mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 10:12:23 +06:00
Fix E722 flake8 warnings (x26).
This commit is contained in:
parent
b0f7db73cd
commit
631be27078
@ -44,7 +44,7 @@ from transformers import (
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except:
|
||||
except ImportError:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
|
||||
|
@ -37,7 +37,7 @@ from utils import logger
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except:
|
||||
except ImportError:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
|
||||
|
@ -67,7 +67,7 @@ from ..utils_squad_evaluate import main as evaluate_on_squad
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except:
|
||||
except ImportError:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
|
||||
|
@ -62,7 +62,7 @@ from utils_mmimdb import ImageEncoder, JsonlDataset, collate_fn, get_image_trans
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except:
|
||||
except ImportError:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
|
||||
|
@ -697,8 +697,8 @@ def run_pplm_example(
|
||||
print("= Perturbed generated text {} =".format(i + 1))
|
||||
print(pert_gen_text)
|
||||
print()
|
||||
except:
|
||||
pass
|
||||
except Exception as exc:
|
||||
print("Ignoring error while generating perturbed text:", exc)
|
||||
|
||||
# keep the prefix, perturbed seq, original seq for each index
|
||||
generated_texts.append((tokenized_cond_text, pert_gen_tok_text, unpert_gen_tok_text))
|
||||
|
@ -285,7 +285,7 @@ def train_discriminator(
|
||||
for i, line in enumerate(f):
|
||||
try:
|
||||
data.append(eval(line))
|
||||
except:
|
||||
except Exception:
|
||||
print("Error evaluating line {}: {}".format(i, line))
|
||||
continue
|
||||
x = []
|
||||
@ -303,7 +303,7 @@ def train_discriminator(
|
||||
continue
|
||||
x.append(seq)
|
||||
y.append(d["label"])
|
||||
except:
|
||||
except Exception:
|
||||
print("Error evaluating / tokenizing" " line {}, skipping it".format(i))
|
||||
pass
|
||||
|
||||
@ -343,7 +343,7 @@ def train_discriminator(
|
||||
continue
|
||||
x.append(seq)
|
||||
y.append(int(np.sum(d["label"]) > 0))
|
||||
except:
|
||||
except Exception:
|
||||
print("Error evaluating / tokenizing" " line {}, skipping it".format(i))
|
||||
pass
|
||||
|
||||
@ -402,7 +402,7 @@ def train_discriminator(
|
||||
x.append(seq)
|
||||
y.append(class2idx[label])
|
||||
|
||||
except:
|
||||
except Exception:
|
||||
print("Error tokenizing line {}, skipping it".format(i))
|
||||
pass
|
||||
|
||||
|
@ -64,7 +64,7 @@ from transformers import glue_processors as processors
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except:
|
||||
except ImportError:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
|
||||
|
@ -63,7 +63,7 @@ from transformers import (
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except:
|
||||
except ImportError:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
|
||||
|
@ -48,7 +48,7 @@ from utils_multiple_choice import convert_examples_to_features, processors
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except:
|
||||
except ImportError:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
|
||||
|
@ -64,7 +64,7 @@ from transformers.data.processors.squad import SquadResult, SquadV1Processor, Sq
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except:
|
||||
except ImportError:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
|
||||
|
@ -52,7 +52,7 @@ from transformers import xnli_processors as processors
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except:
|
||||
except ImportError:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
|
||||
|
@ -63,7 +63,7 @@ from utils_squad_evaluate import main as evaluate_on_squad
|
||||
|
||||
try:
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
except:
|
||||
except ImportError:
|
||||
from tensorboardX import SummaryWriter
|
||||
|
||||
|
||||
|
@ -6,12 +6,12 @@ __version__ = "2.3.0"
|
||||
# and: https://github.com/tensorflow/tensorflow/issues/26691#issuecomment-500369493
|
||||
try:
|
||||
import absl.logging
|
||||
|
||||
except ImportError:
|
||||
pass
|
||||
else:
|
||||
absl.logging.set_verbosity("info")
|
||||
absl.logging.set_stderrthreshold("info")
|
||||
absl.logging._warn_preinit_stderr = False
|
||||
except:
|
||||
pass
|
||||
|
||||
import logging
|
||||
|
||||
|
@ -205,10 +205,8 @@ class HfFolder:
|
||||
try:
|
||||
with open(cls.path_token, "r") as f:
|
||||
return f.read()
|
||||
except:
|
||||
# this is too wide. When Py2 is dead use:
|
||||
# `except FileNotFoundError:` instead
|
||||
return None
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def delete_token(cls):
|
||||
@ -218,5 +216,5 @@ class HfFolder:
|
||||
"""
|
||||
try:
|
||||
os.remove(cls.path_token)
|
||||
except:
|
||||
return
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
@ -439,7 +439,7 @@ class PreTrainedModel(nn.Module):
|
||||
if state_dict is None and not from_tf:
|
||||
try:
|
||||
state_dict = torch.load(resolved_archive_file, map_location="cpu")
|
||||
except:
|
||||
except Exception:
|
||||
raise OSError(
|
||||
"Unable to load weights from pytorch checkpoint file. "
|
||||
"If you tried to load a PyTorch model from a TF 2.0 checkpoint, please set from_tf=True. "
|
||||
|
@ -333,13 +333,13 @@ class TFCommonTestCases:
|
||||
# We used to fall back to just synthetically creating a dummy tensor of ones:
|
||||
try:
|
||||
x = wte(input_ids, mode="embedding")
|
||||
except:
|
||||
except Exception:
|
||||
try:
|
||||
x = wte([input_ids], mode="embedding")
|
||||
except:
|
||||
except Exception:
|
||||
try:
|
||||
x = wte([input_ids, None, None, None], mode="embedding")
|
||||
except:
|
||||
except Exception:
|
||||
if hasattr(self.model_tester, "embedding_size"):
|
||||
x = tf.ones(input_ids.shape + [self.model_tester.embedding_size], dtype=tf.dtypes.float32)
|
||||
else:
|
||||
|
@ -168,11 +168,12 @@ class CTRLTokenizer(PreTrainedTokenizer):
|
||||
while i < len(word):
|
||||
try:
|
||||
j = word.index(first, i)
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
except:
|
||||
except ValueError:
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
else:
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
|
||||
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
||||
new_word.append(first + second)
|
||||
|
@ -178,11 +178,12 @@ class GPT2Tokenizer(PreTrainedTokenizer):
|
||||
while i < len(word):
|
||||
try:
|
||||
j = word.index(first, i)
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
except:
|
||||
except ValueError:
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
else:
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
|
||||
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
||||
new_word.append(first + second)
|
||||
|
@ -136,11 +136,12 @@ class OpenAIGPTTokenizer(PreTrainedTokenizer):
|
||||
while i < len(word):
|
||||
try:
|
||||
j = word.index(first, i)
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
except:
|
||||
except ValueError:
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
else:
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
|
||||
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
||||
new_word.append(first + second)
|
||||
|
@ -683,11 +683,12 @@ class XLMTokenizer(PreTrainedTokenizer):
|
||||
while i < len(word):
|
||||
try:
|
||||
j = word.index(first, i)
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
except:
|
||||
except ValueError:
|
||||
new_word.extend(word[i:])
|
||||
break
|
||||
else:
|
||||
new_word.extend(word[i:j])
|
||||
i = j
|
||||
|
||||
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
||||
new_word.append(first + second)
|
||||
|
Loading…
Reference in New Issue
Block a user