Blip: get/set input embeddings correctly (#34152)

* set-get embeds

* add tests

* fix tests

* remove

* return dict True

* fix tests

* why did i remove this

* enabel torchscript tests
This commit is contained in:
Raushan Turganbay 2024-11-01 08:39:39 +01:00 committed by GitHub
parent b53e44e847
commit 6beb3f1691
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 288 additions and 32 deletions

View File

@ -795,6 +795,12 @@ class BlipModel(BlipPreTrainedModel):
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.text_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.text_model.set_input_embeddings(value)
@add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
@ -1053,8 +1059,11 @@ class BlipForConditionalGeneration(BlipPreTrainedModel, GenerationMixin):
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
def get_input_embeddings(self):
return self.text_decoder.get_input_embeddings()
def set_input_embeddings(self, value):
self.text_decoder.set_input_embeddings(value)
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BlipForConditionalGenerationModelOutput, config_class=BlipVisionConfig)
@ -1117,7 +1126,8 @@ class BlipForConditionalGeneration(BlipPreTrainedModel, GenerationMixin):
)
if not return_dict:
outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:]
outputs = (outputs[0], outputs[1]) if labels is not None else (outputs[0],)
outputs += (image_embeds, vision_outputs[0]) + vision_outputs[2:]
return tuple(output for output in outputs if output is not None)
return BlipForConditionalGenerationModelOutput(
@ -1232,8 +1242,12 @@ class BlipForQuestionAnswering(BlipPreTrainedModel):
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
def set_input_embeddings(self, value):
self.text_encoder.set_input_embeddings(value)
def get_input_embeddings(self):
# This will return shared embeddings if they are shared else specific to encoder.
return self.text_encoder.get_input_embeddings()
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig)
@ -1474,8 +1488,11 @@ class BlipForImageTextRetrieval(BlipPreTrainedModel):
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
def get_input_embeddings(self):
return self.text_encoder.get_input_embeddings()
def set_input_embeddings(self, value):
self.text_encoder.set_input_embeddings(value)
@add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BlipTextVisionModelOutput, config_class=BlipVisionConfig)

View File

@ -817,6 +817,12 @@ class BlipTextLMHeadModel(BlipTextPreTrainedModel, GenerationMixin):
self.cls = BlipTextOnlyMLMHead(config)
self.label_smoothing = config.label_smoothing
def get_input_embeddings(self):
return self.bert.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
self.bert.set_input_embeddings(new_embeddings)
def get_output_embeddings(self):
return self.cls.predictions.decoder

View File

@ -1768,11 +1768,12 @@ class Blip2Model(Blip2PreTrainedModel):
decoder_attention_mask=decoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
return_dict=True, # toggle for easier access to loss/logits below
labels=labels,
)
loss = outputs.loss if return_dict else outputs[0]
logits = outputs.logits if return_dict else outputs[1]
loss = outputs.loss
logits = outputs.logits
outputs = outputs.to_tuple() if not return_dict else outputs
if not return_dict:
output = (logits, vision_outputs, query_outputs, outputs)
@ -1810,6 +1811,12 @@ class Blip2TextModelWithProjection(Blip2PreTrainedModel):
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
@add_start_docstrings_to_model_forward(BLIP_2_TEXT_WITH_PROJECTION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Blip2TextModelOutput, config_class=Blip2Config)
def forward(
@ -2233,11 +2240,12 @@ class Blip2ForConditionalGeneration(Blip2PreTrainedModel, GenerationMixin):
decoder_attention_mask=decoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
return_dict=True, # toggle for easier access to loss/logits below
labels=labels,
)
loss = outputs.loss if return_dict else outputs[0]
logits = outputs.logits if return_dict else outputs[1]
loss = outputs.loss
logits = outputs.logits
outputs = outputs.to_tuple() if not return_dict else outputs
if not return_dict:
output = (logits, vision_outputs, query_outputs, outputs)
@ -2389,6 +2397,12 @@ class Blip2ForImageTextRetrieval(Blip2PreTrainedModel):
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
@add_start_docstrings_to_model_forward(BLIP2_IMAGE_TEXT_RETRIEVAL_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Blip2ImageTextMatchingModelOutput, config_class=Blip2Config)
def forward(

View File

@ -444,7 +444,7 @@ class BlipModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_resize_embeddings = True
test_attention_outputs = False
def setUp(self):
@ -738,7 +738,6 @@ class BlipTextImageModelsModelTester:
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"labels": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
}
@ -787,10 +786,10 @@ class BlipVQAModelTester:
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"labels": input_ids,
"decoder_input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
"labels": input_ids,
}
return config, inputs_dict
@ -802,7 +801,7 @@ class BlipVQAModelTest(ModelTesterMixin, unittest.TestCase):
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
@ -811,7 +810,6 @@ class BlipVQAModelTest(ModelTesterMixin, unittest.TestCase):
def _prepare_inputs_for_vqa(self):
_, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict["labels"] = inputs_dict["input_ids"]
inputs_dict["decoder_input_ids"] = inputs_dict["input_ids"]
inputs_dict.pop("return_loss")
return inputs_dict
@ -882,7 +880,7 @@ class BlipTextRetrievalModelTest(ModelTesterMixin, unittest.TestCase):
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
@ -1110,7 +1108,7 @@ class BlipTextImageModelTest(ModelTesterMixin, unittest.TestCase):
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False

