Result of new doc style with fixes (#17015)

* Result of new doc style with fixes

* Add last two files

* Bump hf-doc-builder
This commit is contained in:
Sylvain Gugger 2022-04-29 17:42:15 -04:00 committed by GitHub
parent 18df440709
commit 7152ed2bae
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
28 changed files with 58 additions and 58 deletions

View File

@ -49,7 +49,7 @@ Usage:
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "This is a long article to summarize", add_special_tokens=False, return_tensors="pt" ... "This is a long article to summarize", add_special_tokens=False, return_tensors="pt"
>>> ).input_ids ... ).input_ids
>>> labels = tokenizer("This is a short summary", return_tensors="pt").input_ids >>> labels = tokenizer("This is a short summary", return_tensors="pt").input_ids
>>> # train... >>> # train...
@ -67,7 +67,7 @@ Usage:
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "This is the first sentence. This is the second sentence.", add_special_tokens=False, return_tensors="pt" ... "This is the first sentence. This is the second sentence.", add_special_tokens=False, return_tensors="pt"
>>> ).input_ids ... ).input_ids
>>> outputs = sentence_fuser.generate(input_ids) >>> outputs = sentence_fuser.generate(input_ids)

View File

@ -97,7 +97,7 @@ Example:
>>> entities = [ >>> entities = [
... "Beyoncé", ... "Beyoncé",
... "Los Angeles", ... "Los Angeles",
>>> ] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles" ... ] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles"
>>> entity_spans = [(0, 7), (17, 28)] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" >>> entity_spans = [(0, 7), (17, 28)] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
>>> inputs = tokenizer(text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt") >>> inputs = tokenizer(text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)

View File

@ -111,7 +111,7 @@ _deps = [
"ftfy", "ftfy",
"fugashi>=1.0", "fugashi>=1.0",
"GitPython<3.1.19", "GitPython<3.1.19",
"hf-doc-builder>=0.2.0", "hf-doc-builder>=0.3.0",
"huggingface-hub>=0.1.0,<1.0", "huggingface-hub>=0.1.0,<1.0",
"importlib_metadata", "importlib_metadata",
"ipadic>=1.0.0,<2.0", "ipadic>=1.0.0,<2.0",

View File

@ -18,7 +18,7 @@ deps = {
"ftfy": "ftfy", "ftfy": "ftfy",
"fugashi": "fugashi>=1.0", "fugashi": "fugashi>=1.0",
"GitPython": "GitPython<3.1.19", "GitPython": "GitPython<3.1.19",
"hf-doc-builder": "hf-doc-builder>=0.2.0", "hf-doc-builder": "hf-doc-builder>=0.3.0",
"huggingface-hub": "huggingface-hub>=0.1.0,<1.0", "huggingface-hub": "huggingface-hub>=0.1.0,<1.0",
"importlib_metadata": "importlib_metadata", "importlib_metadata": "importlib_metadata",
"ipadic": "ipadic>=1.0.0,<2.0", "ipadic": "ipadic>=1.0.0,<2.0",

View File

@ -457,7 +457,7 @@ class EncoderDecoderModel(PreTrainedModel):
>>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") >>> tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
>>> model = EncoderDecoderModel.from_encoder_decoder_pretrained( >>> model = EncoderDecoderModel.from_encoder_decoder_pretrained(
... "bert-base-uncased", "bert-base-uncased" ... "bert-base-uncased", "bert-base-uncased"
>>> ) # initialize Bert2Bert from pre-trained checkpoints ... ) # initialize Bert2Bert from pre-trained checkpoints
>>> # training >>> # training
>>> model.config.decoder_start_token_id = tokenizer.cls_token_id >>> model.config.decoder_start_token_id = tokenizer.cls_token_id

View File

@ -528,7 +528,7 @@ class TFEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLoss):
>>> # forward >>> # forward
>>> input_ids = tokenizer.encode( >>> input_ids = tokenizer.encode(
... "Hello, my dog is cute", add_special_tokens=True, return_tensors="tf" ... "Hello, my dog is cute", add_special_tokens=True, return_tensors="tf"
>>> ) # Batch size 1 ... ) # Batch size 1
>>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids) >>> outputs = model(input_ids=input_ids, decoder_input_ids=input_ids)
>>> # training >>> # training

