
@traced
def schedule_batch(self, token_budget: int) -> List[RequestState]:
priority_states: List[RequestState] = []
second_priority_states: List[RequestState] = []
def schedule_batch(self, token_budget: int) -> list[RequestState]:
priority_states: list[RequestState] = []
second_priority_states: list[RequestState] = []
scheduled_requests = []
for state in self.active_requests.values():
@ -581,7 +581,7 @@ def compute_optimal_blocks(
device: torch.device,
config: PretrainedConfig,
generation_config: GenerationConfig,
inputs: List[List[int]],
inputs: list[list[int]],
dtype: torch.dtype = torch.bfloat16,
safety_margin: float = 0.9,
median_prefill_length: Optional[int] = None,
@ -678,7 +678,7 @@ class PagedAttentionArgs:
write_index: torch.Tensor
read_index: torch.Tensor
logits_indices: torch.Tensor
block_tables: Dict[str, List[int]]
block_tables: dict[str, list[int]]
cache: PagedAttentionCache
use_cache: bool = False
@ -754,7 +754,7 @@ class ContinuousBatchProcessor:
self.streaming = streaming
self.manual_eviction = manual_eviction
self.requests_in_batch: List[RequestState] = []
self.requests_in_batch: list[RequestState] = []
# Get batch size parameters from generation config
self._configure_batch_parameters()
@ -1152,7 +1152,7 @@ class ContinuousBatchingManager:
self._generation_thread = None
def add_request(
self, input_ids: List[int], request_id: Optional[str] = None, max_new_tokens: Optional[int] = None
self, input_ids: list[int], request_id: Optional[str] = None, max_new_tokens: Optional[int] = None
) -> str:
"""Add a new generation request to the queue.
@ -1184,7 +1184,7 @@ class ContinuousBatchingManager:
logger.debug(f"Added request {request_id} to queue.")
return request_id
def add_requests(self, inputs: List[List[int]], **kwargs):
def add_requests(self, inputs: list[list[int]], **kwargs):
for i, input_ids in enumerate(inputs):
# Assign a predictable request ID for ordering results later
req_id = f"batch_req_{i}"
@ -1428,11 +1428,11 @@ class ContinuousMixin:
@torch.inference_mode()
def generate_batch(
self,
inputs: List[List[int]],
inputs: list[list[int]],
generation_config: Optional[GenerationConfig] = None,
progress_bar: bool = True,
**kwargs,
) -> List[List[int]]:
) -> list[list[int]]:
"""Generate sequences for a batch of prompts using continuous batching.
Args:
@ -1441,7 +1441,7 @@ class ContinuousMixin:
**kwargs: Additional generation parameters
Returns:
`List[List[int]]`: A list containing the generated sequences (including prompt tokens
`list[list[int]]`: A list containing the generated sequences (including prompt tokens
if not handled otherwise) for each input prompt, in the same order.
Returns an empty list `[]` for requests that failed.
"""

View File

@ -39,7 +39,7 @@ LOGITS_PROCESSOR_INPUTS_DOCSTRING = r"""
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
kwargs (`dict[str, Any]`, *optional*):
Additional logits processor specific kwargs.
Return:
@ -276,7 +276,7 @@ class FlaxSuppressTokensAtBeginLogitsProcessor(FlaxLogitsProcessor):
beginning of the generation.
Args:
begin_suppress_tokens (`List[int]`):
begin_suppress_tokens (`list[int]`):
Tokens to not sample.
begin_index (`int`):
Index where the tokens are suppressed.