View File

@ -15,6 +15,7 @@
"""Testing suite for the PyTorch BLIP-2 model."""
import inspect
import os
import tempfile
import unittest
@ -32,7 +33,7 @@ from transformers.testing_utils import (
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
from transformers.utils import is_torch_available, is_torch_sdpa_available, is_vision_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
@ -443,7 +444,6 @@ class Blip2ForConditionalGenerationDecoderOnlyModelTester:
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": input_ids,
}
return config, inputs_dict
@ -456,7 +456,7 @@ class Blip2ForConditionalGenerationDecoderOnlyTest(ModelTesterMixin, GenerationT
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
test_torchscript = False
test_torchscript = True
_is_composite = True
def setUp(self):
@ -466,6 +466,116 @@ class Blip2ForConditionalGenerationDecoderOnlyTest(ModelTesterMixin, GenerationT
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
def _create_and_check_torchscript(self, config, inputs_dict):
# overwrite because BLIP requires ipnut ids and pixel values as input
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to `False`")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
for model_class in self.all_model_classes:
for attn_implementation in ["eager", "sdpa"]:
if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
continue
configs_no_init._attn_implementation = attn_implementation
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
if model.config.is_encoder_decoder:
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
main_input = inputs[main_input_name]
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
decoder_input_ids = inputs["decoder_input_ids"]
decoder_attention_mask = inputs["decoder_attention_mask"]
model(main_input, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
traced_model = torch.jit.trace(
model, (main_input, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
)
else:
main_input = inputs[main_input_name]
input_ids = inputs["input_ids"]
if model.config._attn_implementation == "sdpa":
trace_input = {main_input_name: main_input, "input_ids": input_ids}
if "attention_mask" in inputs:
trace_input["attention_mask"] = inputs["attention_mask"]
else:
self.skipTest(reason="testing SDPA without attention_mask is not supported")
model(main_input, attention_mask=inputs["attention_mask"])
# example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
else:
model(main_input, input_ids)
traced_model = torch.jit.trace(model, (main_input, input_ids))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@ -754,7 +864,6 @@ class Blip2ModelTester:
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"labels": labels,
}
return config, inputs_dict
@ -775,9 +884,9 @@ class Blip2ModelTest(ModelTesterMixin, PipelineTesterMixin, GenerationTesterMixi
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
test_torchscript = True
_is_composite = True
# TODO: Fix the failed tests
@ -804,6 +913,116 @@ class Blip2ModelTest(ModelTesterMixin, PipelineTesterMixin, GenerationTesterMixi
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
def _create_and_check_torchscript(self, config, inputs_dict):
# overwrite because BLIP requires ipnut ids and pixel values as input
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to `False`")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
for model_class in self.all_model_classes:
for attn_implementation in ["eager", "sdpa"]:
if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
continue
configs_no_init._attn_implementation = attn_implementation
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
if model.config.is_encoder_decoder:
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
main_input = inputs[main_input_name]
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
decoder_input_ids = inputs["decoder_input_ids"]
decoder_attention_mask = inputs["decoder_attention_mask"]
model(main_input, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
traced_model = torch.jit.trace(
model, (main_input, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
)
else:
main_input = inputs[main_input_name]
input_ids = inputs["input_ids"]
if model.config._attn_implementation == "sdpa":
trace_input = {main_input_name: main_input, "input_ids": input_ids}
if "attention_mask" in inputs:
trace_input["attention_mask"] = inputs["attention_mask"]
else:
self.skipTest(reason="testing SDPA without attention_mask is not supported")
model(main_input, attention_mask=inputs["attention_mask"])
# example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
else:
model(main_input, input_ids)
traced_model = torch.jit.trace(model, (main_input, input_ids))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@ -942,7 +1161,7 @@ class Blip2ModelTest(ModelTesterMixin, PipelineTesterMixin, GenerationTesterMixi
def test_get_image_features(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
keys_to_pop = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"]
keys_to_pop = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
for key in keys_to_pop:
inputs_dict.pop(key)
@ -962,7 +1181,7 @@ class Blip2ModelTest(ModelTesterMixin, PipelineTesterMixin, GenerationTesterMixi
def test_get_qformer_features(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
keys_to_pop = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"]
keys_to_pop = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
for key in keys_to_pop:
inputs_dict.pop(key)
@ -1072,7 +1291,7 @@ class Blip2TextModelWithProjectionTest(ModelTesterMixin, unittest.TestCase):
test_pruning = False
test_head_masking = False
test_resize_embeddings = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
@ -1396,7 +1615,7 @@ class Blip2TextRetrievalModelTest(ModelTesterMixin, unittest.TestCase):
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False

View File

@ -459,7 +459,7 @@ class InstructBlipForConditionalGenerationDecoderOnlyTest(ModelTesterMixin, Gene
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
_is_composite = True

View File

@ -479,7 +479,7 @@ class InstructBlipVideoForConditionalGenerationDecoderOnlyTest(
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
_is_composite = True

View File

@ -1811,6 +1811,7 @@ class ModelTesterMixin:
original_config,
inputs_dict,
) = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict.pop("labels", None)
for model_class in self.all_model_classes:
config = copy.deepcopy(original_config)
@ -1988,6 +1989,7 @@ class ModelTesterMixin:
original_config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
original_config.tie_word_embeddings = False
inputs_dict.pop("labels", None)
# if model cannot untied embeddings -> leave test
if original_config.tie_word_embeddings: