mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Allow resume_from_checkpoint
to handle auto_find_batch_size
(#27568)
* Fuffill request * Add test * Better test * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com> * Better test * Better test * MOre comments --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> Co-authored-by: Arthur <48595927+ArthurZucker@users.noreply.github.com>
This commit is contained in:
parent
aa7ab98e72
commit
6757ed28ce
@ -1507,6 +1507,10 @@ class Trainer:
|
||||
and not self.is_fsdp_enabled
|
||||
):
|
||||
self._load_from_checkpoint(resume_from_checkpoint)
|
||||
# In case of repeating the find_executable_batch_size, set `self._train_batch_size` properly
|
||||
state = TrainerState.load_from_json(os.path.join(resume_from_checkpoint, TRAINER_STATE_NAME))
|
||||
if state.train_batch_size is not None:
|
||||
self._train_batch_size = state.train_batch_size
|
||||
|
||||
# If model was re-initialized, put it on the right device and update self.model_wrapped
|
||||
if model_reloaded:
|
||||
@ -1542,6 +1546,8 @@ class Trainer:
|
||||
):
|
||||
self.accelerator.free_memory()
|
||||
self._train_batch_size = batch_size
|
||||
if self.args.auto_find_batch_size:
|
||||
self.state.train_batch_size = self._train_batch_size
|
||||
logger.debug(f"Currently training with a batch size of: {self._train_batch_size}")
|
||||
# Data loader and number of training steps
|
||||
train_dataloader = self.get_train_dataloader()
|
||||
@ -1618,6 +1624,7 @@ class Trainer:
|
||||
|
||||
self.state = TrainerState()
|
||||
self.state.is_hyper_param_search = trial is not None
|
||||
self.state.train_batch_size = self._train_batch_size
|
||||
|
||||
# Compute absolute values for logging, eval, and save if given as ratio
|
||||
if args.logging_steps is not None:
|
||||
|
@ -59,6 +59,9 @@ class TrainerState:
|
||||
Run an evaluation every X steps.
|
||||
save_steps (`int`, *optional*, defaults to 500):
|
||||
Save checkpoint every X updates steps.
|
||||
train_batch_size (`int`, *optional*):
|
||||
The batch size for the training dataloader. Only needed when
|
||||
`auto_find_batch_size` has been used.
|
||||
num_input_tokens_seen (`int`, *optional*, defaults to 0):
|
||||
The number of tokens seen during training (number of input tokens, not the number of prediction tokens).
|
||||
total_flos (`float`, *optional*, defaults to 0):
|
||||
@ -88,6 +91,7 @@ class TrainerState:
|
||||
logging_steps: int = 500
|
||||
eval_steps: int = 500
|
||||
save_steps: int = 500
|
||||
train_batch_size: int = None
|
||||
num_train_epochs: int = 0
|
||||
num_input_tokens_seen: int = 0
|
||||
total_flos: float = 0
|
||||
|
@ -38,6 +38,7 @@ from transformers import (
|
||||
AutoTokenizer,
|
||||
IntervalStrategy,
|
||||
PretrainedConfig,
|
||||
TrainerCallback,
|
||||
TrainingArguments,
|
||||
get_polynomial_decay_schedule_with_warmup,
|
||||
is_torch_available,
|
||||
@ -1546,6 +1547,41 @@ class TrainerIntegrationTest(TestCasePlus, TrainerIntegrationCommon):
|
||||
with patch.object(sys, "argv", testargs):
|
||||
run_glue.main()
|
||||
|
||||
def test_auto_batch_size_with_resume_from_checkpoint(self):
|
||||
train_dataset = RegressionDataset(length=128)
|
||||
|
||||
config = RegressionModelConfig(a=0, b=2)
|
||||
model = RegressionRandomPreTrainedModel(config)
|
||||
|
||||
tmp_dir = self.get_auto_remove_tmp_dir()
|
||||
|
||||
class MockCudaOOMCallback(TrainerCallback):
|
||||
def on_step_end(self, args, state, control, **kwargs):
|
||||
# simulate OOM on the first step
|
||||
if state.train_batch_size == 16:
|
||||
raise RuntimeError("CUDA out of memory.")
|
||||
|
||||
args = RegressionTrainingArguments(
|
||||
tmp_dir,
|
||||
do_train=True,
|
||||
max_steps=2,
|
||||
save_steps=1,
|
||||
per_device_train_batch_size=16,
|
||||
auto_find_batch_size=True,
|
||||
)
|
||||
trainer = Trainer(model, args, train_dataset=train_dataset, callbacks=[MockCudaOOMCallback()])
|
||||
trainer.train()
|
||||
# After `auto_find_batch_size` is ran we should now be at 8
|
||||
self.assertEqual(trainer._train_batch_size, 8)
|
||||
|
||||
# We can then make a new Trainer
|
||||
trainer = Trainer(model, args, train_dataset=train_dataset)
|
||||
# Check we are at 16 to start
|
||||
self.assertEqual(trainer._train_batch_size, 16)
|
||||
trainer.train(resume_from_checkpoint=True)
|
||||
# We should be back to 8 again, picking up based upon the last ran Trainer
|
||||
self.assertEqual(trainer._train_batch_size, 8)
|
||||
|
||||
# regression for this issue: https://github.com/huggingface/transformers/issues/12970
|
||||
def test_training_with_resume_from_checkpoint_false(self):
|
||||
train_dataset = RegressionDataset(length=128)
|
||||
|
Loading…
Reference in New Issue
Block a user