mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
[ViTMAE] Add image pretraining script (#15242)
* Add script * Improve script * Fix data collator * Update README * Add label_names argument * Apply suggestions from code review * Add config parameters * Update script * Fix bug * Improve README * Improve README and add test * Fix import * Add image_column_name
This commit is contained in:
parent
d43e308e7f
commit
6c7b68d414
129
examples/pytorch/image-pretraining/README.md
Normal file
129
examples/pytorch/image-pretraining/README.md
Normal file
@ -0,0 +1,129 @@
|
||||
<!---
|
||||
Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
-->
|
||||
|
||||
# Image pretraining examples
|
||||
|
||||
NOTE: If you encounter problems/have suggestions for improvement, open an issue on Github and tag @NielsRogge.
|
||||
|
||||
This directory contains a script, `run_mae.py`, that can be used to pre-train a Vision Transformer as a masked autoencoder (MAE), as proposed in [Masked Autoencoders Are Scalable Vision Learners](https://arxiv.org/abs/2111.06377). The script can be used to train a `ViTMAEForPreTraining` model in the Transformers library, using PyTorch. After self-supervised pre-training, one can load the weights of the encoder directly into a `ViTForImageClassification`. The MAE method allows for learning high-capacity models that generalize well: e.g., a vanilla ViT-Huge model achieves the best accuracy (87.8%) among methods that use only ImageNet-1K data.
|
||||
|
||||
The goal for the model is to predict raw pixel values for the masked patches. As the model internally masks patches and learns to reconstruct them, there's no need for any labels. The model uses the mean squared error (MSE) between the reconstructed and original images in the pixel space.
|
||||
|
||||
## Using datasets from 🤗 `datasets`
|
||||
|
||||
One can use the following command to pre-train a `ViTMAEForPreTraining` model from scratch on the [cifar10](https://huggingface.co/datasets/cifar10) dataset:
|
||||
|
||||
```bash
|
||||
python run_mae.py \
|
||||
--dataset_name cifar10 \
|
||||
--output_dir ./vit-mae-demo \
|
||||
--remove_unused_columns False \
|
||||
--label_names pixel_values \
|
||||
--mask_ratio 0.75 \
|
||||
--norm_pix_loss \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--base_learning_rate 1.5e-4 \
|
||||
--lr_scheduler_type cosine \
|
||||
--weight_decay 0.05 \
|
||||
--num_train_epochs 800 \
|
||||
--warmup_ratio 0.05 \
|
||||
--per_device_train_batch_size 8 \
|
||||
--per_device_eval_batch_size 8 \
|
||||
--logging_strategy steps \
|
||||
--logging_steps 10 \
|
||||
--evaluation_strategy epoch \
|
||||
--save_strategy epoch \
|
||||
--load_best_model_at_end True \
|
||||
--save_total_limit 3 \
|
||||
--seed 1337
|
||||
```
|
||||
|
||||
Here we set:
|
||||
- `mask_ratio` to 0.75 (to mask 75% of the patches for each image)
|
||||
- `norm_pix_loss` to use normalized pixel values as target (the authors reported better representations with this enabled)
|
||||
- `base_learning_rate` to 1.5e-4. Note that the effective learning rate is computed by the [linear schedule](https://arxiv.org/abs/1706.02677): `lr` = `blr` * total training batch size / 256. The total training batch size is computed as `training_args.train_batch_size` * `training_args.gradient_accumulation_steps` * `training_args.world_size`.
|
||||
|
||||
This replicates the same hyperparameters as used in the original implementation, as shown in the table below.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/mae_pretraining_setting.png"
|
||||
alt="drawing" width="300"/>
|
||||
|
||||
<small> Original hyperparameters. Taken from the <a href="https://arxiv.org/abs/2111.06377">original paper</a>. </small>
|
||||
|
||||
Alternatively, one can decide to further pre-train an already pre-trained (or fine-tuned) checkpoint from the [hub](https://huggingface.co/). This can be done by setting the `model_name_or_path` argument to "facebook/vit-mae-base" for example.
