mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00
[fsmt test] basic config test with online model + super tiny model (#7860)
* basic config test with online model * typo * style * better test
This commit is contained in:
parent
3479787edc
commit
64b4d25cf3
74
scripts/fsmt/fsmt-make-super-tiny-model.py
Executable file
74
scripts/fsmt/fsmt-make-super-tiny-model.py
Executable file
@ -0,0 +1,74 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# coding: utf-8
|
||||||
|
|
||||||
|
# This script creates a super tiny model that is useful inside tests, when we just want to test that
|
||||||
|
# the machinery works, without needing to the check the quality of the outcomes.
|
||||||
|
#
|
||||||
|
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
|
||||||
|
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
|
||||||
|
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
|
||||||
|
# The latter is done by `fsmt-make-super-tiny-model.py`.
|
||||||
|
#
|
||||||
|
# It will be used then as "stas/tiny-wmt19-en-ru"
|
||||||
|
|
||||||
|
from pathlib import Path
|
||||||
|
import json
|
||||||
|
import tempfile
|
||||||
|
|
||||||
|
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
|
||||||
|
from transformers.tokenization_fsmt import VOCAB_FILES_NAMES
|
||||||
|
|
||||||
|
mname_tiny = "tiny-wmt19-en-ru"
|
||||||
|
|
||||||
|
# Build
|
||||||
|
|
||||||
|
# borrowed from a test
|
||||||
|
vocab = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ]
|
||||||
|
vocab_tokens = dict(zip(vocab, range(len(vocab))))
|
||||||
|
merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
|
||||||
|
|
||||||
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
||||||
|
build_dir = Path(tmpdirname)
|
||||||
|
src_vocab_file = build_dir / VOCAB_FILES_NAMES["src_vocab_file"]
|
||||||
|
tgt_vocab_file = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"]
|
||||||
|
merges_file = build_dir / VOCAB_FILES_NAMES["merges_file"]
|
||||||
|
with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens))
|
||||||
|
with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens))
|
||||||
|
with open(merges_file, "w") as fp : fp.write("\n".join(merges))
|
||||||
|
|
||||||
|
tokenizer = FSMTTokenizer(
|
||||||
|
langs=["en", "ru"],
|
||||||
|
src_vocab_size = len(vocab),
|
||||||
|
tgt_vocab_size = len(vocab),
|
||||||
|
src_vocab_file=src_vocab_file,
|
||||||
|
tgt_vocab_file=tgt_vocab_file,
|
||||||
|
merges_file=merges_file,
|
||||||
|
)
|
||||||
|
|
||||||
|
config = FSMTConfig(
|
||||||
|
langs=['ru', 'en'],
|
||||||
|
src_vocab_size=1000, tgt_vocab_size=1000,
|
||||||
|
d_model=4,
|
||||||
|
encoder_layers=1, decoder_layers=1,
|
||||||
|
encoder_ffn_dim=4, decoder_ffn_dim=4,
|
||||||
|
encoder_attention_heads=1, decoder_attention_heads=1,
|
||||||
|
)
|
||||||
|
|
||||||
|
tiny_model = FSMTForConditionalGeneration(config)
|
||||||
|
print(f"num of params {tiny_model.num_parameters()}")
|
||||||
|
|
||||||
|
# Test
|
||||||
|
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"])
|
||||||
|
outputs = tiny_model(**batch, return_dict=True)
|
||||||
|
|
||||||
|
print("test output:", len(outputs.logits[0]))
|
||||||
|
|
||||||
|
# Save
|
||||||
|
tiny_model.half() # makes it smaller
|
||||||
|
tiny_model.save_pretrained(mname_tiny)
|
||||||
|
tokenizer.save_pretrained(mname_tiny)
|
||||||
|
|
||||||
|
print(f"Generated {mname_tiny}")
|
||||||
|
|
||||||
|
# Upload
|
||||||
|
# transformers-cli upload tiny-wmt19-en-ru
|
@ -1,10 +1,19 @@
|
|||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
# coding: utf-8
|
# coding: utf-8
|
||||||
|
|
||||||
# this script creates a tiny model that is useful inside tests, when we just want to test that the machinery works,
|
# This script creates a super tiny model that is useful inside tests, when we just want to test that
|
||||||
# without needing to the check the quality of the outcomes.
|
# the machinery works, without needing to the check the quality of the outcomes.
|
||||||
# it will be used then as "stas/tiny-wmt19-en-de"
|
#
|
||||||
|
# This version creates a tiny model through reduction of a normal pre-trained model, but keeping the
|
||||||
|
# full vocab, merges file, and thus also resulting in a larger model due to a large vocab size.
|
||||||
|
# This gives ~3MB in total for all files.
|
||||||
|
#
|
||||||
|
# If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# It will be used then as "stas/tiny-wmt19-en-de"
|
||||||
|
|
||||||
|
# Build
|
||||||
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
|
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
|
||||||
mname = "facebook/wmt19-en-de"
|
mname = "facebook/wmt19-en-de"
|
||||||
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
tokenizer = FSMTTokenizer.from_pretrained(mname)
|
||||||
@ -18,16 +27,20 @@ config.update(dict(
|
|||||||
|
|
||||||
tiny_model = FSMTForConditionalGeneration(config)
|
tiny_model = FSMTForConditionalGeneration(config)
|
||||||
print(f"num of params {tiny_model.num_parameters()}")
|
print(f"num of params {tiny_model.num_parameters()}")
|
||||||
# Test it
|
|
||||||
|
# Test
|
||||||
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"])
|
batch = tokenizer.prepare_seq2seq_batch(["Making tiny model"])
|
||||||
outputs = tiny_model(**batch, return_dict=True)
|
outputs = tiny_model(**batch, return_dict=True)
|
||||||
|
|
||||||
print(len(outputs.logits[0]))
|
print("test output:", len(outputs.logits[0]))
|
||||||
|
|
||||||
# Save
|
# Save
|
||||||
mname_tiny = "tiny-wmt19-en-de"
|
mname_tiny = "tiny-wmt19-en-de"
|
||||||
tiny_model.half() # makes it smaller
|
tiny_model.half() # makes it smaller
|
||||||
tiny_model.save_pretrained(mname_tiny)
|
tiny_model.save_pretrained(mname_tiny)
|
||||||
tokenizer.save_pretrained(mname_tiny)
|
tokenizer.save_pretrained(mname_tiny)
|
||||||
|
|
||||||
|
print(f"Generated {mname_tiny}")
|
||||||
|
|
||||||
# Upload
|
# Upload
|
||||||
# transformers-cli upload tiny-wmt19-en-de
|
# transformers-cli upload tiny-wmt19-en-de
|
||||||
|
@ -25,6 +25,10 @@ from transformers.tokenization_fsmt import VOCAB_FILES_NAMES, FSMTTokenizer
|
|||||||
from .test_tokenization_common import TokenizerTesterMixin
|
from .test_tokenization_common import TokenizerTesterMixin
|
||||||
|
|
||||||
|
|
||||||
|
# using a different tiny model than the one used for default params defined in init to ensure proper testing
|
||||||
|
FSMT_TINY2 = "stas/tiny-wmt19-en-ru"
|
||||||
|
|
||||||
|
|
||||||
class FSMTTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
class FSMTTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
||||||
tokenizer_class = FSMTTokenizer
|
tokenizer_class = FSMTTokenizer
|
||||||
|
|
||||||
@ -86,6 +90,15 @@ class FSMTTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
|
|||||||
def tokenizer_en_ru(self):
|
def tokenizer_en_ru(self):
|
||||||
return FSMTTokenizer.from_pretrained("facebook/wmt19-en-ru")
|
return FSMTTokenizer.from_pretrained("facebook/wmt19-en-ru")
|
||||||
|
|
||||||
|
def test_online_tokenizer_config(self):
|
||||||
|
"""this just tests that the online tokenizer files get correctly fetched and
|
||||||
|
loaded via its tokenizer_config.json and it's not slow so it's run by normal CI
|
||||||
|
"""
|
||||||
|
tokenizer = FSMTTokenizer.from_pretrained(FSMT_TINY2)
|
||||||
|
self.assertListEqual([tokenizer.src_lang, tokenizer.tgt_lang], ["en", "ru"])
|
||||||
|
self.assertEqual(tokenizer.src_vocab_size, 21)
|
||||||
|
self.assertEqual(tokenizer.tgt_vocab_size, 21)
|
||||||
|
|
||||||
def test_full_tokenizer(self):
|
def test_full_tokenizer(self):
|
||||||
""" Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
|
""" Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt """
|
||||||
tokenizer = FSMTTokenizer(self.langs, self.src_vocab_file, self.tgt_vocab_file, self.merges_file)
|
tokenizer = FSMTTokenizer(self.langs, self.src_vocab_file, self.tgt_vocab_file, self.merges_file)
|
||||||
|
Loading…
Reference in New Issue
Block a user