View File

@ -19,7 +19,7 @@ import copy
import inspect
import warnings
from functools import partial
from typing import Any, Dict, Optional, Union
from typing import Any, Optional, Union
import flax
import jax
@ -103,7 +103,7 @@ class GreedyState:
sequences: jnp.ndarray
running_token: jnp.ndarray
is_sent_finished: jnp.ndarray
model_kwargs: Dict[str, jnp.ndarray]
model_kwargs: dict[str, jnp.ndarray]
@flax.struct.dataclass
@ -113,7 +113,7 @@ class SampleState:
running_token: jnp.ndarray
is_sent_finished: jnp.ndarray
prng_key: jnp.ndarray
model_kwargs: Dict[str, jnp.ndarray]
model_kwargs: dict[str, jnp.ndarray]
@flax.struct.dataclass
@ -124,7 +124,7 @@ class BeamSearchState:
sequences: jnp.ndarray
scores: jnp.ndarray
is_sent_finished: jnp.ndarray
model_kwargs: Dict[str, jnp.ndarray]
model_kwargs: dict[str, jnp.ndarray]
class FlaxGenerationMixin:
@ -173,7 +173,7 @@ class FlaxGenerationMixin:
batch_size: int,
decoder_start_token_id: Optional[int] = None,
bos_token_id: Optional[int] = None,
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
model_kwargs: Optional[dict[str, jnp.ndarray]] = None,
) -> jnp.ndarray:
if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
# Only use this arg if not None, otherwise just remove from model_kwargs
@ -249,7 +249,7 @@ class FlaxGenerationMixin:
exception_message += f" Please use one of the following classes instead: {generate_compatible_classes}"
raise TypeError(exception_message)
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
def _validate_model_kwargs(self, model_kwargs: dict[str, Any]):
"""Validates model kwargs for generation. Generate argument typos will also be caught here."""
unused_model_args = []
model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
@ -273,7 +273,7 @@ class FlaxGenerationMixin:
generation_config: Optional[GenerationConfig] = None,
prng_key: Optional[jnp.ndarray] = None,
trace: bool = True,
params: Optional[Dict[str, jnp.ndarray]] = None,
params: Optional[dict[str, jnp.ndarray]] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
**kwargs,
):
@ -293,13 +293,13 @@ class FlaxGenerationMixin:
trace (`bool`, *optional*, defaults to `True`):
Whether to trace generation. Setting `trace=False` should only be used for debugging and will lead to a
considerably slower runtime.
params (`Dict[str, jnp.ndarray]`, *optional*):
params (`dict[str, jnp.ndarray]`, *optional*):
Optionally the model parameters can be passed. Can be useful for parallelized generation.
logits_processor (`FlaxLogitsProcessorList `, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
kwargs (`Dict[str, Any]`, *optional*):
kwargs (`dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
@ -580,8 +580,8 @@ class FlaxGenerationMixin:
eos_token_id: Optional[int] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
trace: bool = True,
params: Optional[Dict[str, jnp.ndarray]] = None,
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
params: Optional[dict[str, jnp.ndarray]] = None,
model_kwargs: Optional[dict[str, jnp.ndarray]] = None,
):
# init values
max_length = max_length if max_length is not None else self.generation_config.max_length
@ -668,8 +668,8 @@ class FlaxGenerationMixin:
logits_processor: Optional[FlaxLogitsProcessorList] = None,
logits_warper: Optional[FlaxLogitsProcessorList] = None,
trace: bool = True,
params: Optional[Dict[str, jnp.ndarray]] = None,
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
params: Optional[dict[str, jnp.ndarray]] = None,
model_kwargs: Optional[dict[str, jnp.ndarray]] = None,
):
# init values
max_length = max_length if max_length is not None else self.generation_config.max_length
@ -765,9 +765,9 @@ class FlaxGenerationMixin:
early_stopping: Optional[Union[bool, str]] = None,
logits_processor: Optional[FlaxLogitsProcessorList] = None,
trace: bool = True,
params: Optional[Dict[str, jnp.ndarray]] = None,
params: Optional[dict[str, jnp.ndarray]] = None,
num_return_sequences: Optional[int] = None,
model_kwargs: Optional[Dict[str, jnp.ndarray]] = None,
model_kwargs: Optional[dict[str, jnp.ndarray]] = None,
):
"""
This beam search function is heavily inspired by Flax's official example:

View File

@ -16,7 +16,7 @@
import inspect
import math
from collections.abc import Iterable
from typing import TYPE_CHECKING, Callable, List, Optional, Tuple, Union
from typing import TYPE_CHECKING, Callable, Optional, Union
import numpy as np
import torch
@ -72,7 +72,7 @@ class LogitsProcessorList(list):
scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using
beam search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
kwargs (`dict[str, Any]`, *optional*):
Additional kwargs that are specific to a logits processor.