|
||||
|
||||
|
||||
## Using your own data
|
||||
|
||||
To use your own dataset, the training script expects the following directory structure:
|
||||
|
||||
```bash
|
||||
root/dog/xxx.png
|
||||
root/dog/xxy.png
|
||||
root/dog/[...]/xxz.png
|
||||
|
||||
root/cat/123.png
|
||||
root/cat/nsdf3.png
|
||||
root/cat/[...]/asd932_.png
|
||||
```
|
||||
|
||||
Note that you can put images in dummy subfolders, whose names will be ignored by default (as labels aren't required). You can also just place all images into a single dummy subfolder. Once you've prepared your dataset, you can run the script like this:
|
||||
|
||||
```bash
|
||||
python run_mae.py \
|
||||
--model_type vit_mae \
|
||||
--dataset_name nateraw/image-folder \
|
||||
--train_dir <path-to-train-root> \
|
||||
--output_dir ./outputs/ \
|
||||
--remove_unused_columns False \
|
||||
--label_names pixel_values \
|
||||
--do_train \
|
||||
--do_eval
|
||||
```
|
||||
|
||||
### 💡 The above will split the train dir into training and evaluation sets
|
||||
- To control the split amount, use the `--train_val_split` flag.
|
||||
- To provide your own validation split in its own directory, you can pass the `--validation_dir <path-to-val-root>` flag.
|
||||
|
||||
|
||||
## Sharing your model on 🤗 Hub
|
||||
|
||||
0. If you haven't already, [sign up](https://huggingface.co/join) for a 🤗 account
|
||||
|
||||
1. Make sure you have `git-lfs` installed and git set up.
|
||||
|
||||
```bash
|
||||
$ apt install git-lfs
|
||||
$ git config --global user.email "you@example.com"
|
||||
$ git config --global user.name "Your Name"
|
||||
```
|
||||
|
||||
2. Log in with your HuggingFace account credentials using `huggingface-cli`
|
||||
|
||||
```bash
|
||||
$ huggingface-cli login
|
||||
# ...follow the prompts
|
||||
```
|
||||
|
||||
3. When running the script, pass the following arguments:
|
||||
|
||||
```bash
|
||||
python run_mae.py \
|
||||
--push_to_hub \
|
||||
--push_to_hub_model_id <name-of-your-model> \
|
||||
...
|
||||
```
|
3
examples/pytorch/image-pretraining/requirements.txt
Normal file
3
examples/pytorch/image-pretraining/requirements.txt
Normal file
@ -0,0 +1,3 @@
|
||||
torch>=1.5.0
|
||||
torchvision>=0.6.0
|
||||
datasets>=1.8.0
|
370
examples/pytorch/image-pretraining/run_mae.py
Normal file
370
examples/pytorch/image-pretraining/run_mae.py
Normal file
@ -0,0 +1,370 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from datasets import load_dataset
|
||||
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
|
||||
import transformers
|
||||
from transformers import (
|
||||
HfArgumentParser,
|
||||
Trainer,
|
||||
TrainingArguments,
|
||||
ViTFeatureExtractor,
|
||||
ViTMAEConfig,
|
||||
ViTMAEForPreTraining,
|
||||
)
|
||||
from transformers.trainer_utils import get_last_checkpoint
|
||||
from transformers.utils import check_min_version
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
|
||||
""" Pre-training a 🤗 ViT model as an MAE (masked autoencoder), as proposed in https://arxiv.org/abs/2111.06377."""
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||
check_min_version("4.16.0.dev0")
|
||||
|
||||
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataTrainingArguments:
|
||||
"""
|
||||
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||
Using `HfArgumentParser` we can turn this class
|
||||
into argparse arguments to be able to specify them on
|
||||
the command line.
|
||||
"""
|
||||
|
||||
dataset_name: Optional[str] = field(
|
||||
default="cifar10", metadata={"help": "Name of a dataset from the datasets package"}
|
||||
)
|
||||
dataset_config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
||||
)
|
||||
image_column_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "The column name of the images in the files."}
|
||||
)
|
||||
train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."})
|
||||
validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."})
|
||||
train_val_split: Optional[float] = field(
|
||||
default=0.15, metadata={"help": "Percent to split off of train for validation."}
|
||||
)
|
||||
max_train_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
|
||||
"value if set."
|
||||
},
|
||||
)
|
||||
max_eval_samples: Optional[int] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
||||
"value if set."
