split seq2seq script into summarization & translation (#10611)

* split seq2seq script, update docs

* needless diff

* fix readme

* remove test diff

* s/summarization/translation

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>

* cr

* fix arguments & better mbart/t5 refs

* copyright

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* reword readme

Co-authored-by: Suraj Patil <surajp815@gmail.com>

* s/summarization/translation

* short script names

* fix tests

* fix isort, include mbart doc

* delete old script, update tests

* automate source prefix

* automate source prefix for translation

* s/translation/trans

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* fix script name (short version)

* typos

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* exact parameter

Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>

* remove superfluous source_prefix calls in docs

* rename scripts & warn for source prefix

* black

* flake8

Co-authored-by: theo <theo@matussie.re>
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
Co-authored-by: Suraj Patil <surajp815@gmail.com>
Co-authored-by: Stas Bekman <stas00@users.noreply.github.com>
This commit is contained in:
Théo Matussière 2021-03-15 14:11:42 +01:00 committed by GitHub
parent 505494a86f
commit 6f840990a7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 653 additions and 168 deletions

View File

@ -168,13 +168,13 @@ Here is an example of how this can be used on a filesystem that is shared betwee
On the instance with the normal network run your program which will download and cache models (and optionally datasets if you use 🤗 Datasets). For example:
```
python examples/seq2seq/run_seq2seq.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
python examples/seq2seq/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
and then with the same filesystem you can now run the same program on a firewalled instance:
```
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1 \
python examples/seq2seq/run_seq2seq.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
python examples/seq2seq/run_translation.py --model_name_or_path t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
and it should succeed without any hanging waiting to timeout.

