mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
Update camembert-base-README.md (#3836)
This commit is contained in:
parent
e9d0bc027a
commit
73efa694e6
@ -2,12 +2,110 @@
|
||||
language: french
|
||||
---
|
||||
|
||||
# CamemBERT
|
||||
# CamemBERT: a Tasty French Language Model
|
||||
|
||||
CamemBERT is a state-of-the-art language model for French based on the RoBERTa architecture pretrained on the French subcorpus of the newly available multilingual corpus OSCAR.
|
||||
## Introduction
|
||||
|
||||
CamemBERT was originally evaluated on four different downstream tasks for French: part-of-speech (POS) tagging, dependency parsing, named entity recognition (NER) and natural language inference (NLI); improving the state of the art for most tasks over previous monolingual and multilingual approaches, which confirms the effectiveness of large pretrained language models for French.
|
||||
[CamemBERT](https://arxiv.org/abs/1911.03894) is a state-of-the-art language model for French based on the RoBERTa architecture.
|
||||
|
||||
CamemBERT was trained and evaluated by Louis Martin, Benjamin Muller, Pedro Javier Ortiz Suárez, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
|
||||
It is now available on Hugging Face in 6 different versions varying the number of parameters, the amount of pretraining data and the pretraining data source domains.
|
||||
|
||||
For further information or requests, please go to [Camembert Website](https://camembert-model.fr/)
|
||||
|
||||
## Pre-trained models
|
||||
|
||||
| Model | #params | Arch. | Training data |
|
||||
|--------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------|
|
||||
| `camembert-base` | 110M | Base | OSCAR (138 GB of text) |
|
||||
| `camembert` / `camembert-large` | 335M | Large | CCNet (135 GB of text) |
|
||||
| `camembert` / `camembert-base-ccnet` | 110M | Base | CCNet (135 GB of text) |
|
||||
| `camembert` / `camembert-base-wikipedia-4gb` | 110M | Base | Wikipedia (4 GB of text) |
|
||||
| `camembert` / `camembert-base-oscar-4gb` | 110M | Base | Subsample of OSCAR (4 GB of text) |
|
||||
| `camembert` / `camembert-base-ccnet-4gb` | 110M | Base | Subsample of CCNet (4 GB of text) |
|
||||
|
||||
## How to use CamemBERT with HuggingFace
|
||||
|
||||
##### Load CamemBERT and its sub-word tokenizer :
|
||||
```python
|
||||
from transformers import CamembertModel, CamembertTokenizer
|
||||
|
||||
tokenizer = CamembertTokenizer.from_pretrained("camembert-base")
|
||||
camembert = CamembertModel.from_pretrained("camembert-base")
|
||||
|
||||
camembert.eval() # disable dropout (or leave in train mode to finetune)
|
||||
|
||||
```
|
||||
|
||||
##### Filling masks using pipeline
|
||||
```python
|
||||
from transformers import pipeline
|
||||
|
||||
camembert_fill_mask = pipeline("fill-mask",model="camembert-base",tokenizer="camembert-base")
|
||||
results = camembert_fill_mask("Le camembert est <mask> :)")
|
||||
# results
|
||||
#[{'sequence': '<s> Le camembert est délicieux :)</s>', 'score': 0.4909103214740753, 'token': 7200},
|
||||
# {'sequence': '<s> Le camembert est excellent :)</s>', 'score': 0.10556930303573608, 'token': 2183},
|
||||
# {'sequence': '<s> Le camembert est succulent :)</s>', 'score': 0.03453315049409866, 'token': 26202},
|
||||
# {'sequence': '<s> Le camembert est meilleur :)</s>', 'score': 0.03303130343556404, 'token': 528},
|
||||
# {'sequence': '<s> Le camembert est parfait :)</s>', 'score': 0.030076518654823303, 'token': 1654}]
|
||||
|
||||
```
|
||||
|
||||
##### Extract contextual embedding features from Camembert output
|
||||
```python
|
||||
import torch
|
||||
# Tokenize in sub-words with SentencePiece
|
||||
tokenized_sentence = tokenizer.tokenize("J'aime le camembert !")
|
||||
# ['▁J', "'", 'aime', '▁le', '▁ca', 'member', 't', '▁!']
|
||||
|
||||
# 1-hot encode and add special starting and end tokens
|
||||
encoded_sentence = tokenizer.encode(tokenized_sentence)
|
||||
# [5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]
|
||||
# NB: can do in one step : tokenize.encode("J'aime le camembert !")
|
||||
|
||||
# Feed to Camembert as a torch tensor (batch dim 1)
|
||||
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
|
||||
embeddings, _ = camembert(encoded_sentence)
|
||||
# embeddings.detach()
|
||||
# embeddings.size torch.Size([1, 10, 768])
|
||||
# tensor([[[-0.0254, 0.0235, 0.1027, ..., -0.1459, -0.0205, -0.0116],
|
||||
# [ 0.0606, -0.1811, -0.0418, ..., -0.1815, 0.0880, -0.0766],
|
||||
# [-0.1561, -0.1127, 0.2687, ..., -0.0648, 0.0249, 0.0446],
|
||||
# ...,
|
||||
```
|
||||
|
||||
##### Extract contextual embedding features from all Camembert layers
|
||||
```python
|
||||
from transformers import CamembertConfig
|
||||
# (Need to reload the model with new config)
|
||||
config = CamembertConfig.from_pretrained("camembert-base", output_hidden_states=True)
|
||||
camembert = CamembertModel.from_pretrained("camembert-base",config=config)
|
||||
|
||||
embeddings, _, all_layer_embeddings = camembert(encoded_sentence)
|
||||
# all_layer_embeddings list of len(all_layer_embeddings) == 13 (input embedding layer + 12 self attention layers)
|
||||
all_layer_embeddings[5]
|
||||
# layer 5 contextual embedding : size torch.Size([1, 10, 768])
|
||||
#tensor([[[-0.0032, 0.0075, 0.0040, ..., -0.0025, -0.0178, -0.0210],
|
||||
# [-0.0996, -0.1474, 0.1057, ..., -0.0278, 0.1690, -0.2982],
|
||||
# [ 0.0557, -0.0588, 0.0547, ..., -0.0726, -0.0867, 0.0699],
|
||||
# ...,
|
||||
```
|
||||
|
||||
|
||||
## Authors
|
||||
|
||||
CamemBERT was trained and evaluated by Louis Martin\*, Benjamin Muller\*, Pedro Javier Ortiz Suárez\*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
|
||||
|
||||
|
||||
## Citation
|
||||
If you use our work, please cite:
|
||||
|
||||
```bibtex
|
||||
@inproceedings{martin2020camembert,
|
||||
title={CamemBERT: a Tasty French Language Model},
|
||||
author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},
|
||||
booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
|
||||
year={2020}
|
||||
}
|
||||
```
|
||||
|
||||
Preprint can be found [CamemBERT: a Tasty French Language Model](https://arxiv.org/abs/1911.03894)
|
||||
|
Loading…
Reference in New Issue
Block a user