View File

@ -1061,7 +1061,7 @@ class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
>>> embedding_layer = model.resize_token_embeddings( >>> embedding_layer = model.resize_token_embeddings(
... len(tokenizer) ... len(tokenizer)
>>> ) # Update the model embeddings with the new vocabulary size ... ) # Update the model embeddings with the new vocabulary size
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
>>> encoded_choices = [tokenizer.encode(s) for s in choices] >>> encoded_choices = [tokenizer.encode(s) for s in choices]

View File

@ -1000,7 +1000,7 @@ class ImageGPTForCausalImageModeling(ImageGPTPreTrainedModel):
>>> samples = output[:, 1:].cpu().detach().numpy() >>> samples = output[:, 1:].cpu().detach().numpy()
>>> samples_img = [ >>> samples_img = [
... np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples ... np.reshape(np.rint(127.5 * (clusters[s] + 1.0)), [n_px, n_px, 3]).astype(np.uint8) for s in samples
>>> ] # convert color cluster tokens back to pixels ... ] # convert color cluster tokens back to pixels
>>> f, axes = plt.subplots(1, batch_size, dpi=300) >>> f, axes = plt.subplots(1, batch_size, dpi=300)
>>> for img, ax in zip(samples_img, axes): >>> for img, ax in zip(samples_img, axes):

View File

@ -1634,10 +1634,10 @@ class LongformerModel(LongformerPreTrainedModel):
>>> attention_mask = torch.ones( >>> attention_mask = torch.ones(
... input_ids.shape, dtype=torch.long, device=input_ids.device ... input_ids.shape, dtype=torch.long, device=input_ids.device
>>> ) # initialize to local attention ... ) # initialize to local attention
>>> global_attention_mask = torch.zeros( >>> global_attention_mask = torch.zeros(
... input_ids.shape, dtype=torch.long, device=input_ids.device ... input_ids.shape, dtype=torch.long, device=input_ids.device
>>> ) # initialize to global attention to be deactivated for all tokens ... ) # initialize to global attention to be deactivated for all tokens
>>> global_attention_mask[ >>> global_attention_mask[
... :, ... :,
... [ ... [
@ -1645,7 +1645,7 @@ class LongformerModel(LongformerPreTrainedModel):
... 4, ... 4,
... 21, ... 21,
... ], ... ],
>>> ] = 1 # Set global attention to random tokens for the sake of this example ... ] = 1 # Set global attention to random tokens for the sake of this example
>>> # Usually, set global attention based on the task. For example, >>> # Usually, set global attention based on the task. For example,
>>> # classification: the <s> token >>> # classification: the <s> token
>>> # QA: question tokens >>> # QA: question tokens
@ -2025,7 +2025,7 @@ class LongformerForQuestionAnswering(LongformerPreTrainedModel):
>>> answer_tokens = all_tokens[torch.argmax(start_logits) : torch.argmax(end_logits) + 1] >>> answer_tokens = all_tokens[torch.argmax(start_logits) : torch.argmax(end_logits) + 1]
>>> answer = tokenizer.decode( >>> answer = tokenizer.decode(
... tokenizer.convert_tokens_to_ids(answer_tokens) ... tokenizer.convert_tokens_to_ids(answer_tokens)
>>> ) # remove space prepending space token ... ) # remove space prepending space token
```""" ```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict

View File

@ -953,11 +953,11 @@ class LukeModel(LukePreTrainedModel):
>>> entities = [ >>> entities = [
... "Beyoncé", ... "Beyoncé",
... "Los Angeles", ... "Los Angeles",
>>> ] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles" ... ] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles"
>>> entity_spans = [ >>> entity_spans = [
... (0, 7), ... (0, 7),
... (17, 28), ... (17, 28),
>>> ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" ... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
>>> encoding = tokenizer( >>> encoding = tokenizer(
... text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt" ... text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt"
@ -1435,7 +1435,7 @@ class LukeForEntityPairClassification(LukePreTrainedModel):
>>> entity_spans = [ >>> entity_spans = [
... (0, 7), ... (0, 7),
... (17, 28), ... (17, 28),
>>> ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles" ... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt") >>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
>>> logits = outputs.logits >>> logits = outputs.logits

View File

@ -674,7 +674,7 @@ class OpenAIGPTDoubleHeadsModel(OpenAIGPTPreTrainedModel):
>>> model = OpenAIGPTDoubleHeadsModel.from_pretrained("openai-gpt") >>> model = OpenAIGPTDoubleHeadsModel.from_pretrained("openai-gpt")
>>> tokenizer.add_special_tokens( >>> tokenizer.add_special_tokens(
... {"cls_token": "[CLS]"} ... {"cls_token": "[CLS]"}
>>> ) # Add a [CLS] to the vocabulary (we should train it also!) ... ) # Add a [CLS] to the vocabulary (we should train it also!)
>>> model.resize_token_embeddings(len(tokenizer)) >>> model.resize_token_embeddings(len(tokenizer))
>>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"] >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]

View File

@ -693,9 +693,9 @@ class TFOpenAIGPTDoubleHeadsModel(TFOpenAIGPTPreTrainedModel):
>>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()} >>> inputs = {k: tf.expand_dims(v, 0) for k, v in encoding.items()}
>>> inputs["mc_token_ids"] = tf.constant( >>> inputs["mc_token_ids"] = tf.constant(
... [inputs["input_ids"].shape[-1] - 1, inputs["input_ids"].shape[-1] - 1] ... [inputs["input_ids"].shape[-1] - 1, inputs["input_ids"].shape[-1] - 1]
>>> )[ ... )[
... None, : ... None, :
>>> ] # Batch size 1 ... ] # Batch size 1
>>> outputs = model(inputs) >>> outputs = model(inputs)
>>> lm_prediction_scores, mc_prediction_scores = outputs[:2] >>> lm_prediction_scores, mc_prediction_scores = outputs[:2]
```""" ```"""

View File

@ -1813,7 +1813,7 @@ class ProphetNetModel(ProphetNetPreTrainedModel):
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
>>> ).input_ids # Batch size 1 ... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
@ -1935,7 +1935,7 @@ class ProphetNetForConditionalGeneration(ProphetNetPreTrainedModel):
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
>>> ).input_ids # Batch size 1 ... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
@ -2202,7 +2202,7 @@ class ProphetNetForCausalLM(ProphetNetPreTrainedModel):
>>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids >>> input_ids = tokenizer_enc(ARTICLE, return_tensors="pt").input_ids
>>> labels = tokenizer_dec( >>> labels = tokenizer_dec(
... "us rejects charges against its ambassador in bolivia", return_tensors="pt" ... "us rejects charges against its ambassador in bolivia", return_tensors="pt"
>>> ).input_ids ... ).input_ids
>>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:]) >>> outputs = model(input_ids=input_ids, decoder_input_ids=labels[:, :-1], labels=labels[:, 1:])
>>> loss = outputs.loss >>> loss = outputs.loss

View File

@ -826,7 +826,7 @@ class RagSequenceForGeneration(RagPreTrainedModel):
>>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt") >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt")
>>> doc_scores = torch.bmm( >>> doc_scores = torch.bmm(
... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2) ... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)
>>> ).squeeze(1) ... ).squeeze(1)
>>> # 3. Forward to generator >>> # 3. Forward to generator
>>> outputs = model( >>> outputs = model(
... context_input_ids=docs_dict["context_input_ids"], ... context_input_ids=docs_dict["context_input_ids"],
@ -1293,7 +1293,7 @@ class RagTokenForGeneration(RagPreTrainedModel):
>>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt") >>> docs_dict = retriever(input_ids.numpy(), question_hidden_states.detach().numpy(), return_tensors="pt")
>>> doc_scores = torch.bmm( >>> doc_scores = torch.bmm(
... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2) ... question_hidden_states.unsqueeze(1), docs_dict["retrieved_doc_embeds"].float().transpose(1, 2)
>>> ).squeeze(1) ... ).squeeze(1)
>>> # 3. Forward to generator >>> # 3. Forward to generator
>>> outputs = model( >>> outputs = model(
... context_input_ids=docs_dict["context_input_ids"], ... context_input_ids=docs_dict["context_input_ids"],

View File

@ -354,7 +354,7 @@ class RagRetriever:
>>> dataset = ( >>> dataset = (
... ... ... ...
>>> ) # dataset must be a datasets.Datasets object with columns "title", "text" and "embeddings", and it must have a faiss index ... ) # dataset must be a datasets.Datasets object with columns "title", "text" and "embeddings", and it must have a faiss index
>>> retriever = RagRetriever.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", indexed_dataset=dataset) >>> retriever = RagRetriever.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", indexed_dataset=dataset)
>>> # To load your own indexed dataset built with the datasets library that was saved on disk. More info in examples/rag/use_own_knowledge_dataset.py >>> # To load your own indexed dataset built with the datasets library that was saved on disk. More info in examples/rag/use_own_knowledge_dataset.py

View File

@ -1782,7 +1782,7 @@ class RealmForOpenQA(RealmPreTrainedModel):
... add_special_tokens=False, ... add_special_tokens=False,
... return_token_type_ids=False, ... return_token_type_ids=False,
... return_attention_mask=False, ... return_attention_mask=False,
>>> ).input_ids ... ).input_ids
>>> reader_output, predicted_answer_ids = model(**question_ids, answer_ids=answer_ids, return_dict=False) >>> reader_output, predicted_answer_ids = model(**question_ids, answer_ids=answer_ids, return_dict=False)
>>> predicted_answer = tokenizer.decode(predicted_answer_ids) >>> predicted_answer = tokenizer.decode(predicted_answer_ids)

View File

@ -1387,7 +1387,7 @@ class TFSpeech2TextForConditionalGeneration(TFSpeech2TextPreTrainedModel, TFCaus
>>> input_features = processor( >>> input_features = processor(
... ds["speech"][0], sampling_rate=16000, return_tensors="tf" ... ds["speech"][0], sampling_rate=16000, return_tensors="tf"
>>> ).input_features # Batch size 1 ... ).input_features # Batch size 1
>>> generated_ids = model.generate(input_features) >>> generated_ids = model.generate(input_features)
>>> transcription = processor.batch_decode(generated_ids) >>> transcription = processor.batch_decode(generated_ids)

View File

@ -1344,7 +1344,7 @@ FLAX_T5_MODEL_DOCSTRING = """
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="np" ... "Studies have been shown that owning a dog is good for you", return_tensors="np"
>>> ).input_ids ... ).input_ids
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="np").input_ids
>>> # forward pass >>> # forward pass

View File

@ -1375,7 +1375,7 @@ class T5Model(T5PreTrainedModel):
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
>>> ).input_ids # Batch size 1 ... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # forward pass >>> # forward pass
@ -1583,7 +1583,7 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
>>> # inference >>> # inference
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
>>> ).input_ids # Batch size 1 ... ).input_ids # Batch size 1
>>> outputs = model.generate(input_ids) >>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> # studies have shown that owning a dog is good for you. >>> # studies have shown that owning a dog is good for you.
@ -1831,7 +1831,7 @@ class T5EncoderModel(T5PreTrainedModel):
>>> model = T5EncoderModel.from_pretrained("t5-small") >>> model = T5EncoderModel.from_pretrained("t5-small")
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
>>> ).input_ids # Batch size 1 ... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids) >>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state >>> last_hidden_states = outputs.last_hidden_state
```""" ```"""

View File

@ -1165,7 +1165,7 @@ class TFT5Model(TFT5PreTrainedModel):
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="tf" ... "Studies have been shown that owning a dog is good for you", return_tensors="tf"
>>> ).input_ids # Batch size 1 ... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="tf").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="tf").input_ids # Batch size 1
>>> # forward pass >>> # forward pass
@ -1353,7 +1353,7 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModeling
>>> # inference >>> # inference
>>> inputs = tokenizer( >>> inputs = tokenizer(
... "summarize: studies have shown that owning a dog is good for you", return_tensors="tf" ... "summarize: studies have shown that owning a dog is good for you", return_tensors="tf"
>>> ).input_ids # Batch size 1 ... ).input_ids # Batch size 1
>>> outputs = model.generate(inputs) >>> outputs = model.generate(inputs)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> # studies have shown that owning a dog is good for you >>> # studies have shown that owning a dog is good for you
@ -1642,7 +1642,7 @@ class TFT5EncoderModel(TFT5PreTrainedModel):
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="tf" ... "Studies have been shown that owning a dog is good for you", return_tensors="tf"
>>> ).input_ids # Batch size 1 ... ).input_ids # Batch size 1
>>> outputs = model(input_ids) >>> outputs = model(input_ids)
```""" ```"""

View File

@ -1068,7 +1068,7 @@ class TapasForMaskedLM(TapasPreTrainedModel):
... ) ... )
>>> labels = tokenizer( >>> labels = tokenizer(
... table=table, queries="How many movies has George Clooney played in?", return_tensors="pt" ... table=table, queries="How many movies has George Clooney played in?", return_tensors="pt"
>>> )["input_ids"] ... )["input_ids"]
>>> outputs = model(**inputs, labels=labels) >>> outputs = model(**inputs, labels=labels)
>>> logits = outputs.logits >>> logits = outputs.logits

View File

@ -1095,7 +1095,7 @@ class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss):
... ) ... )
>>> labels = tokenizer( >>> labels = tokenizer(
... table=table, queries="How many movies has George Clooney played in?", return_tensors="tf" ... table=table, queries="How many movies has George Clooney played in?", return_tensors="tf"
>>> )["input_ids"] ... )["input_ids"]
>>> outputs = model(**inputs, labels=labels) >>> outputs = model(**inputs, labels=labels)
>>> logits = outputs.logits >>> logits = outputs.logits

View File

@ -326,7 +326,7 @@ class TFVisionEncoderDecoderModel(TFPreTrainedModel, TFCausalLanguageModelingLos
>>> output_ids = model.generate( >>> output_ids = model.generate(
... pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True ... pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True
>>> ).sequences ... ).sequences
>>> preds = decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True) >>> preds = decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True)
>>> preds = [pred.strip() for pred in preds] >>> preds = [pred.strip() for pred in preds]

View File

@ -1081,7 +1081,7 @@ FLAX_WAV2VEC2_MODEL_DOCSTRING = """
>>> input_values = processor( >>> input_values = processor(
... ds["speech"][0], sampling_rate=16_000, return_tensors="np" ... ds["speech"][0], sampling_rate=16_000, return_tensors="np"
>>> ).input_values # Batch size 1 ... ).input_values # Batch size 1
>>> hidden_states = model(input_values).last_hidden_state >>> hidden_states = model(input_values).last_hidden_state
``` ```
""" """
@ -1200,7 +1200,7 @@ FLAX_WAV2VEC2_FOR_CTC_DOCSTRING = """
>>> input_values = processor( >>> input_values = processor(
... ds["speech"][0], sampling_rate=16_000, return_tensors="np" ... ds["speech"][0], sampling_rate=16_000, return_tensors="np"
>>> ).input_values # Batch size 1 ... ).input_values # Batch size 1
>>> logits = model(input_values).logits >>> logits = model(input_values).logits
>>> predicted_ids = jnp.argmax(logits, axis=-1) >>> predicted_ids = jnp.argmax(logits, axis=-1)

View File

@ -1039,7 +1039,7 @@ class XLMForQuestionAnswering(XLMPreTrainedModel):
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze( >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0 ... 0
>>> ) # Batch size 1 ... ) # Batch size 1
>>> start_positions = torch.tensor([1]) >>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3]) >>> end_positions = torch.tensor([3])

View File

@ -98,7 +98,7 @@ class XLMProphetNetModel(ProphetNetModel):
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
>>> ).input_ids # Batch size 1 ... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
@ -124,7 +124,7 @@ class XLMProphetNetForConditionalGeneration(ProphetNetForConditionalGeneration):
>>> input_ids = tokenizer( >>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
>>> ).input_ids # Batch size 1 ... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)

View File

@ -1281,17 +1281,17 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss):
>>> # We show how to setup inputs to predict a next token using a bi-directional context. >>> # We show how to setup inputs to predict a next token using a bi-directional context.
>>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True))[ >>> input_ids = tf.constant(tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=True))[
... None, : ... None, :
>>> ] # We will predict the masked token ... ] # We will predict the masked token
>>> perm_mask = np.zeros((1, input_ids.shape[1], input_ids.shape[1])) >>> perm_mask = np.zeros((1, input_ids.shape[1], input_ids.shape[1]))
>>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
>>> target_mapping = np.zeros( >>> target_mapping = np.zeros(
... (1, 1, input_ids.shape[1]) ... (1, 1, input_ids.shape[1])
>>> ) # Shape [1, 1, seq_length] => let's predict one token ... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[ >>> target_mapping[
... 0, 0, -1 ... 0, 0, -1
>>> ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model( >>> outputs = model(
... input_ids, ... input_ids,
@ -1301,7 +1301,7 @@ class TFXLNetLMHeadModel(TFXLNetPreTrainedModel, TFCausalLanguageModelingLoss):
>>> next_token_logits = outputs[ >>> next_token_logits = outputs[
... 0 ... 0
>>> ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
```""" ```"""
transformer_outputs = self.transformer( transformer_outputs = self.transformer(
input_ids=input_ids, input_ids=input_ids,

View File

@ -1400,47 +1400,47 @@ class XLNetLMHeadModel(XLNetPreTrainedModel):
>>> # We show how to setup inputs to predict a next token using a bi-directional context. >>> # We show how to setup inputs to predict a next token using a bi-directional context.
>>> input_ids = torch.tensor( >>> input_ids = torch.tensor(
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False) ... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
>>> ).unsqueeze( ... ).unsqueeze(
... 0 ... 0
>>> ) # We will predict the masked token ... ) # We will predict the masked token
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token >>> perm_mask[:, :, -1] = 1.0 # Previous tokens don't see last token
>>> target_mapping = torch.zeros( >>> target_mapping = torch.zeros(
... (1, 1, input_ids.shape[1]), dtype=torch.float ... (1, 1, input_ids.shape[1]), dtype=torch.float
>>> ) # Shape [1, 1, seq_length] => let's predict one token ... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[ >>> target_mapping[
... 0, 0, -1 ... 0, 0, -1
>>> ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping) >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping)
>>> next_token_logits = outputs[ >>> next_token_logits = outputs[
... 0 ... 0
>>> ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] ... ] # Output has shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
>>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling. >>> # The same way can the XLNetLMHeadModel be used to be trained by standard auto-regressive language modeling.
>>> input_ids = torch.tensor( >>> input_ids = torch.tensor(
... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False) ... tokenizer.encode("Hello, my dog is very <mask>", add_special_tokens=False)
>>> ).unsqueeze( ... ).unsqueeze(
... 0 ... 0
>>> ) # We will predict the masked token ... ) # We will predict the masked token
>>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0) >>> labels = torch.tensor(tokenizer.encode("cute", add_special_tokens=False)).unsqueeze(0)
>>> assert labels.shape[0] == 1, "only one word will be predicted" >>> assert labels.shape[0] == 1, "only one word will be predicted"
>>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float) >>> perm_mask = torch.zeros((1, input_ids.shape[1], input_ids.shape[1]), dtype=torch.float)
>>> perm_mask[ >>> perm_mask[
... :, :, -1 ... :, :, -1
>>> ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training ... ] = 1.0 # Previous tokens don't see last token as is done in standard auto-regressive lm training
>>> target_mapping = torch.zeros( >>> target_mapping = torch.zeros(
... (1, 1, input_ids.shape[1]), dtype=torch.float ... (1, 1, input_ids.shape[1]), dtype=torch.float
>>> ) # Shape [1, 1, seq_length] => let's predict one token ... ) # Shape [1, 1, seq_length] => let's predict one token
>>> target_mapping[ >>> target_mapping[
... 0, 0, -1 ... 0, 0, -1
>>> ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token) ... ] = 1.0 # Our first (and only) prediction will be the last token of the sequence (the masked token)
>>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels) >>> outputs = model(input_ids, perm_mask=perm_mask, target_mapping=target_mapping, labels=labels)
>>> loss = outputs.loss >>> loss = outputs.loss
>>> next_token_logits = ( >>> next_token_logits = (
... outputs.logits ... outputs.logits
>>> ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size] ... ) # Logits have shape [target_mapping.size(0), target_mapping.size(1), config.vocab_size]
```""" ```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
@ -1980,7 +1980,7 @@ class XLNetForQuestionAnswering(XLNetPreTrainedModel):
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze( >>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
... 0 ... 0
>>> ) # Batch size 1 ... ) # Batch size 1
>>> start_positions = torch.tensor([1]) >>> start_positions = torch.tensor([1])
>>> end_positions = torch.tensor([3]) >>> end_positions = torch.tensor([3])
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions) >>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)