add conversion script, rename conversion scripts

This commit is contained in:
thomwolf 2019-09-05 03:10:11 +02:00
parent a4704b1263
commit 6f152572cd
3 changed files with 65 additions and 0 deletions

View File

@ -0,0 +1,65 @@
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert BERT checkpoint."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import tensorflow as tf
from pytorch_transformers import BertConfig, TFBertForPreTraining, load_pt_weights_in_bert
import logging
logging.basicConfig(level=logging.INFO)
def convert_bert_checkpoint_to_tf(pytorch_checkpoint_path, bert_config_file, tf_dump_path):
# Initialise TF model
config = BertConfig.from_json_file(bert_config_file)
print("Building TensorFlow model from configuration: {}".format(str(config)))
model = TFBertForPreTraining(config)
# Load weights from tf checkpoint
model = load_pt_weights_in_bert(model, config, pytorch_checkpoint_path)
# Save pytorch-model
print("Save TensorFlow model to {}".format(tf_dump_path))
model.save_weights(tf_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--pytorch_checkpoint_path",
default = None,
type = str,
required = True,
help = "Path to the PyTorch checkpoint path.")
parser.add_argument("--bert_config_file",
default = None,
type = str,
required = True,
help = "The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture.")
parser.add_argument("--tf_dump_path",
default = None,
type = str,
required = True,
help = "Path to the output Tensorflow dump file.")
args = parser.parse_args()
convert_bert_checkpoint_to_tf(args.pytorch_checkpoint_path,
args.bert_config_file,
args.tf_dump_path)