mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 13:20:12 +06:00
uniformize git processor (#33668)
* uniformize git processor * update doctring
This commit is contained in:
parent
01aec8c92d
commit
75b7485cc7
@ -1191,7 +1191,7 @@ class GitModel(GitPreTrainedModel):
|
|||||||
|
|
||||||
>>> text = "this is an image of two cats"
|
>>> text = "this is an image of two cats"
|
||||||
|
|
||||||
>>> inputs = processor(text, images=image, return_tensors="pt")
|
>>> inputs = processor(images=image, text=text, return_tensors="pt")
|
||||||
|
|
||||||
>>> outputs = model(**inputs)
|
>>> outputs = model(**inputs)
|
||||||
>>> last_hidden_state = outputs.last_hidden_state
|
>>> last_hidden_state = outputs.last_hidden_state
|
||||||
|
@ -16,8 +16,16 @@
|
|||||||
Image/Text processor class for GIT
|
Image/Text processor class for GIT
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from ...processing_utils import ProcessorMixin
|
from typing import List, Optional, Union
|
||||||
from ...tokenization_utils_base import BatchEncoding
|
|
||||||
|
from ...feature_extraction_utils import BatchFeature
|
||||||
|
from ...image_utils import ImageInput
|
||||||
|
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order
|
||||||
|
from ...tokenization_utils_base import PreTokenizedInput, TextInput
|
||||||
|
|
||||||
|
|
||||||
|
class GitProcessorKwargs(ProcessingKwargs, total=False):
|
||||||
|
_defaults = {}
|
||||||
|
|
||||||
|
|
||||||
class GitProcessor(ProcessorMixin):
|
class GitProcessor(ProcessorMixin):
|
||||||
@ -42,7 +50,14 @@ class GitProcessor(ProcessorMixin):
|
|||||||
super().__init__(image_processor, tokenizer)
|
super().__init__(image_processor, tokenizer)
|
||||||
self.current_processor = self.image_processor
|
self.current_processor = self.image_processor
|
||||||
|
|
||||||
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
|
def __call__(
|
||||||
|
self,
|
||||||
|
images: Optional[ImageInput] = None,
|
||||||
|
text: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None,
|
||||||
|
audio=None,
|
||||||
|
videos=None,
|
||||||
|
**kwargs: Unpack[GitProcessorKwargs],
|
||||||
|
) -> BatchFeature:
|
||||||
"""
|
"""
|
||||||
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
||||||
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
|
and `kwargs` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode
|
||||||
@ -51,13 +66,13 @@ class GitProcessor(ProcessorMixin):
|
|||||||
of the above two methods for more information.
|
of the above two methods for more information.
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
text (`str`, `List[str]`, `List[List[str]]`):
|
|
||||||
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|
||||||
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|
||||||
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
||||||
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
||||||
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
||||||
tensor. Both channels-first and channels-last formats are supported.
|
tensor. Both channels-first and channels-last formats are supported.
|
||||||
|
text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`, *optional*):
|
||||||
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
||||||
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
||||||
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
||||||
|
|
||||||
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
||||||
If set, will return tensors of a particular framework. Acceptable values are:
|
If set, will return tensors of a particular framework. Acceptable values are:
|
||||||
@ -68,7 +83,7 @@ class GitProcessor(ProcessorMixin):
|
|||||||
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
||||||
|
|
||||||
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
||||||
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
||||||
@ -76,29 +91,26 @@ class GitProcessor(ProcessorMixin):
|
|||||||
`None`).
|
`None`).
|
||||||
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
||||||
"""
|
"""
|
||||||
tokenizer_kwargs, image_processor_kwargs = {}, {}
|
|
||||||
if kwargs:
|
|
||||||
tokenizer_kwargs = {k: v for k, v in kwargs.items() if k not in self.image_processor._valid_processor_keys}
|
|
||||||
image_processor_kwargs = {
|
|
||||||
k: v for k, v in kwargs.items() if k in self.image_processor._valid_processor_keys
|
|
||||||
}
|
|
||||||
|
|
||||||
if text is None and images is None:
|
if text is None and images is None:
|
||||||
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
||||||
|
|
||||||
|
# check if images and text inputs are reversed for BC
|
||||||
|
images, text = _validate_images_text_input_order(images, text)
|
||||||
|
|
||||||
|
output_kwargs = self._merge_kwargs(
|
||||||
|
GitProcessorKwargs,
|
||||||
|
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
data = {}
|
||||||
if text is not None:
|
if text is not None:
|
||||||
encoding = self.tokenizer(text, return_tensors=return_tensors, **tokenizer_kwargs)
|
text_features = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
||||||
|
data.update(text_features)
|
||||||
if images is not None:
|
if images is not None:
|
||||||
image_features = self.image_processor(images, return_tensors=return_tensors, **image_processor_kwargs)
|
image_features = self.image_processor(images, **output_kwargs["images_kwargs"])
|
||||||
|
data.update(image_features)
|
||||||
if text is not None and images is not None:
|
return BatchFeature(data=data, tensor_type=output_kwargs["common_kwargs"].get("return_tensors"))
|
||||||
encoding["pixel_values"] = image_features.pixel_values
|
|
||||||
return encoding
|
|
||||||
elif text is not None:
|
|
||||||
return encoding
|
|
||||||
else:
|
|
||||||
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
|
||||||
|
|
||||||
def batch_decode(self, *args, **kwargs):
|
def batch_decode(self, *args, **kwargs):
|
||||||
"""
|
"""
|
||||||
|
Loading…
Reference in New Issue
Block a user