Return:
@ -103,7 +103,7 @@ class MinLengthLogitsProcessor(LogitsProcessor):
Args:
min_length (`int`):
The minimum length below which the score of `eos_token_id` is set to `-float("Inf")`.
eos_token_id (`Union[int, List[int], torch.Tensor]`):
eos_token_id (`Union[int, list[int], torch.Tensor]`):
The id(s) of the *end-of-sequence* token.
device (`str`, *optional*, defaults to `"cpu"`):
The device to allocate the tensors.
@ -134,7 +134,7 @@ class MinLengthLogitsProcessor(LogitsProcessor):
```
"""
def __init__(self, min_length: int, eos_token_id: Union[int, List[int], torch.Tensor], device: str = "cpu"):
def __init__(self, min_length: int, eos_token_id: Union[int, list[int], torch.Tensor], device: str = "cpu"):
if not isinstance(min_length, int) or min_length < 0:
raise ValueError(f"`min_length` has to be a non-negative integer, but is {min_length}")
@ -167,7 +167,7 @@ class MinNewTokensLengthLogitsProcessor(LogitsProcessor):
input length.
min_new_tokens (`int`):
The minimum *new* tokens length below which the score of `eos_token_id` is set to `-float("Inf")`.
eos_token_id (`Union[int, List[int], torch.Tensor]`):
eos_token_id (`Union[int, list[int], torch.Tensor]`):
The id(s) of the *end-of-sequence* token.
device (`str`, *optional*, defaults to `"cpu"`):
The device to allocate the tensors.
@ -197,7 +197,7 @@ class MinNewTokensLengthLogitsProcessor(LogitsProcessor):
self,
prompt_length_to_skip: int,
min_new_tokens: int,
eos_token_id: Union[int, List[int], torch.Tensor],
eos_token_id: Union[int, list[int], torch.Tensor],
device: str = "cpu",
):
for arg_name, arg_value in [
@ -917,7 +917,7 @@ def _get_generated_ngrams(banned_ngrams, prev_input_ids, ngram_size, cur_len):
def _calc_banned_ngram_tokens(
ngram_size: int, prev_input_ids: torch.Tensor, num_hypos: int, cur_len: int
) -> List[Iterable[int]]:
) -> list[Iterable[int]]:
"""Copied from fairseq for no_repeat_ngram in beam_search"""
if cur_len + 1 < ngram_size:
# return no banned tokens if we haven't generated no_repeat_ngram_size tokens yet
@ -1074,7 +1074,7 @@ class SequenceBiasLogitsProcessor(LogitsProcessor):
</Tip>
Args:
sequence_bias (`List[List[Union[List[int], float]]]`):
sequence_bias (`list[list[Union[list[int], float]]]`):
List of lists that maps a sequence of tokens to its bias term (e.g. `[[[10, 45], -2.0],
[[64], -7.5]]`). Positive biases increase the odds of the
sequence being selected, while negative biases do the opposite. If a sequence has a length of 1, its bias
@ -1123,7 +1123,7 @@ class SequenceBiasLogitsProcessor(LogitsProcessor):
```
"""
def __init__(self, sequence_bias: List[List[Union[List[int], float]]]):
def __init__(self, sequence_bias: list[list[Union[list[int], float]]]):
self.sequence_bias = sequence_bias
self._validate_arguments()
self._convert_list_arguments_into_dict()
@ -1250,9 +1250,9 @@ class NoBadWordsLogitsProcessor(SequenceBiasLogitsProcessor):
</Tip>
Args:
bad_words_ids (`List[List[int]]`):
bad_words_ids (`list[list[int]]`):
List of list of token ids that are not allowed to be generated.
eos_token_id (`Union[int, List[int], torch.Tensor]`, *optional*):
eos_token_id (`Union[int, list[int], torch.Tensor]`, *optional*):
The id(s) of the *end-of-sequence* token.
Examples:
@ -1291,7 +1291,7 @@ class NoBadWordsLogitsProcessor(SequenceBiasLogitsProcessor):
"""
def __init__(
self, bad_words_ids: List[List[int]], eos_token_id: Optional[Union[int, List[int], torch.Tensor]] = None
self, bad_words_ids: list[list[int]], eos_token_id: Optional[Union[int, list[int], torch.Tensor]] = None
):
self.bad_word_ids = bad_words_ids
self._validate_arguments()
@ -1332,7 +1332,7 @@ class PrefixConstrainedLogitsProcessor(LogitsProcessor):
generation. See [Autoregressive Entity Retrieval](https://huggingface.co/papers/2010.00904) for more information.
