mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Update transformers metadata (#14724)
* Wip on metadata update * Most of the script * Add a job to auto-update the transformers metadata * Style
This commit is contained in:
parent
c3cd88a9ba
commit
64e92ed224
36
.github/workflows/update_metdata.yml
vendored
Normal file
36
.github/workflows/update_metdata.yml
vendored
Normal file
@ -0,0 +1,36 @@
|
||||
name: Build documentation
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
- update_transformers_metadata
|
||||
|
||||
jobs:
|
||||
build_and_package:
|
||||
runs-on: ubuntu-latest
|
||||
defaults:
|
||||
run:
|
||||
shell: bash -l {0}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
|
||||
- name: Loading cache.
|
||||
uses: actions/cache@v2
|
||||
id: cache
|
||||
with:
|
||||
path: ~/.cache/pip
|
||||
key: v1-metadata
|
||||
restore-keys: |
|
||||
v1-metadata-${{ hashFiles('setup.py') }}
|
||||
v1-metadata
|
||||
|
||||
- name: Setup environment
|
||||
run: |
|
||||
pip install git+https://github.com/huggingface/transformers#egg=transformers[dev]
|
||||
|
||||
- name: Update metadata
|
||||
run: |
|
||||
python utils/update_metadata.py --token ${{ secrets.SYLVAIN_HF_TOKEN }} --commit_sha ${{ github.sha }}
|
||||
|
228
utils/update_metadata.py
Normal file
228
utils/update_metadata.py
Normal file
@ -0,0 +1,228 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import collections
|
||||
import importlib.util
|
||||
import os
|
||||
import re
|
||||
import tempfile
|
||||
|
||||
import pandas as pd
|
||||
from datasets import Dataset
|
||||
|
||||
from huggingface_hub import Repository
|
||||
|
||||
|
||||
# All paths are set with the intent you should run this script from the root of the repo with the command
|
||||
# python utils/update_metadata.py
|
||||
TRANSFORMERS_PATH = "src/transformers"
|
||||
|
||||
|
||||
# This is to make sure the transformers module imported is the one in the repo.
|
||||
spec = importlib.util.spec_from_file_location(
|
||||
"transformers",
|
||||
os.path.join(TRANSFORMERS_PATH, "__init__.py"),
|
||||
submodule_search_locations=[TRANSFORMERS_PATH],
|
||||
)
|
||||
transformers_module = spec.loader.load_module()
|
||||
|
||||
|
||||
# Regexes that match TF/Flax/PT model names.
|
||||
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
|
||||
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
|
||||
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
|
||||
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
|
||||
|
||||
|
||||
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
|
||||
PIPELINE_TAGS_AND_AUTO_MODELS = [
|
||||
("pretraining", "MODEL_FOR_PRETRAINING_MAPPING_NAMES", "AutoModelForPreTraining"),
|
||||
("feature-extraction", "MODEL_MAPPING_NAMES", "AutoModel"),
|
||||
("audio-classification", "MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES", "AutoModelForAudioClassification"),
|
||||
("text-generation", "MODEL_FOR_CAUSAL_LM_MAPPING_NAMES", "AutoModelForCausalLM"),
|
||||
("automatic-speech-recognition", "MODEL_FOR_CTC_MAPPING_NAMES", "AutoModelForCTC"),
|
||||
("image-classification", "MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForImageClassification"),
|
||||
("image-segmentation", "MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES", "AutoModelForImageSegmentation"),
|
||||
("fill-mask", "MODEL_FOR_MASKED_LM_MAPPING_NAMES", "AutoModelForMaskedLM"),
|
||||
("object-detection", "MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES", "AutoModelForObjectDetection"),
|
||||
("question-answering", "MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES", "AutoModelForQuestionAnswering"),
|
||||
("text2text-generation", "MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES", "AutoModelForSeq2SeqLM"),
|
||||
("text-classification", "MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES", "AutoModelForSequenceClassification"),
|
||||
("automatic-speech-recognition", "MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES", "AutoModelForSpeechSeq2Seq"),
|
||||
(
|
||||
"table-question-answering",
|
||||
"MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES",
|
||||
"AutoModelForTableQuestionAnswering",
|
||||
),
|
||||
("token-classification", "MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES", "AutoModelForTokenClassification"),
|
||||
("multiple-choice", "MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES", "AutoModelForMultipleChoice"),
|
||||
(
|
||||
"next-sentence-prediction",
|
||||
"MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES",
|
||||
"AutoModelForNextSentencePrediction",
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
# Thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python
|
||||
def camel_case_split(identifier):
|
||||
"Split a camelcased `identifier` into words."
|
||||
matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier)
|
||||
return [m.group(0) for m in matches]
|
||||
|
||||
|
||||
def get_frameworks_table():
|
||||
"""
|
||||
Generates a dataframe containing the supported auto classes for each model type, using the content of the auto
|
||||
modules.
|
||||
"""
|
||||
# Dictionary model names to config.
|
||||
config_maping_names = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
|
||||
model_prefix_to_model_type = {
|
||||
config.replace("Config", ""): model_type for model_type, config in config_maping_names.items()
|
||||
}
|
||||
|
||||
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
|
||||
pt_models = collections.defaultdict(bool)
|
||||
tf_models = collections.defaultdict(bool)
|
||||
flax_models = collections.defaultdict(bool)
|
||||
|
||||
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
|
||||
for attr_name in dir(transformers_module):
|
||||
lookup_dict = None
|
||||
if _re_tf_models.match(attr_name) is not None:
|
||||
lookup_dict = tf_models
|
||||
attr_name = _re_tf_models.match(attr_name).groups()[0]
|
||||
elif _re_flax_models.match(attr_name) is not None:
|
||||
lookup_dict = flax_models
|
||||
attr_name = _re_flax_models.match(attr_name).groups()[0]
|
||||
elif _re_pt_models.match(attr_name) is not None:
|
||||
lookup_dict = pt_models
|
||||
attr_name = _re_pt_models.match(attr_name).groups()[0]
|
||||
|
||||
if lookup_dict is not None:
|
||||
while len(attr_name) > 0:
|
||||
if attr_name in model_prefix_to_model_type:
|
||||
lookup_dict[model_prefix_to_model_type[attr_name]] = True
|
||||
break
|
||||
# Try again after removing the last word in the name
|
||||
attr_name = "".join(camel_case_split(attr_name)[:-1])
|
||||
|
||||
all_models = set(list(pt_models.keys()) + list(tf_models.keys()) + list(flax_models.keys()))
|
||||
all_models = list(all_models)
|
||||
all_models.sort()
|
||||
|
||||
data = {"model_type": all_models}
|
||||
data["pytorch"] = [pt_models[t] for t in all_models]
|
||||
data["tensorflow"] = [tf_models[t] for t in all_models]
|
||||
data["flax"] = [flax_models[t] for t in all_models]
|
||||
|
||||
# Now let's use the auto-mapping names to make sure
|
||||
processors = {}
|
||||
for t in all_models:
|
||||
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
|
||||
processors[t] = "AutoProcessor"
|
||||
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
|
||||
processors[t] = "AutoTokenizer"
|
||||
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
|
||||
processors[t] = "AutoFeatureExtractor"
|
||||
else:
|
||||
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
|
||||
processors[t] = "AutoTokenizer"
|
||||
|
||||
data["processor"] = [processors[t] for t in all_models]
|
||||
|
||||
return pd.DataFrame(data)
|
||||
|
||||
|
||||
def update_pipeline_and_auto_class_table(table):
|
||||
"""
|
||||
Update the table of model class to (pipeline_tag, auto_class) without removing old keys if they don't exist
|
||||
anymore.
|
||||
"""
|
||||
auto_modules = [
|
||||
transformers_module.models.auto.modeling_auto,
|
||||
transformers_module.models.auto.modeling_tf_auto,
|
||||
transformers_module.models.auto.modeling_flax_auto,
|
||||
]
|
||||
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
|
||||
model_mappings = [model_mapping, f"TF_{model_mapping}", f"FLAX_{model_mapping}"]
|
||||
auto_classes = [auto_class, f"TF_{auto_class}", f"Flax_{auto_class}"]
|
||||
# Loop through all three frameworks
|
||||
for module, cls, mapping in zip(auto_modules, auto_classes, model_mappings):
|
||||
# The type of pipeline may not exist in this framework
|
||||
if not hasattr(module, mapping):
|
||||
continue
|
||||
# First extract all model_names
|
||||
model_names = []
|
||||
for name in getattr(module, mapping).values():
|
||||
if isinstance(name, str):
|
||||
model_names.append(name)
|
||||
else:
|
||||
model_names.extend(list(name))
|
||||
|
||||
# Add pipeline tag and auto model class for those models
|
||||
table.update({model_name: (pipeline_tag, cls) for model_name in model_names})
|
||||
|
||||
return table
|
||||
|
||||
|
||||
def update_metadata(token, commit_sha):
|
||||
"""
|
||||
Update the metada for the Transformers repo.
|
||||
"""
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
repo = Repository(
|
||||
tmp_dir, clone_from="huggingface/transformers-metadata", repo_type="dataset", use_auth_token=token
|
||||
)
|
||||
|
||||
frameworks_table = get_frameworks_table()
|
||||
frameworks_dataset = Dataset.from_pandas(frameworks_table)
|
||||
frameworks_dataset.to_json(os.path.join(tmp_dir, "frameworks.json"))
|
||||
|
||||
tags_dataset = Dataset.from_json(os.path.join(tmp_dir, "pipeline_tags.json"))
|
||||
table = {
|
||||
tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"])
|
||||
for i in range(len(tags_dataset))
|
||||
}
|
||||
table = update_pipeline_and_auto_class_table(table)
|
||||
|
||||
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
|
||||
model_classes = sorted(list(table.keys()))
|
||||
tags_table = pd.DataFrame(
|
||||
{
|
||||
"model_class": model_classes,
|
||||
"pipeline_tag": [table[m][0] for m in model_classes],
|
||||
"auto_class": [table[m][1] for m in model_classes],
|
||||
}
|
||||
)
|
||||
tags_dataset = Dataset.from_pandas(tags_table)
|
||||
tags_dataset.to_json(os.path.join(tmp_dir, "pipeline_tags.json"))
|
||||
|
||||
if repo.is_repo_clean():
|
||||
print("Nothing to commit!")
|
||||
else:
|
||||
commit_message = f"Update with commit {commit_sha}" if commit_sha is not None else "Update"
|
||||
repo.push_to_hub(commit_message)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--token", type=str, help="The token to use to push to the transformers-metadata dataset.")
|
||||
parser.add_argument("--commit_sha", type=str, help="The sha of the commit going with this update.")
|
||||
args = parser.parse_args()
|
||||
|
||||
update_metadata(args.token, args.commit_sha)
|
Loading…
Reference in New Issue
Block a user