|
||||
},
|
||||
)
|
||||
|
||||
def __post_init__(self):
|
||||
data_files = dict()
|
||||
if self.train_dir is not None:
|
||||
data_files["train"] = self.train_dir
|
||||
if self.validation_dir is not None:
|
||||
data_files["val"] = self.validation_dir
|
||||
self.data_files = data_files if data_files else None
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
"""
|
||||
Arguments pertaining to which model/config/feature extractor we are going to pre-train.
|
||||
"""
|
||||
|
||||
model_name_or_path: str = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "The model checkpoint for weights initialization."
|
||||
"Don't set if you want to train a model from scratch."
|
||||
},
|
||||
)
|
||||
config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"}
|
||||
)
|
||||
config_overrides: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={
|
||||
"help": "Override some existing default config settings when a model is trained from scratch. Example: "
|
||||
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
|
||||
},
|
||||
)
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
||||
)
|
||||
model_revision: str = field(
|
||||
default="main",
|
||||
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||
)
|
||||
feature_extractor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
|
||||
use_auth_token: bool = field(
|
||||
default=False,
|
||||
metadata={
|
||||
"help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
|
||||
"with private models)."
|
||||
},
|
||||
)
|
||||
mask_ratio: float = field(
|
||||
default=0.75, metadata={"help": "The ratio of the number of masked tokens in the input sequence."}
|
||||
)
|
||||
norm_pix_loss: bool = field(
|
||||
default=True, metadata={"help": "Whether or not to train with normalized pixel values as target."}
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class CustomTrainingArguments(TrainingArguments):
|
||||
base_learning_rate: float = field(
|
||||
default=1e-3, metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."}
|
||||
)
|
||||
|
||||
|
||||
def collate_fn(examples):
|
||||
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
||||
return {"pixel_values": pixel_values}
|
||||
|
||||
|
||||
def main():
|
||||
# See all possible arguments in src/transformers/training_args.py
|
||||
# or by passing the --help flag to this script.
|
||||
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
||||
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments))
|
||||
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||
# If we pass only one argument to the script and it's the path to a json file,
|
||||
# let's parse it to get our arguments.
|
||||
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
||||
else:
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
handlers=[logging.StreamHandler(sys.stdout)],
|
||||
)
|
||||
|
||||
log_level = training_args.get_process_log_level()
|
||||
logger.setLevel(log_level)
|
||||
transformers.utils.logging.set_verbosity(log_level)
|
||||
transformers.utils.logging.enable_default_handler()
|
||||
transformers.utils.logging.enable_explicit_format()
|
||||
|
||||
# Log on each process the small summary:
|
||||
logger.warning(
|
||||
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
||||
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
|
||||
)
|
||||
logger.info(f"Training/evaluation parameters {training_args}")
|
||||
|
||||
# Detecting last checkpoint.
|
||||
last_checkpoint = None
|
||||
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
||||
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
||||
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
||||
raise ValueError(
|
||||
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
||||
"Use --overwrite_output_dir to overcome."
|
||||
)
|
||||
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
||||
logger.info(
|
||||
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
||||
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
||||
)
|
||||
|
||||
# Initialize our dataset.
|
||||
ds = load_dataset(
|
||||
data_args.dataset_name,
|
||||
data_args.dataset_config_name,
|
||||
data_files=data_args.data_files,
|
||||
cache_dir=model_args.cache_dir,
|
||||
)
|
||||
|
||||
# If we don't have a validation split, split off a percentage of train as validation.
|
||||
data_args.train_val_split = None if "validation" in ds.keys() else data_args.train_val_split
|
||||
if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
|
||||
split = ds["train"].train_test_split(data_args.train_val_split)
|
||||
ds["train"] = split["train"]
|
||||
ds["validation"] = split["test"]
|
||||
|
||||
# Load pretrained model and feature extractor
|
||||
#
|
||||
# Distributed training:
|
||||
# The .from_pretrained methods guarantee that only one local process can concurrently
|
||||
# download model & vocab.
|
||||
config_kwargs = {
|
||||
"cache_dir": model_args.cache_dir,
|
||||
"revision": model_args.model_revision,
|
||||
"use_auth_token": True if model_args.use_auth_token else None,
|
||||
}
|
||||
if model_args.config_name:
|
||||
config = ViTMAEConfig.from_pretrained(model_args.config_name, **config_kwargs)
|
||||
elif model_args.model_name_or_path:
|
||||
config = ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
||||
else:
|
||||
config = ViTMAEConfig()
|
||||
logger.warning("You are instantiating a new config instance from scratch.")