Args:
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`):
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], list[int]]`):
This function constraints the beam search to allowed tokens only at each step. This function takes 2
arguments `inputs_ids` and the batch ID `batch_id`. It has to return a list with the allowed tokens for the
next generation step conditioned on the previously generated tokens `inputs_ids` and the batch ID
@ -1373,7 +1373,7 @@ class PrefixConstrainedLogitsProcessor(LogitsProcessor):
```
"""
def __init__(self, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]], num_beams: int):
def __init__(self, prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], list[int]], num_beams: int):
self._prefix_allowed_tokens_fn = prefix_allowed_tokens_fn
self._num_beams = num_beams
@ -1586,7 +1586,7 @@ class ForcedEOSTokenLogitsProcessor(LogitsProcessor):
Args:
max_length (`int`):
The maximum length of the sequence to be generated.
eos_token_id (`Union[int, List[int], torch.Tensor]`):
eos_token_id (`Union[int, list[int], torch.Tensor]`):
The id(s) of the *end-of-sequence* token.
device (`str`, *optional*, defaults to `"cpu"`):
The device to allocate the tensors.
@ -1613,7 +1613,7 @@ class ForcedEOSTokenLogitsProcessor(LogitsProcessor):
```
"""
def __init__(self, max_length: int, eos_token_id: Union[int, List[int], torch.Tensor], device: str = "cpu"):
def __init__(self, max_length: int, eos_token_id: Union[int, list[int], torch.Tensor], device: str = "cpu"):
self.max_length = max_length
if not isinstance(eos_token_id, torch.Tensor):
@ -1666,7 +1666,7 @@ class ExponentialDecayLengthPenalty(LogitsProcessor):
exponential_decay_length_penalty (`tuple(int, float)`):
This tuple shall consist of: `(start_index, decay_factor)` where `start_index` indicates where penalty
starts and `decay_factor` represents the factor of exponential decay
eos_token_id (`Union[int, List[int], torch.Tensor]`):
eos_token_id (`Union[int, list[int], torch.Tensor]`):
The id(s) of the *end-of-sequence* token.
input_ids_seq_length (`int`):
The length of the input sequence.
@ -1726,8 +1726,8 @@ class ExponentialDecayLengthPenalty(LogitsProcessor):
def __init__(
self,
exponential_decay_length_penalty: Tuple[int, float],
eos_token_id: Union[int, List[int], torch.Tensor],
exponential_decay_length_penalty: tuple[int, float],
eos_token_id: Union[int, list[int], torch.Tensor],
input_ids_seq_length: int,
):
self.regulation_start = exponential_decay_length_penalty[0] + input_ids_seq_length
@ -2326,13 +2326,13 @@ class BarkEosPrioritizerLogitsProcessor(LogitsProcessor):
</Tip>
Args:
eos_token_id (`Union[int, List[int], torch.Tensor]`):
eos_token_id (`Union[int, list[int], torch.Tensor]`):
The id(s) of the *end-of-sequence* token.
min_eos_p (`float`, *optional*):
Minimum end of speech threshold.
"""
def __init__(self, eos_token_id: Union[int, List[int], torch.Tensor], min_eos_p: float, device: str = "cpu"):
def __init__(self, eos_token_id: Union[int, list[int], torch.Tensor], min_eos_p: float, device: str = "cpu"):
if not isinstance(eos_token_id, torch.Tensor):
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]
@ -2569,7 +2569,7 @@ class SynthIDTextWatermarkLogitsProcessor(LogitsProcessor):
Args:
ngram_len (`int`):
Ngram length.
keys (`List[int]`):
keys (`list[int]`):
A sequence of watermarking keys, one for each depth.
sampling_table_size (`int`):
Size of the sampling table.
