mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00
Fix GLM4 checkpoints (#38412)
* fix * fix * fix * fix * fix * fix * test style bot * Apply style fixes --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com> Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
This commit is contained in:
parent
2872e8bac5
commit
66da700145
@ -22,7 +22,7 @@ class Glm4Config(PretrainedConfig):
|
|||||||
This is the configuration class to store the configuration of a [`Glm4Model`]. It is used to instantiate an Glm4
|
This is the configuration class to store the configuration of a [`Glm4Model`]. It is used to instantiate an Glm4
|
||||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||||
defaults will yield a similar configuration to that of the Glm4-4-9b-chat.
|
defaults will yield a similar configuration to that of the Glm4-4-9b-chat.
|
||||||
e.g. [THUDM/glm-4-0414-9b-chat-chat](https://huggingface.co/THUDM/glm-4-0414-9b-chat-chat)
|
e.g. [THUDM/GLM-4-9B-0414](https://huggingface.co/THUDM/GLM-4-9B-0414)
|
||||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||||
documentation from [`PretrainedConfig`] for more information.
|
documentation from [`PretrainedConfig`] for more information.
|
||||||
Args:
|
Args:
|
||||||
|
@ -551,8 +551,8 @@ class Glm4ForCausalLM(Glm4PreTrainedModel, GenerationMixin):
|
|||||||
```python
|
```python
|
||||||
>>> from transformers import AutoTokenizer, Glm4ForCausalLM
|
>>> from transformers import AutoTokenizer, Glm4ForCausalLM
|
||||||
|
|
||||||
>>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-Chat-0414")
|
>>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-0414")
|
||||||
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-Chat-0414")
|
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-0414")
|
||||||
|
|
||||||
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
||||||
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
||||||
|
@ -31,7 +31,7 @@ from .modeling_glm4 import Glm4RMSNorm
|
|||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
logger = logging.get_logger(__name__)
|
||||||
|
|
||||||
_CHECKPOINT_FOR_DOC = "THUDM/GLM-4-9B-Chat-0414"
|
_CHECKPOINT_FOR_DOC = "THUDM/GLM-4-9B-0414"
|
||||||
|
|
||||||
|
|
||||||
class Glm4MLP(Phi3MLP):
|
class Glm4MLP(Phi3MLP):
|
||||||
@ -119,8 +119,8 @@ class Glm4ForCausalLM(GlmForCausalLM):
|
|||||||
```python
|
```python
|
||||||
>>> from transformers import AutoTokenizer, Glm4ForCausalLM
|
>>> from transformers import AutoTokenizer, Glm4ForCausalLM
|
||||||
|
|
||||||
>>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-Chat-0414")
|
>>> model = Glm4ForCausalLM.from_pretrained("THUDM/GLM-4-9B-0414")
|
||||||
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-Chat-0414")
|
>>> tokenizer = AutoTokenizer.from_pretrained("THUDM/GLM-4-9B-0414")
|
||||||
|
|
||||||
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
||||||
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
||||||
|
@ -20,6 +20,8 @@ import pytest
|
|||||||
|
|
||||||
from transformers import AutoModelForCausalLM, AutoTokenizer, Glm4Config, is_torch_available
|
from transformers import AutoModelForCausalLM, AutoTokenizer, Glm4Config, is_torch_available
|
||||||
from transformers.testing_utils import (
|
from transformers.testing_utils import (
|
||||||
|
Expectations,
|
||||||
|
cleanup,
|
||||||
require_flash_attn,
|
require_flash_attn,
|
||||||
require_torch,
|
require_torch,
|
||||||
require_torch_large_gpu,
|
require_torch_large_gpu,
|
||||||
@ -80,113 +82,142 @@ class Glm4ModelTest(CausalLMModelTest, unittest.TestCase):
|
|||||||
@require_torch_large_gpu
|
@require_torch_large_gpu
|
||||||
class Glm4IntegrationTest(unittest.TestCase):
|
class Glm4IntegrationTest(unittest.TestCase):
|
||||||
input_text = ["Hello I am doing", "Hi today"]
|
input_text = ["Hello I am doing", "Hi today"]
|
||||||
model_id = "THUDM/glm-4-0414-9b-chat"
|
model_id = "THUDM/GLM-4-9B-0414"
|
||||||
revision = "refs/pr/15"
|
|
||||||
|
def tearDown(self):
|
||||||
|
cleanup(torch_device, gc_collect=True)
|
||||||
|
|
||||||
def test_model_9b_fp16(self):
|
def test_model_9b_fp16(self):
|
||||||
EXPECTED_TEXTS = [
|
EXPECTED_TEXTS = Expectations(
|
||||||
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
{
|
||||||
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
("cuda", 7): [],
|
||||||
]
|
("cuda", 8): [
|
||||||
|
"Hello I am doing a project on the history of the internet and I need to know what the first website was and what",
|
||||||
|
"Hi today I am going to tell you about the most common disease in the world. This disease is called diabetes",
|
||||||
|
],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation()
|
||||||
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16, revision=self.revision
|
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.float16
|
||||||
).to(torch_device)
|
).to(torch_device)
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||||
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
||||||
|
|
||||||
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
||||||
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
||||||
|
|
||||||
self.assertEqual(output_text, EXPECTED_TEXTS)
|
self.assertEqual(output_text, EXPECTED_TEXT)
|
||||||
|
|
||||||
def test_model_9b_bf16(self):
|
def test_model_9b_bf16(self):
|
||||||
EXPECTED_TEXTS = [
|
EXPECTED_TEXTS = Expectations(
|
||||||
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
{
|
||||||
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
("cuda", 7): [],
|
||||||
]
|
("cuda", 8): [
|
||||||
|
"Hello I am doing a project on the history of the internet and I need to know what the first website was and what",