|
||||
if model_args.config_overrides is not None:
|
||||
logger.info(f"Overriding config: {model_args.config_overrides}")
|
||||
config.update_from_string(model_args.config_overrides)
|
||||
logger.info(f"New config: {config}")
|
||||
|
||||
# adapt config
|
||||
config.update(
|
||||
{
|
||||
"mask_ratio": model_args.mask_ratio,
|
||||
"norm_pix_loss": model_args.norm_pix_loss,
|
||||
}
|
||||
)
|
||||
|
||||
# create feature extractor
|
||||
if model_args.feature_extractor_name:
|
||||
feature_extractor = ViTFeatureExtractor.from_pretrained(model_args.feature_extractor_name, **config_kwargs)
|
||||
elif model_args.model_name_or_path:
|
||||
feature_extractor = ViTFeatureExtractor.from_pretrained(model_args.model_name_or_path, **config_kwargs)
|
||||
else:
|
||||
feature_extractor = ViTFeatureExtractor()
|
||||
|
||||
# create model
|
||||
if model_args.model_name_or_path:
|
||||
model = ViTMAEForPreTraining.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
revision=model_args.model_revision,
|
||||
use_auth_token=True if model_args.use_auth_token else None,
|
||||
)
|
||||
else:
|
||||
logger.info("Training new model from scratch")
|
||||
model = ViTMAEForPreTraining(config)
|
||||
|
||||
if training_args.do_train:
|
||||
column_names = ds["train"].column_names
|
||||
else:
|
||||
column_names = ds["validation"].column_names
|
||||
|
||||
if data_args.image_column_name is not None:
|
||||
image_column_name = data_args.image_column_name
|
||||
elif "image" in column_names:
|
||||
image_column_name = "image"
|
||||
elif "img" in column_names:
|
||||
image_column_name = "img"
|
||||
else:
|
||||
image_column_name = column_names[0]
|
||||
|
||||
# transformations as done in original MAE paper
|
||||
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
|
||||
transforms = Compose(
|
||||
[
|
||||
Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
|
||||
RandomResizedCrop(feature_extractor.size, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC),
|
||||
RandomHorizontalFlip(),
|
||||
ToTensor(),
|
||||
Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std),
|
||||
]
|
||||
)
|
||||
|
||||
def preprocess_images(examples):
|
||||
"""Preprocess a batch of images by applying transforms."""
|
||||
|
||||
examples["pixel_values"] = [transforms(image) for image in examples[image_column_name]]
|
||||
return examples
|
||||
|
||||
if training_args.do_train:
|
||||
if "train" not in ds:
|
||||
raise ValueError("--do_train requires a train dataset")
|
||||
if data_args.max_train_samples is not None:
|
||||
ds["train"] = ds["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
|
||||
# Set the training transforms
|
||||
ds["train"].set_transform(preprocess_images)
|
||||
|
||||
if training_args.do_eval:
|
||||
if "validation" not in ds:
|
||||
raise ValueError("--do_eval requires a validation dataset")
|
||||
if data_args.max_eval_samples is not None:
|
||||
ds["validation"] = (
|
||||
ds["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
|
||||
)
|
||||
# Set the validation transforms
|
||||
ds["validation"].set_transform(preprocess_images)
|
||||
|
||||
# Compute absolute learning rate
|
||||
total_train_batch_size = (
|
||||
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
|
||||
)
|
||||
if training_args.base_learning_rate is not None:
|
||||
training_args.learning_rate = training_args.base_learning_rate * total_train_batch_size / 256
|
||||
|
||||
# Initialize our trainer
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=ds["train"] if training_args.do_train else None,
|
||||
eval_dataset=ds["validation"] if training_args.do_eval else None,
|
||||
tokenizer=feature_extractor,
|
||||
data_collator=collate_fn,
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
checkpoint = None
|
||||
if training_args.resume_from_checkpoint is not None:
|
||||
checkpoint = training_args.resume_from_checkpoint
|
||||
elif last_checkpoint is not None:
