TFBart lables consider both pad token and -100 (#9847)

* TFBart lables consider both pad token and -100

* make style

* fix for all other models

Co-authored-by: kykim <kykim>
Co-authored-by: patrickvonplaten <patrick.v.platen@gmail.com>
This commit is contained in:
Kiyoung Kim 2021-02-01 07:31:29 +09:00 committed by GitHub
parent 22121e813e
commit 74f16b8276
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 44 additions and 83 deletions

View File

@ -38,6 +38,7 @@ from ...modeling_tf_outputs import (
# Public API
from ...modeling_tf_utils import (
DUMMY_INPUTS,
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
TFSharedEmbeddings,
TFWrappedEmbeddings,
@ -1234,7 +1235,7 @@ class TFBartModel(TFBartPretrainedModel):
"The BART Model with a language modeling head. Can be used for summarization.",
BART_START_DOCSTRING,
)
class TFBartForConditionalGeneration(TFBartPretrainedModel):
class TFBartForConditionalGeneration(TFBartPretrainedModel, TFCausalLanguageModelingLoss):
_keys_to_ignore_on_load_unexpected = [
r"model.encoder.embed_tokens.weight",
r"model.decoder.embed_tokens.weight",
@ -1322,6 +1323,11 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel):
)
if inputs["labels"] is not None:
inputs["labels"] = tf.where(
inputs["labels"] == self.config.pad_token_id,
tf.fill(shape_list(inputs["labels"]), -100),
inputs["labels"],
)
inputs["use_cache"] = False
if inputs["decoder_input_ids"] is None:
inputs["decoder_input_ids"] = shift_tokens_right(
@ -1448,15 +1454,3 @@ class TFBartForConditionalGeneration(TFBartPretrainedModel):
return tf.where(vocab_range != self.config.eos_token_id, LARGE_NEGATIVE, logits)
else:
return logits
def compute_loss(self, labels, logits):
"""CrossEntropyLoss that ignores pad tokens"""
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=tf.keras.losses.Reduction.NONE,
)
melted_labels = tf.reshape(labels, (-1,))
active_loss = tf.not_equal(melted_labels, self.config.pad_token_id)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(melted_labels, active_loss)
return loss_fn(labels, reduced_logits)

View File

@ -40,6 +40,7 @@ from ...modeling_tf_outputs import (
# Public API
from ...modeling_tf_utils import (
DUMMY_INPUTS,
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
TFSharedEmbeddings,
TFWrappedEmbeddings,
@ -1251,7 +1252,7 @@ class TFBlenderbotModel(TFBlenderbotPreTrainedModel):
"The BLENDERBOT Model with a language modeling head. Can be used for summarization.",
BLENDERBOT_START_DOCSTRING,
)
class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel):
class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel, TFCausalLanguageModelingLoss):
_keys_to_ignore_on_load_unexpected = [
r"model.encoder.embed_tokens.weight",
r"model.decoder.embed_tokens.weight",
@ -1352,6 +1353,12 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel):
)
if inputs["labels"] is not None:
inputs["labels"] = tf.where(
inputs["labels"] == self.config.pad_token_id,
tf.fill(shape_list(inputs["labels"]), -100),
inputs["labels"],
)
inputs["use_cache"] = False
if inputs["decoder_input_ids"] is None:
inputs["decoder_input_ids"] = shift_tokens_right(
inputs["labels"], self.config.pad_token_id, self.config.decoder_start_token_id
@ -1477,16 +1484,3 @@ class TFBlenderbotForConditionalGeneration(TFBlenderbotPreTrainedModel):
return tf.where(vocab_range != self.config.eos_token_id, LARGE_NEGATIVE, logits)
else:
return logits
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.compute_loss
def compute_loss(self, labels, logits):
"""CrossEntropyLoss that ignores pad tokens"""
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=tf.keras.losses.Reduction.NONE,
)
melted_labels = tf.reshape(labels, (-1,))
active_loss = tf.not_equal(melted_labels, self.config.pad_token_id)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(melted_labels, active_loss)
return loss_fn(labels, reduced_logits)