View File

@ -279,16 +279,16 @@ To deploy this feature:
and make sure you have added the distributed launcher ``-m torch.distributed.launch
--nproc_per_node=NUMBER_OF_GPUS_YOU_HAVE`` if you haven't been using it already.
For example here is how you could use it for ``run_seq2seq.py`` with 2 GPUs:
For example here is how you could use it for ``run_translation.py`` with 2 GPUs:
.. code-block:: bash
python -m torch.distributed.launch --nproc_per_node=2 examples/seq2seq/run_seq2seq.py \
python -m torch.distributed.launch --nproc_per_node=2 examples/seq2seq/run_translation.py \
--model_name_or_path t5-small --per_device_train_batch_size 1 \
--output_dir output_dir --overwrite_output_dir \
--do_train --max_train_samples 500 --num_train_epochs 1 \
--dataset_name wmt16 --dataset_config "ro-en" \
--task translation_en_to_ro --source_prefix "translate English to Romanian: " \
--source_lang en --target_lang ro \
--fp16 --sharded_ddp simple
Notes:
@ -304,16 +304,16 @@ Notes:
to the command line arguments, and make sure you have added the distributed launcher ``-m torch.distributed.launch
--nproc_per_node=NUMBER_OF_GPUS_YOU_HAVE`` if you haven't been using it already.
For example here is how you could use it for ``run_seq2seq.py`` with 2 GPUs:
For example here is how you could use it for ``run_translation.py`` with 2 GPUs:
.. code-block:: bash
python -m torch.distributed.launch --nproc_per_node=2 examples/seq2seq/run_seq2seq.py \
python -m torch.distributed.launch --nproc_per_node=2 examples/seq2seq/run_translation.py \
--model_name_or_path t5-small --per_device_train_batch_size 1 \
--output_dir output_dir --overwrite_output_dir \
--do_train --max_train_samples 500 --num_train_epochs 1 \
--dataset_name wmt16 --dataset_config "ro-en" \
--task translation_en_to_ro --source_prefix "translate English to Romanian: " \
--source_lang en --target_lang ro \
--fp16 --sharded_ddp zero_dp_2
:obj:`zero_dp_2` is an optimized version of the simple wrapper, while :obj:`zero_dp_3` fully shards model weights,
@ -333,7 +333,7 @@ Notes:
Known caveats:
- This feature is incompatible with :obj:`--predict_with_generate` in the `run_seq2seq.py` script.
- This feature is incompatible with :obj:`--predict_with_generate` in the `run_translation.py` script.
- Using :obj:`--sharded_ddp zero_dp_3` requires wrapping each layer of the model in the special container
:obj:`FullyShardedDataParallelism` of fairscale. It should be used with the option :obj:`auto_wrap` if you are not
doing this yourself: :obj:`--sharded_ddp "zero_dp_3 auto_wrap"`.
@ -402,17 +402,17 @@ In fact, you can continue using ``-m torch.distributed.launch`` with DeepSpeed a
the ``deepspeed`` launcher. But since in the DeepSpeed documentation it'll be used everywhere, for consistency we will
use it here as well.
Here is an example of running ``run_seq2seq.py`` under DeepSpeed deploying all available GPUs:
Here is an example of running ``run_translation.py`` under DeepSpeed deploying all available GPUs:
.. code-block:: bash
deepspeed examples/seq2seq/run_seq2seq.py \
deepspeed examples/seq2seq/run_translation.py \
--deepspeed examples/tests/deepspeed/ds_config.json \
--model_name_or_path t5-small --per_device_train_batch_size 1 \
--output_dir output_dir --overwrite_output_dir --fp16 \
--do_train --max_train_samples 500 --num_train_epochs 1 \
--dataset_name wmt16 --dataset_config "ro-en" \
--task translation_en_to_ro --source_prefix "translate English to Romanian: "
--source_lang en --target_lang ro
Note that in the DeepSpeed documentation you are likely to see ``--deepspeed --deepspeed_config ds_config.json`` - i.e.
@ -431,13 +431,13 @@ To deploy DeepSpeed with one GPU adjust the :class:`~transformers.Trainer` comma
.. code-block:: bash
deepspeed --num_gpus=1 examples/seq2seq/run_seq2seq.py \
deepspeed --num_gpus=1 examples/seq2seq/run_translation.py \
--deepspeed examples/tests/deepspeed/ds_config.json \
--model_name_or_path t5-small --per_device_train_batch_size 1 \
--output_dir output_dir --overwrite_output_dir --fp16 \
--do_train --max_train_samples 500 --num_train_epochs 1 \
--dataset_name wmt16 --dataset_config "ro-en" \
--task translation_en_to_ro --source_prefix "translate English to Romanian: "
--source_lang en --target_lang ro
This is almost the same as with multiple-GPUs, but here we tell DeepSpeed explicitly to use just one GPU. By default,
DeepSpeed deploys all GPUs it can see. If you have only 1 GPU to start with, then you don't need this argument. The
@ -483,7 +483,7 @@ Notes:
.. code-block:: bash
deepspeed --include localhost:1 examples/seq2seq/run_seq2seq.py ...
deepspeed --include localhost:1 examples/seq2seq/run_translation.py ...
In this example, we tell DeepSpeed to use GPU 1 (second gpu).
@ -574,7 +574,7 @@ with:
.. code-block::
!deepspeed examples/seq2seq/run_seq2seq.py ...
!deepspeed examples/seq2seq/run_translation.py ...
or with bash magic, where you can write a multi-line code for the shell to run:
@ -583,7 +583,7 @@ or with bash magic, where you can write a multi-line code for the shell to run:
%%bash
cd /somewhere
deepspeed examples/seq2seq/run_seq2seq.py ...
deepspeed examples/seq2seq/run_translation.py ...