@ -2610,7 +2610,7 @@ class SynthIDTextWatermarkLogitsProcessor(LogitsProcessor):
def __init__(
self,
ngram_len: int,
keys: List[int],
keys: list[int],
sampling_table_size: int,
sampling_table_seed: int,
context_history_size: int,
@ -2808,7 +2808,7 @@ class SynthIDTextWatermarkLogitsProcessor(LogitsProcessor):
def _compute_keys(
self, n_minus_1_grams: torch.LongTensor, indices: torch.LongTensor
) -> Tuple[torch.LongTensor, torch.LongTensor]:
) -> tuple[torch.LongTensor, torch.LongTensor]:
"""Computes random keys for each ngram and depth.
Args:

View File

@ -3,7 +3,7 @@ import warnings
from abc import ABC
from collections import OrderedDict
from copy import deepcopy
from typing import Dict, List, Optional, Tuple, Union
from typing import Optional, Union
import numpy as np
import torch
@ -33,7 +33,7 @@ STOPPING_CRITERIA_INPUTS_DOCSTRING = r"""
Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax
or scores for each vocabulary token after SoftMax. If this stopping criteria depends on the `scores` input,
make sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`.
kwargs (`Dict[str, Any]`, *optional*):
kwargs (`dict[str, Any]`, *optional*):
Additional stopping criteria specific kwargs.
Return:
@ -209,7 +209,7 @@ class StopStringCriteria(StoppingCriteria):
Args:
tokenizer (`PreTrainedTokenizer`):
The model's associated tokenizer (necessary to extract vocab and tokenize the termination sequences)
stop_strings (`Union[str, List[str]]`):
stop_strings (`Union[str, list[str]]`):
A list of strings that should end generation. If a string is passed, it will be treated like a
list with a single element.
@ -239,10 +239,10 @@ class StopStringCriteria(StoppingCriteria):
```
"""
def __init__(self, tokenizer: PreTrainedTokenizerBase, stop_strings: Union[str, List[str]]):
def __init__(self, tokenizer: PreTrainedTokenizerBase, stop_strings: Union[str, list[str]]):
if isinstance(stop_strings, str):
stop_strings = [stop_strings]
self.stop_strings: Tuple[str, ...] = tuple(stop_strings)
self.stop_strings: tuple[str, ...] = tuple(stop_strings)
vocab = tokenizer.get_vocab()
token_list, token_indices = tuple(vocab.keys()), tuple(vocab.values())
self.embedding_vec, self.max_valid_positions, self.max_valid_end_lens = self.clean_and_embed_tokens_with_cache(
@ -298,7 +298,7 @@ class StopStringCriteria(StoppingCriteria):
@staticmethod
def _stop_string_get_matching_positions(
token_list, token_indices, stop_strings
) -> Tuple[Dict[str, Dict[str, List[int]]], Dict[str, Dict[str, List[int]]]]:
) -> tuple[dict[str, dict[str, list[int]]], dict[str, dict[str, list[int]]]]:
"""This function preprocesses stop strings and the tokenizer vocabulary to determine where tokens can
validly appear in the stop strings. For each token, it computes a list of positions in the stop string where the
token appears, as well as a list of the possible "end overlaps" for that token - that is, the number of characters
@ -337,7 +337,7 @@ class StopStringCriteria(StoppingCriteria):
return token_valid_positions, token_end_overlaps
@staticmethod
def _stop_string_create_embedding_vec(token_list, token_indices, stop_strings) -> Dict[str, torch.tensor]:
def _stop_string_create_embedding_vec(token_list, token_indices, stop_strings) -> dict[str, torch.tensor]:
"""This function precomputes everything needed for the run-time checks in StopStringCriteria, and packs
them into an embedding tensor that can be accessed with pure tensor operations. For the specifics of the values
that are precomputed and what they are used for, please refer to the StopStringCriteria docstring!"""
@ -455,11 +455,11 @@ class EosTokenCriteria(StoppingCriteria):
By default, it uses the `model.generation_config.eos_token_id`.
Args:
eos_token_id (`Union[int, List[int], torch.Tensor]`):
eos_token_id (`Union[int, list[int], torch.Tensor]`):
The id(s) of the *end-of-sequence* token.
"""
def __init__(self, eos_token_id: Union[int, List[int], torch.Tensor]):
def __init__(self, eos_token_id: Union[int, list[int], torch.Tensor]):
if not isinstance(eos_token_id, torch.Tensor):
if isinstance(eos_token_id, int):
eos_token_id = [eos_token_id]

Some files were not shown because too many files have changed in this diff Show More