|
||||
checkpoint = last_checkpoint
|
||||
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
||||
trainer.save_model()
|
||||
trainer.log_metrics("train", train_result.metrics)
|
||||
trainer.save_metrics("train", train_result.metrics)
|
||||
trainer.save_state()
|
||||
|
||||
# Evaluation
|
||||
if training_args.do_eval:
|
||||
metrics = trainer.evaluate()
|
||||
trainer.log_metrics("eval", metrics)
|
||||
trainer.save_metrics("eval", metrics)
|
||||
|
||||
# Write model card and (optionally) push to hub
|
||||
kwargs = {
|
||||
"tasks": "masked-auto-encoding",
|
||||
"dataset": data_args.dataset_name,
|
||||
"tags": ["masked-auto-encoding"],
|
||||
}
|
||||
if training_args.push_to_hub:
|
||||
trainer.push_to_hub(**kwargs)
|
||||
else:
|
||||
trainer.create_model_card(**kwargs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -23,7 +23,7 @@ from unittest.mock import patch
|
||||
|
||||
import torch
|
||||
|
||||
from transformers import Wav2Vec2ForPreTraining
|
||||
from transformers import ViTMAEForPreTraining, Wav2Vec2ForPreTraining
|
||||
from transformers.file_utils import is_apex_available
|
||||
from transformers.testing_utils import CaptureLogger, TestCasePlus, get_gpu_count, slow, torch_device
|
||||
|
||||
@ -43,6 +43,7 @@ SRC_DIRS = [
|
||||
"speech-recognition",
|
||||
"audio-classification",
|
||||
"speech-pretraining",
|
||||
"image-pretraining",
|
||||
]
|
||||
]
|
||||
sys.path.extend(SRC_DIRS)
|
||||
@ -54,6 +55,7 @@ if SRC_DIRS is not None:
|
||||
import run_generation
|
||||
import run_glue
|
||||
import run_image_classification
|
||||
import run_mae
|
||||
import run_mlm
|
||||
import run_ner
|
||||
import run_qa as run_squad
|
||||
@ -570,3 +572,34 @@ class ExamplesTests(TestCasePlus):
|
||||
run_wav2vec2_pretraining_no_trainer.main()
|
||||
model = Wav2Vec2ForPreTraining.from_pretrained(tmp_dir)
|
||||
self.assertIsNotNone(model)
|
||||
|
||||
def test_run_vit_mae_pretraining(self):
|
||||
stream_handler = logging.StreamHandler(sys.stdout)
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
tmp_dir = self.get_auto_remove_tmp_dir()
|
||||
testargs = f"""
|
||||
run_mae.py
|
||||
--output_dir {tmp_dir}
|
||||
--dataset_name hf-internal-testing/cats_vs_dogs_sample
|
||||
--do_train
|
||||
--do_eval
|
||||
--learning_rate 1e-4
|
||||
--per_device_train_batch_size 2
|
||||
--per_device_eval_batch_size 1
|
||||
--remove_unused_columns False
|
||||
--overwrite_output_dir True
|
||||
--dataloader_num_workers 16
|
||||
--metric_for_best_model accuracy
|
||||
--max_steps 10
|
||||
--train_val_split 0.1
|
||||
--seed 42
|
||||
""".split()
|
||||
|
||||
if is_cuda_and_apex_available():
|
||||
testargs.append("--fp16")
|
||||
|
||||
with patch.object(sys, "argv", testargs):
|
||||
run_mae.main()
|
||||
model = ViTMAEForPreTraining.from_pretrained(tmp_dir)
|
||||
self.assertIsNotNone(model)
|
||||
|
@ -49,7 +49,7 @@ class ViTMAEConfig(PretrainedConfig):
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
||||
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
||||
`"relu"`, `"selu"` and `"gelu_new"` are supported.
|
||||
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
||||
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||||
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
||||
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
@ -76,7 +76,8 @@ class ViTMAEConfig(PretrainedConfig):
|
||||
mask_ratio (`float`, *optional*, defaults to 0.75):
|
||||
The ratio of the number of masked tokens in the input sequence.
|
||||
norm_pix_loss (`bool`, *optional*, defaults to `False`):
|
||||
Whether train with normalized pixels (see Table 3 in the paper).
|
||||
Whether or not to train with normalized pixels (see Table 3 in the paper). Using normalized pixels improved
|
||||
representation quality in the experiments of the authors.
|
||||
|
||||
Example:
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user