mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00
Added first model card (#6530)
* Added first model card * Add metadata Co-authored-by: Julien Chaumond <chaumond@gmail.com>
This commit is contained in:
parent
98ee802023
commit
63144701ed
96
model_cards/gilf/french-camembert-postag-model/README.md
Normal file
96
model_cards/gilf/french-camembert-postag-model/README.md
Normal file
@ -0,0 +1,96 @@
|
||||
---
|
||||
language: fr
|
||||
widget:
|
||||
- text: "Face à un choc inédit, les mesures mises en place par le gouvernement ont permis une protection forte et efficace des ménages"
|
||||
---
|
||||
|
||||
## About
|
||||
|
||||
The *french-camembert-postag-model* is a part of speech tagging model for French that was trained on the *free-french-treebank* dataset available on
|
||||
[github](https://github.com/nicolashernandez/free-french-treebank). The base tokenizer and model used for training is *'camembert-base'*.
|
||||
|
||||
## Supported Tags
|
||||
|
||||
It uses the following tags:
|
||||
|
||||
| Tag | Category | Extra Info |
|
||||
|----------|:------------------------------:|------------:|
|
||||
| ADJ | adjectif | |
|
||||
| ADJWH | adjectif | |
|
||||
| ADV | adverbe | |
|
||||
| ADVWH | adverbe | |
|
||||
| CC | conjonction de coordination | |
|
||||
| CLO | pronom | obj |
|
||||
| CLR | pronom | refl |
|
||||
| CLS | pronom | suj |
|
||||
| CS | conjonction de subordination | |
|
||||
| DET | déterminant | |
|
||||
| DETWH | déterminant | |
|
||||
| ET | mot étranger | |
|
||||
| I | interjection | |
|
||||
| NC | nom commun | |
|
||||
| NPP | nom propre | |
|
||||
| P | préposition | |
|
||||
| P+D | préposition + déterminant | |
|
||||
| PONCT | signe de ponctuation | |
|
||||
| PREF | préfixe | |
|
||||
| PRO | autres pronoms | |
|
||||
| PROREL | autres pronoms | rel |
|
||||
| PROWH | autres pronoms | int |
|
||||
| U | ? | |
|
||||
| V | verbe | |
|
||||
| VIMP | verbe imperatif | |
|
||||
| VINF | verbe infinitif | |
|
||||
| VPP | participe passé | |
|
||||
| VPR | participe présent | |
|
||||
| VS | subjonctif | |
|
||||
|
||||
More information on the tags can be found here:
|
||||
|
||||
http://alpage.inria.fr/statgram/frdep/Publications/crabbecandi-taln2008-final.pdf
|
||||
|
||||
## Usage
|
||||
|
||||
The usage of this model follows the common transformers patterns. Here is a short example of its usage:
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("gilf/french-camembert-postag-model")
|
||||
model = AutoModelForTokenClassification.from_pretrained("gilf/french-camembert-postag-model")
|
||||
|
||||
from transformers import pipeline
|
||||
|
||||
nlp_token_class = pipeline('ner', model=model, tokenizer=tokenizer, grouped_entities=True)
|
||||
|
||||
nlp_token_class('Face à un choc inédit, les mesures mises en place par le gouvernement ont permis une protection forte et efficace des ménages')
|
||||
```
|
||||
|
||||
The lines above would display something like this on a Jupyter notebook:
|
||||
|
||||
```
|
||||
[{'entity_group': 'NC', 'score': 0.5760144591331482, 'word': '<s>'},
|
||||
{'entity_group': 'U', 'score': 0.9946700930595398, 'word': 'Face'},
|
||||
{'entity_group': 'P', 'score': 0.999615490436554, 'word': 'à'},
|
||||
{'entity_group': 'DET', 'score': 0.9995906352996826, 'word': 'un'},
|
||||
{'entity_group': 'NC', 'score': 0.9995531439781189, 'word': 'choc'},
|
||||
{'entity_group': 'ADJ', 'score': 0.999183714389801, 'word': 'inédit'},
|
||||
{'entity_group': 'P', 'score': 0.3710663616657257, 'word': ','},
|
||||
{'entity_group': 'DET', 'score': 0.9995903968811035, 'word': 'les'},
|
||||
{'entity_group': 'NC', 'score': 0.9995649456977844, 'word': 'mesures'},
|
||||
{'entity_group': 'VPP', 'score': 0.9988670349121094, 'word': 'mises'},
|
||||
{'entity_group': 'P', 'score': 0.9996246099472046, 'word': 'en'},
|
||||
{'entity_group': 'NC', 'score': 0.9995329976081848, 'word': 'place'},
|
||||
{'entity_group': 'P', 'score': 0.9996233582496643, 'word': 'par'},
|
||||
{'entity_group': 'DET', 'score': 0.9995935559272766, 'word': 'le'},
|
||||
{'entity_group': 'NC', 'score': 0.9995369911193848, 'word': 'gouvernement'},
|
||||
{'entity_group': 'V', 'score': 0.9993771314620972, 'word': 'ont'},
|
||||
{'entity_group': 'VPP', 'score': 0.9991101026535034, 'word': 'permis'},
|
||||
{'entity_group': 'DET', 'score': 0.9995885491371155, 'word': 'une'},
|
||||
{'entity_group': 'NC', 'score': 0.9995636343955994, 'word': 'protection'},
|
||||
{'entity_group': 'ADJ', 'score': 0.9991781711578369, 'word': 'forte'},
|
||||
{'entity_group': 'CC', 'score': 0.9991298317909241, 'word': 'et'},
|
||||
{'entity_group': 'ADJ', 'score': 0.9992275238037109, 'word': 'efficace'},
|
||||
{'entity_group': 'P+D', 'score': 0.9993300437927246, 'word': 'des'},
|
||||
{'entity_group': 'NC', 'score': 0.8353511393070221, 'word': 'ménages</s>'}]
|
||||
```
|
Loading…
Reference in New Issue
Block a user