View File

@ -742,8 +742,8 @@ Summarization
-----------------------------------------------------------------------------------------------------------------------
Summarization is the task of summarizing a document or an article into a shorter text. If you would like to fine-tune a
model on a summarization task, you may leverage the `run_seq2seq.py
<https://github.com/huggingface/transformers/tree/master/examples/seq2seq/run_seq2seq.py>`__ script.
model on a summarization task, you may leverage the `run_summarization.py
<https://github.com/huggingface/transformers/tree/master/examples/seq2seq/run_summarization.py>`__ script.
An example of a summarization dataset is the CNN / Daily Mail dataset, which consists of long news articles and was
created for the task of summarization. If you would like to fine-tune a model on a summarization task, various
@ -822,8 +822,8 @@ Translation
-----------------------------------------------------------------------------------------------------------------------
Translation is the task of translating a text from one language to another. If you would like to fine-tune a model on a
translation task, you may leverage the `run_seq2seq.py
<https://github.com/huggingface/transformers/tree/master/examples/seq2seq/run_seq2seq.py>`__ script.
translation task, you may leverage the `run_translation.py
<https://github.com/huggingface/transformers/tree/master/examples/seq2seq/run_translation.py>`__ script.
An example of a translation dataset is the WMT English to German dataset, which has sentences in English as the input
data and the corresponding sentences in German as the target data. If you would like to fine-tune a model on a

View File

@ -30,7 +30,7 @@ For the old `finetune_trainer.py` and related utils, see [`examples/legacy/seq2s
- `FSMTForConditionalGeneration` (translation only)
- `T5ForConditionalGeneration`
`run_seq2seq.py` is a lightweight example of how to download and preprocess a dataset from the [🤗 Datasets](https://github.com/huggingface/datasets) library or use your own files (jsonlines or csv), then fine-tune one of the architectures above on it.
`run_summarization.py` and `run_translation.py` are lightweight examples of how to download and preprocess a dataset from the [🤗 Datasets](https://github.com/huggingface/datasets) library or use your own files (jsonlines or csv), then fine-tune one of the architectures above on it.
For custom datasets in `jsonlines` format please see: https://huggingface.co/docs/datasets/loading_datasets.html#json-files
and you also will find examples of these below.
@ -39,11 +39,10 @@ and you also will find examples of these below.
Here is an example on a summarization task:
```bash
python examples/seq2seq/run_seq2seq.py \
python examples/seq2seq/run_summarization.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--task summarization \
--dataset_name xsum \
--output_dir /tmp/tst-summarization \
--per_device_train_batch_size=4 \
@ -60,11 +59,10 @@ And here is how you would use it on your own files, after adjusting the values f
`--train_file`, `--validation_file`, `--text_column` and `--summary_column` to match your setup:
```bash
python examples/seq2seq/run_seq2seq.py \
python examples/seq2seq/run_summarization.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--task summarization \