|
||||||
|
"Hi today I am going to tell you about the most common disease in the world. This disease is called diabetes",
|
||||||
|
],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation()
|
||||||
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16, revision=self.revision
|
self.model_id, low_cpu_mem_usage=True, torch_dtype=torch.bfloat16
|
||||||
).to(torch_device)
|
).to(torch_device)
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||||
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
||||||
|
|
||||||
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
||||||
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
||||||
|
|
||||||
self.assertEqual(output_text, EXPECTED_TEXTS)
|
self.assertEqual(output_text, EXPECTED_TEXT)
|
||||||
|
|
||||||
def test_model_9b_eager(self):
|
def test_model_9b_eager(self):
|
||||||
EXPECTED_TEXTS = [
|
EXPECTED_TEXTS = Expectations(
|
||||||
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
{
|
||||||
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
("cuda", 7): [],
|
||||||
]
|
("cuda", 8): [
|
||||||
|
"Hello I am doing a project on the history of the internet and I need to know what the first website was and what",
|
||||||
|
"Hi today I am going to tell you about the most common disease in the world. This disease is called diabetes",
|
||||||
|
],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation()
|
||||||
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
self.model_id,
|
self.model_id,
|
||||||
low_cpu_mem_usage=True,
|
low_cpu_mem_usage=True,
|
||||||
torch_dtype=torch.bfloat16,
|
torch_dtype=torch.bfloat16,
|
||||||
attn_implementation="eager",
|
attn_implementation="eager",
|
||||||
revision=self.revision,
|
|
||||||
)
|
)
|
||||||
model.to(torch_device)
|
model.to(torch_device)
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||||
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
||||||
|
|
||||||
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
||||||
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
||||||
|
|
||||||
self.assertEqual(output_text, EXPECTED_TEXTS)
|
self.assertEqual(output_text, EXPECTED_TEXT)
|
||||||
|
|
||||||
@require_torch_sdpa
|
@require_torch_sdpa
|
||||||
def test_model_9b_sdpa(self):
|
def test_model_9b_sdpa(self):
|
||||||
EXPECTED_TEXTS = [
|
EXPECTED_TEXTS = Expectations(
|
||||||
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
{
|
||||||
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
("cuda", 7): [],
|
||||||
]
|
("cuda", 8): [
|
||||||
|
"Hello I am doing a project on the history of the internet and I need to know what the first website was and what",
|
||||||
|
"Hi today I am going to tell you about the most common disease in the world. This disease is called diabetes",
|
||||||
|
],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation()
|
||||||
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
self.model_id,
|
self.model_id,
|
||||||
low_cpu_mem_usage=True,
|
low_cpu_mem_usage=True,
|
||||||
torch_dtype=torch.bfloat16,
|
torch_dtype=torch.bfloat16,
|
||||||
attn_implementation="sdpa",
|
attn_implementation="sdpa",
|
||||||
revision=self.revision,
|
|
||||||
)
|
)
|
||||||
model.to(torch_device)
|
model.to(torch_device)
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||||
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
||||||
|
|
||||||
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
||||||
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
||||||
|
|
||||||
self.assertEqual(output_text, EXPECTED_TEXTS)
|
self.assertEqual(output_text, EXPECTED_TEXT)
|
||||||
|
|
||||||
@require_flash_attn
|
@require_flash_attn
|
||||||
@pytest.mark.flash_attn_test
|
@pytest.mark.flash_attn_test
|
||||||
def test_model_9b_flash_attn(self):
|
def test_model_9b_flash_attn(self):
|
||||||
EXPECTED_TEXTS = [
|
EXPECTED_TEXTS = Expectations(
|
||||||
"Hello I am doing a project on the history of the internetSolution:\n\nStep 1: Introduction\nThe history of the",
|
{
|
||||||
"Hi today I am going to show you how to make a simple and easy to make a DIY paper flower.",
|
("cuda", 7): [],
|
||||||
]
|
("cuda", 8): [
|
||||||
|
"Hello I am doing a project on the history of the internet and I need to know what the first website was and what",
|
||||||
|
"Hi today I am going to tell you about the most common disease in the world. This disease is called diabetes",
|
||||||
|
],
|
||||||
|
}
|
||||||
|
)
|
||||||
|
EXPECTED_TEXT = EXPECTED_TEXTS.get_expectation()
|
||||||
|
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
self.model_id,
|
self.model_id,
|
||||||
low_cpu_mem_usage=True,
|
low_cpu_mem_usage=True,
|
||||||
torch_dtype=torch.bfloat16,
|
torch_dtype=torch.bfloat16,
|
||||||
attn_implementation="flash_attention_2",
|
attn_implementation="flash_attention_2",
|
||||||
revision=self.revision,
|
|
||||||
)
|
)
|
||||||
model.to(torch_device)
|
model.to(torch_device)
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(self.model_id, revision=self.revision)
|
tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||||
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
inputs = tokenizer(self.input_text, return_tensors="pt", padding=True).to(torch_device)
|
||||||
|
|
||||||
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
output = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
||||||
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)
|
||||||
|
|
||||||
self.assertEqual(output_text, EXPECTED_TEXTS)
|
self.assertEqual(output_text, EXPECTED_TEXT)
|
||||||
|
Loading…
Reference in New Issue
Block a user