View File

@ -38,6 +38,7 @@ from ...modeling_tf_outputs import (
# Public API
from ...modeling_tf_utils import (
DUMMY_INPUTS,
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
TFSharedEmbeddings,
TFWrappedEmbeddings,
@ -1239,7 +1240,7 @@ class TFBlenderbotSmallModel(TFBlenderbotSmallPreTrainedModel):
"The BLENDERBOT_SMALL Model with a language modeling head. Can be used for summarization.",
BLENDERBOT_SMALL_START_DOCSTRING,
)
class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel):
class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel, TFCausalLanguageModelingLoss):
_keys_to_ignore_on_load_unexpected = [
r"model.encoder.embed_tokens.weight",
r"model.decoder.embed_tokens.weight",
@ -1327,6 +1328,12 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
)
if inputs["labels"] is not None:
inputs["labels"] = tf.where(
inputs["labels"] == self.config.pad_token_id,
tf.fill(shape_list(inputs["labels"]), -100),
inputs["labels"],
)
inputs["use_cache"] = False
if inputs["decoder_input_ids"] is None:
inputs["decoder_input_ids"] = shift_tokens_right(
inputs["labels"], self.config.pad_token_id, self.config.decoder_start_token_id
@ -1452,16 +1459,3 @@ class TFBlenderbotSmallForConditionalGeneration(TFBlenderbotSmallPreTrainedModel
return tf.where(vocab_range != self.config.eos_token_id, LARGE_NEGATIVE, logits)
else:
return logits
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.compute_loss
def compute_loss(self, labels, logits):
"""CrossEntropyLoss that ignores pad tokens"""
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=tf.keras.losses.Reduction.NONE,
)
melted_labels = tf.reshape(labels, (-1,))
active_loss = tf.not_equal(melted_labels, self.config.pad_token_id)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(melted_labels, active_loss)
return loss_fn(labels, reduced_logits)

View File

@ -39,6 +39,7 @@ from ...modeling_tf_outputs import (
# Public API
from ...modeling_tf_utils import (
DUMMY_INPUTS,
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
TFSharedEmbeddings,
TFWrappedEmbeddings,
@ -1256,7 +1257,7 @@ class TFMarianModel(TFMarianPreTrainedModel):
"The MARIAN Model with a language modeling head. Can be used for summarization.",
MARIAN_START_DOCSTRING,
)
class TFMarianMTModel(TFMarianPreTrainedModel):
class TFMarianMTModel(TFMarianPreTrainedModel, TFCausalLanguageModelingLoss):
_keys_to_ignore_on_load_unexpected = [
r"model.encoder.embed_tokens.weight",
r"model.decoder.embed_tokens.weight",
@ -1344,6 +1345,11 @@ class TFMarianMTModel(TFMarianPreTrainedModel):
)
if inputs["labels"] is not None:
inputs["labels"] = tf.where(
inputs["labels"] == self.config.pad_token_id,
tf.fill(shape_list(inputs["labels"]), -100),
inputs["labels"],
)
inputs["use_cache"] = False
if inputs["decoder_input_ids"] is None:
inputs["decoder_input_ids"] = shift_tokens_right(
@ -1471,16 +1477,3 @@ class TFMarianMTModel(TFMarianPreTrainedModel):
if cur_len == max_length - 1:
logits = tf.where(vocab_range != self.config.eos_token_id, LARGE_NEGATIVE, logits)
return logits
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.compute_loss
def compute_loss(self, labels, logits):
"""CrossEntropyLoss that ignores pad tokens"""
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=tf.keras.losses.Reduction.NONE,
)
melted_labels = tf.reshape(labels, (-1,))
active_loss = tf.not_equal(melted_labels, self.config.pad_token_id)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(melted_labels, active_loss)
return loss_fn(labels, reduced_logits)

