Adding QoL for batch_size arg (like others enabled everywhere). (#15027)

* Adding QoL for `batch_size` arg (like others enabled everywhere).

* Typo.
This commit is contained in:
Nicolas Patry 2022-01-05 12:16:23 +01:00 committed by GitHub
parent e34dd055e9
commit 65cb94ff77
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 25 additions and 1 deletions

View File

@ -742,6 +742,8 @@ class Pipeline(_ScikitCompat):
self.model.config.update(task_specific_params.get(task))
self.call_count = 0
self._batch_size = kwargs.pop("batch_size", None)
self._num_workers = kwargs.pop("num_workers", None)
self._preprocess_params, self._forward_params, self._postprocess_params = self._sanitize_parameters(**kwargs)
def save_pretrained(self, save_directory: str):
@ -947,9 +949,21 @@ class Pipeline(_ScikitCompat):
final_iterator = PipelineIterator(model_iterator, self.postprocess, postprocess_params)
return final_iterator
def __call__(self, inputs, *args, num_workers=0, batch_size=1, **kwargs):
def __call__(self, inputs, *args, num_workers=None, batch_size=None, **kwargs):
if args:
logger.warning(f"Ignoring args : {args}")
if num_workers is None:
if self._num_workers is None:
num_workers = 0
else:
num_workers = self._num_workers
if batch_size is None:
if self._batch_size is None:
batch_size = 1
else:
batch_size = self._batch_size
preprocess_params, forward_params, postprocess_params = self._sanitize_parameters(**kwargs)
# Fuse __init__ params and __call__ params without modifying the __init__ ones.

View File

@ -299,6 +299,16 @@ class CommonPipelineTest(unittest.TestCase):
self.assertIsInstance(pipe, TextClassificationPipeline)
@require_torch
def test_pipeline_batch_size_global(self):
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert")
self.assertEqual(pipe._batch_size, None)
self.assertEqual(pipe._num_workers, None)
pipe = pipeline(model="hf-internal-testing/tiny-random-distilbert", batch_size=2, num_workers=1)
self.assertEqual(pipe._batch_size, 2)
self.assertEqual(pipe._num_workers, 1)
@require_torch
def test_pipeline_override(self):
class MyPipeline(TextClassificationPipeline):