--train_file path_to_csv_or_jsonlines_file \
--validation_file path_to_csv_or_jsonlines_file \
--output_dir /tmp/tst-summarization \
@ -140,14 +138,14 @@ And as with the CSV files, you can specify which values to select from the file,
Here is an example of a translation fine-tuning with T5:
```bash
python examples/seq2seq/run_seq2seq.py \
python examples/seq2seq/run_translation.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--task translation_en_to_ro \
--source_lang en \
--target_lang ro \
--dataset_name wmt16 \
--dataset_config_name ro-en \
--source_prefix "translate English to Romanian: " \
--output_dir /tmp/tst-translation \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \
@ -160,11 +158,10 @@ python examples/seq2seq/run_seq2seq.py \
And the same with MBart:
```bash
python examples/seq2seq/run_seq2seq.py \
python examples/seq2seq/run_translation.py \
--model_name_or_path facebook/mbart-large-en-ro \
--do_train \
--do_eval \
--task translation_en_to_ro \
--dataset_name wmt16 \
--dataset_config_name ro-en \
--source_lang en_XX \
@ -180,18 +177,8 @@ python examples/seq2seq/run_seq2seq.py \
Note, that depending on the used model additional language-specific command-line arguments are sometimes required. Specifically:
* MBart models require:
```
--source_lang en_XX \
--target_lang ro_RO \
```
* T5 requires:
```
--source_prefix "translate English to Romanian: "
```
* yet, other models, require neither.
* MBart models require different `--{source,target}_lang` values, e.g. in place of `en` it expects `en_XX`, for `ro` it expects `ro_RO`. The full MBart specification for language codes can be looked up [here](https://huggingface.co/facebook/mbart-large-cc25)
* T5 models can use a `--source_prefix` argument to override the otherwise automated prefix of the form `translate {source_lang} to {target_lang}` for `run_translation.py` and `summarize: ` for `run_summarization.py`
Also, if you switch to a different language pair, make sure to adjust the source and target values in all command line arguments.
@ -199,14 +186,14 @@ And here is how you would use the translation finetuning on your own files, afte
values for the arguments `--train_file`, `--validation_file` to match your setup:
```bash
python examples/seq2seq/run_seq2seq.py \
python examples/seq2seq/run_translation.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--task translation_en_to_ro \
--source_lang en \
--target_lang ro \
--dataset_name wmt16 \
--dataset_config_name ro-en \
--source_prefix "translate English to Romanian: " \
--train_file path_to_jsonlines_file \
--validation_file path_to_jsonlines_file \
--output_dir /tmp/tst-translation \
@ -229,13 +216,13 @@ Here the languages are Romanian (`ro`) and English (`en`).
If you want to use a pre-processed dataset that leads to high bleu scores, but for the `en-de` language pair, you can use `--dataset_name wmt14-en-de-pre-processed`, as following:
```bash
python examples/seq2seq/run_seq2seq.py \
python examples/seq2seq/run_translation.py \
--model_name_or_path t5-small \
--do_train \
--do_eval \
--task translation_en_to_de \
--source_lang en \
--target_lang de \
--dataset_name wmt14-en-de-pre-processed \
--source_prefix "translate English to German: " \
--output_dir /tmp/tst-translation \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=4 \

View File

@ -1,6 +1,6 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -20,7 +20,6 @@ Fine-tuning the library models for sequence to sequence.
import logging
import os
import re
import sys
from dataclasses import dataclass, field
from typing import Optional
@ -37,8 +36,6 @@ from transformers import (
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
default_data_collator,
@ -103,13 +100,6 @@ class DataTrainingArguments:
Arguments pertaining to what data we are going to input our model for training and eval.
"""
task: str = field(
default="summarization",
metadata={
"help": "The name of the task, should be summarization (or summarization_{dataset} for evaluating "
"pegasus) or translation (or translation_{xx}_to_{yy})."
},
)
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
@ -130,15 +120,14 @@ class DataTrainingArguments:
validation_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input evaluation data file to evaluate the metrics (rouge/sacreblue) on "
"help": "An optional input evaluation data file to evaluate the metrics (rouge) on "
"(a jsonlines or csv file)."
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the metrics (rouge/sacreblue) on "
"(a jsonlines or csv file)."
"help": "An optional input test data file to evaluate the metrics (rouge) on " "(a jsonlines or csv file)."
},
)
overwrite_cache: bool = field(
@ -200,8 +189,6 @@ class DataTrainingArguments:
"value if set."
},
)
source_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."})
target_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."})
num_beams: Optional[int] = field(
default=None,
metadata={
@ -229,10 +216,6 @@ class DataTrainingArguments:
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if not self.task.startswith("summarization") and not self.task.startswith("translation"):
raise ValueError(
"`task` should be summarization, summarization_{dataset}, translation or translation_{xx}_to_{yy}."
)
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
@ -265,6 +248,18 @@ def main():
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if data_args.source_prefix is None and model_args.model_name_or_path in [
"t5-small",
"t5-base",
"t5-large",
"t5-3b",
"t5-11b",
]:
logger.warning(
"You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
"`--source_prefix 'summarize: ' `"
)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
@ -305,11 +300,8 @@ def main():
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files in the summarization task, this script will use the first column for the full texts and the
# second column for the summaries (unless you specify column names for this with the `text_column` and
# `summary_column` arguments).
# For translation, only JSON files are supported, with one field named "translation" containing two keys for the
# source and target languages (unless you adapt what follows).
# For CSV/JSON files this script will use the first column for the full texts and the second column for the
# summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
@ -358,16 +350,6 @@ def main():
use_auth_token=True if model_args.use_auth_token else None,
)
# Set decoder_start_token_id
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
assert (
data_args.target_lang is not None and data_args.source_lang is not None
), "mBart requires --target_lang and --source_lang"
if isinstance(tokenizer, MBartTokenizer):
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
else:
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
@ -385,55 +367,24 @@ def main():
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# For translation we set the codes of our source and target languages (only useful for mBART, the others will
# ignore those attributes).
if data_args.task.startswith("translation") or isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
if data_args.source_lang is not None:
tokenizer.src_lang = data_args.source_lang
if data_args.target_lang is not None:
tokenizer.tgt_lang = data_args.target_lang
# To serialize preprocess_function below, each of those four variables needs to be defined (even if we won't use
# them all).
source_lang, target_lang, text_column, summary_column = None, None, None, None
if data_args.task.startswith("summarization"):
# Get the column names for input/target.
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
if data_args.text_column is None:
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
text_column = data_args.text_column
if text_column not in column_names:
raise ValueError(
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.summary_column is None:
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
summary_column = data_args.summary_column
if summary_column not in column_names:
raise ValueError(
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
)
# Get the column names for input/target.
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
if data_args.text_column is None:
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
# Get the language codes for input/target.
lang_search = re.match("translation_([a-z]+)_to_([a-z]+)", data_args.task)
if data_args.source_lang is not None:
source_lang = data_args.source_lang.split("_")[0]
else:
assert (
lang_search is not None
), "Provide a source language via --source_lang or rename your task 'translation_xx_to_yy'."
source_lang = lang_search.groups()[0]
if data_args.target_lang is not None:
target_lang = data_args.target_lang.split("_")[0]
else:
assert (
lang_search is not None
), "Provide a target language via --target_lang or rename your task 'translation_xx_to_yy'."
target_lang = lang_search.groups()[1]
text_column = data_args.text_column
if text_column not in column_names:
raise ValueError(
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.summary_column is None:
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
summary_column = data_args.summary_column
if summary_column not in column_names:
raise ValueError(
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
)
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
@ -446,12 +397,8 @@ def main():
)
def preprocess_function(examples):
if data_args.task.startswith("translation"):
inputs = [ex[source_lang] for ex in examples["translation"]]
targets = [ex[target_lang] for ex in examples["translation"]]
else:
inputs = examples[text_column]
targets = examples[summary_column]
inputs = examples[text_column]
targets = examples[summary_column]
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
@ -526,19 +473,15 @@ def main():
)
# Metric
metric_name = "rouge" if data_args.task.startswith("summarization") else "sacrebleu"
metric = load_metric(metric_name)
metric = load_metric("rouge")
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
if metric_name == "rouge":
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
else: # sacrebleu
labels = [[label] for label in labels]
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
@ -555,13 +498,9 @@ def main():
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
if metric_name == "rouge":
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
# Extract a few results from ROUGE
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
else:
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
result = {"bleu": result["score"]}
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
# Extract a few results from ROUGE
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
@ -601,6 +540,7 @@ def main():
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
@ -613,7 +553,6 @@ def main():
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# predict
if training_args.do_predict:
logger.info("*** Test ***")
@ -640,6 +579,8 @@ def main():
with open(output_test_preds_file, "w") as writer:
writer.write("\n".join(test_preds))
return results
def _mp_fn(index):
# For xla_spawn (TPUs)

View File

@ -0,0 +1,558 @@
#!/usr/bin/env python
# coding=utf-8
# Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
from datasets import load_dataset, load_metric
import transformers
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
"with private models)."
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
source_lang: str = field(default=None, metadata={"help": "Source language id for translation."})
target_lang: str = field(default=None, metadata={"help": "Target language id for translation."})
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a jsonlines)."})
validation_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input evaluation data file to evaluate the metrics (sacreblue) on "
"a jsonlines file."
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the metrics (sacreblue) on " "a jsonlines file."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": "Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_val_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
"value if set."
},
)
max_test_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of test examples to this "
"value if set."
},
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": "Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
source_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
elif self.source_lang is None or self.target_lang is None:
raise ValueError("Need to specify the source language and the target language.")
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension == "json", "`train_file` should be a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension == "json", "`validation_file` should be a json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if data_args.source_prefix is None and model_args.model_name_or_path in [
"t5-small",
"t5-base",
"t5-large",
"t5-3b",
"t5-11b",
]:
logger.warning(
"You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with "
"`--source_prefix 'translate English to German: ' `"
)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info("Training/evaluation parameters %s", training_args)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For translation, only JSON files are supported, with one field named "translation" containing two keys for the
# source and target languages (unless you adapt what follows).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
datasets = load_dataset(extension, data_files=data_files)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# Set decoder_start_token_id
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
assert (
data_args.target_lang is not None and data_args.source_lang is not None
), "mBart requires --target_lang and --source_lang"
if isinstance(tokenizer, MBartTokenizer):
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
else:
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = datasets["train"].column_names
elif training_args.do_eval:
column_names = datasets["validation"].column_names
elif training_args.do_predict:
column_names = datasets["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# For translation we set the codes of our source and target languages (only useful for mBART, the others will
# ignore those attributes).
if isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
if data_args.source_lang is not None:
tokenizer.src_lang = data_args.source_lang
if data_args.target_lang is not None:
tokenizer.tgt_lang = data_args.target_lang
# Get the language codes for input/target.
source_lang = data_args.source_lang.split("_")[0]
target_lang = data_args.target_lang.split("_")[0]
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warn(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
def preprocess_function(examples):
inputs = [ex[source_lang] for ex in examples["translation"]]
targets = [ex[target_lang] for ex in examples["translation"]]
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
# Setup the tokenizer for targets
with tokenizer.as_target_tokenizer():
labels = tokenizer(targets, max_length=max_target_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
if training_args.do_train:
train_dataset = datasets["train"]
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if data_args.max_val_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_val_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
test_dataset = datasets["test"]
if data_args.max_test_samples is not None:
test_dataset = test_dataset.select(range(data_args.max_test_samples))
test_dataset = test_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
if data_args.pad_to_max_length:
data_collator = default_data_collator
else:
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
# Metric
metric = load_metric("sacrebleu")
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [[label.strip()] for label in labels]
return preds, labels
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels)
result = {"bleu": result["score"]}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
result = {k: round(v, 4) for k, v in result.items()}
return result
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
)
# Training
if training_args.do_train:
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(
max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval"
)
max_val_samples = data_args.max_val_samples if data_args.max_val_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Test ***")
test_results = trainer.predict(
test_dataset,
metric_key_prefix="test",
max_length=data_args.val_max_target_length,
num_beams=data_args.num_beams,
)
metrics = test_results.metrics
max_test_samples = data_args.max_test_samples if data_args.max_test_samples is not None else len(test_dataset)
metrics["test_samples"] = min(max_test_samples, len(test_dataset))
trainer.log_metrics("test", metrics)
trainer.save_metrics("test", metrics)
if trainer.is_world_process_zero():
if training_args.predict_with_generate:
test_preds = tokenizer.batch_decode(
test_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
test_preds = [pred.strip() for pred in test_preds]
output_test_preds_file = os.path.join(training_args.output_dir, "test_generations.txt")
with open(output_test_preds_file, "w") as writer:
writer.write("\n".join(test_preds))
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()

View File

@ -49,8 +49,9 @@ if SRC_DIRS is not None:
import run_mlm
import run_ner
import run_qa as run_squad
import run_seq2seq
import run_summarization
import run_swag
import run_translation
logging.basicConfig(level=logging.DEBUG)
@ -277,15 +278,14 @@ class ExamplesTests(TestCasePlus):
self.assertGreaterEqual(len(result[0]), 10)
@slow
def test_run_seq2seq_summarization(self):
def test_run_summarization(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_seq2seq.py
run_summarization.py
--model_name_or_path t5-small
--task summarization
--train_file tests/fixtures/tests_samples/xsum/sample.json
--validation_file tests/fixtures/tests_samples/xsum/sample.json
--output_dir {tmp_dir}
@ -301,7 +301,7 @@ class ExamplesTests(TestCasePlus):
""".split()
with patch.object(sys, "argv", testargs):
run_seq2seq.main()
run_summarization.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_rouge1"], 10)
self.assertGreaterEqual(result["eval_rouge2"], 2)
@ -309,15 +309,16 @@ class ExamplesTests(TestCasePlus):
self.assertGreaterEqual(result["eval_rougeLsum"], 7)
@slow
def test_run_seq2seq_translation(self):
def test_run_translation(self):
stream_handler = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f"""
run_seq2seq.py
run_translation.py
--model_name_or_path sshleifer/student_marian_en_ro_6_1
--task translation_en_to_ro
--source_lang en
--target_lang ro
--train_file tests/fixtures/tests_samples/wmt16/sample.json
--validation_file tests/fixtures/tests_samples/wmt16/sample.json
--output_dir {tmp_dir}
@ -335,6 +336,6 @@ class ExamplesTests(TestCasePlus):
""".split()
with patch.object(sys, "argv", testargs):
run_seq2seq.main()
run_translation.main()
result = get_results(tmp_dir)
self.assertGreaterEqual(result["eval_bleu"], 30)

View File

@ -233,7 +233,6 @@ class TestDeepSpeed(TestCasePlus):
--group_by_length
--label_smoothing_factor 0.1
--adafactor
--task translation
--target_lang ro_RO
--source_lang en_XX
""".split()
@ -246,7 +245,7 @@ class TestDeepSpeed(TestCasePlus):
args = [x for x in args if x not in remove_args]
ds_args = f"--deepspeed {self.test_file_dir_str}/ds_config.json".split()
script = [f"{self.examples_dir_str}/seq2seq/run_seq2seq.py"]
script = [f"{self.examples_dir_str}/seq2seq/run_translation.py"]
num_gpus = get_gpu_count() if distributed else 1
launcher = f"deepspeed --num_gpus {num_gpus}".split()

View File

@ -35,7 +35,7 @@ from transformers.trainer_utils import set_seed
bindir = os.path.abspath(os.path.dirname(__file__))
sys.path.append(f"{bindir}/../../seq2seq")
from run_seq2seq import main # noqa
from run_translation import main # noqa
set_seed(42)
@ -209,7 +209,6 @@ class TestTrainerExt(TestCasePlus):
--group_by_length
--label_smoothing_factor 0.1
--adafactor
--task translation
--target_lang ro_RO
--source_lang en_XX
"""
@ -226,12 +225,12 @@ class TestTrainerExt(TestCasePlus):
distributed_args = f"""
-m torch.distributed.launch
--nproc_per_node={n_gpu}
{self.examples_dir_str}/seq2seq/run_seq2seq.py
{self.examples_dir_str}/seq2seq/run_translation.py
""".split()
cmd = [sys.executable] + distributed_args + args
execute_subprocess_async(cmd, env=self.get_env())
else:
testargs = ["run_seq2seq.py"] + args
testargs = ["run_translation.py"] + args
with patch.object(sys, "argv", testargs):
main()