View File

@ -38,6 +38,7 @@ from ...modeling_tf_outputs import (
# Public API
from ...modeling_tf_utils import (
DUMMY_INPUTS,
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
TFSharedEmbeddings,
TFWrappedEmbeddings,
@ -1257,7 +1258,7 @@ class TFMBartModel(TFMBartPreTrainedModel):
"The MBART Model with a language modeling head. Can be used for summarization.",
MBART_START_DOCSTRING,
)
class TFMBartForConditionalGeneration(TFMBartPreTrainedModel):
class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageModelingLoss):
_keys_to_ignore_on_load_unexpected = [
r"model.encoder.embed_tokens.weight",
r"model.decoder.embed_tokens.weight",
@ -1345,6 +1346,11 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel):
)
if inputs["labels"] is not None:
inputs["labels"] = tf.where(
inputs["labels"] == self.config.pad_token_id,
tf.fill(shape_list(inputs["labels"]), -100),
inputs["labels"],
)
inputs["use_cache"] = False
if inputs["decoder_input_ids"] is None:
inputs["decoder_input_ids"] = shift_tokens_right(inputs["labels"], self.config.pad_token_id)
@ -1469,16 +1475,3 @@ class TFMBartForConditionalGeneration(TFMBartPreTrainedModel):
return tf.where(vocab_range != self.config.eos_token_id, LARGE_NEGATIVE, logits)
else:
return logits
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.compute_loss
def compute_loss(self, labels, logits):
"""CrossEntropyLoss that ignores pad tokens"""
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=tf.keras.losses.Reduction.NONE,
)
melted_labels = tf.reshape(labels, (-1,))
active_loss = tf.not_equal(melted_labels, self.config.pad_token_id)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(melted_labels, active_loss)
return loss_fn(labels, reduced_logits)

View File

@ -39,6 +39,7 @@ from ...modeling_tf_outputs import (
# Public API
from ...modeling_tf_utils import (
DUMMY_INPUTS,
TFCausalLanguageModelingLoss,
TFPreTrainedModel,
TFSharedEmbeddings,
TFWrappedEmbeddings,
@ -1270,7 +1271,7 @@ class TFPegasusModel(TFPegasusPreTrainedModel):
"The PEGASUS Model with a language modeling head. Can be used for summarization.",
PEGASUS_START_DOCSTRING,
)
class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel):
class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel, TFCausalLanguageModelingLoss):
_keys_to_ignore_on_load_unexpected = [
r"model.encoder.embed_tokens.weight",
r"model.decoder.embed_tokens.weight",
@ -1358,6 +1359,11 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel):
)
if inputs["labels"] is not None:
inputs["labels"] = tf.where(
inputs["labels"] == self.config.pad_token_id,
tf.fill(shape_list(inputs["labels"]), -100),
inputs["labels"],
)
inputs["use_cache"] = False
if inputs["decoder_input_ids"] is None:
inputs["decoder_input_ids"] = shift_tokens_right(
@ -1484,16 +1490,3 @@ class TFPegasusForConditionalGeneration(TFPegasusPreTrainedModel):
return tf.where(vocab_range != self.config.eos_token_id, LARGE_NEGATIVE, logits)
else:
return logits
# Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.compute_loss
def compute_loss(self, labels, logits):
"""CrossEntropyLoss that ignores pad tokens"""
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True,
reduction=tf.keras.losses.Reduction.NONE,
)
melted_labels = tf.reshape(labels, (-1,))
active_loss = tf.not_equal(melted_labels, self.config.pad_token_id)
reduced_logits = tf.boolean_mask(tf.reshape(logits, (-1, shape_list(logits)[2])), active_loss)
labels = tf.boolean_mask(melted_labels, active_loss)
return loss_fn(labels, reduced_logits)