mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Remove trailing whitespace in README.
This commit is contained in:
parent
c11b3e2926
commit
698f9e3d7a
12
README.md
12
README.md
@ -251,7 +251,7 @@ valid_dataset = glue_convert_examples_to_features(data['validation'], tokenizer,
|
||||
train_dataset = train_dataset.shuffle(100).batch(32).repeat(2)
|
||||
valid_dataset = valid_dataset.batch(64)
|
||||
|
||||
# Prepare training: Compile tf.keras model with optimizer, loss and learning rate schedule
|
||||
# Prepare training: Compile tf.keras model with optimizer, loss and learning rate schedule
|
||||
optimizer = tf.keras.optimizers.Adam(learning_rate=3e-5, epsilon=1e-08, clipnorm=1.0)
|
||||
loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
|
||||
metric = tf.keras.metrics.SparseCategoricalAccuracy('accuracy')
|
||||
@ -281,7 +281,7 @@ print("sentence_2 is", "a paraphrase" if pred_2 else "not a paraphrase", "of sen
|
||||
|
||||
## Quick tour of the fine-tuning/usage scripts
|
||||
|
||||
**Important**
|
||||
**Important**
|
||||
Before running the fine-tuning scripts, please read the
|
||||
[instructions](#run-the-examples) on how to
|
||||
setup your environment to run the examples.
|
||||
@ -442,7 +442,7 @@ python ./examples/run_generation.py \
|
||||
--model_name_or_path=gpt2 \
|
||||
```
|
||||
|
||||
and from the Salesforce CTRL model:
|
||||
and from the Salesforce CTRL model:
|
||||
```shell
|
||||
python ./examples/run_generation.py \
|
||||
--model_type=ctrl \
|
||||
@ -495,13 +495,13 @@ transformers-cli ls
|
||||
## Quick tour of pipelines
|
||||
|
||||
New in version `v2.3`: `Pipeline` are high-level objects which automatically handle tokenization, running your data through a transformers model
|
||||
and outputting the result in a structured object.
|
||||
and outputting the result in a structured object.
|
||||
|
||||
You can create `Pipeline` objects for the following down-stream tasks:
|
||||
|
||||
- `feature-extraction`: Generates a tensor representation for the input sequence
|
||||
- `ner`: Generates named entity mapping for each word in the input sequence.
|
||||
- `sentiment-analysis`: Gives the polarity (positive / negative) of the whole input sequence.
|
||||
- `sentiment-analysis`: Gives the polarity (positive / negative) of the whole input sequence.
|
||||
- `question-answering`: Provided some context and a question refering to the context, it will extract the answer to the question
|
||||
in the context.
|
||||
|
||||
@ -516,7 +516,7 @@ nlp('We are very happy to include pipeline into the transformers repository.')
|
||||
# Allocate a pipeline for question-answering
|
||||
nlp = pipeline('question-answering')
|
||||
nlp({
|
||||
'question': 'What is the name of the repository ?',
|
||||
'question': 'What is the name of the repository ?',
|
||||
'context': 'Pipeline have been included in the huggingface/transformers repository'
|
||||
})
|
||||
>>> {'score': 0.28756016668193496, 'start': 35, 'end': 59, 'answer': 'huggingface/transformers'}
|
||||
|
Loading…
Reference in New Issue
Block a user