Fix typo: s/languaged/language/ (#8165)

This commit is contained in:
Santiago Castro 2020-10-30 11:22:03 -04:00 committed by GitHub
parent 10f8c63620
commit 6279072f5f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 8 additions and 8 deletions

View File

@ -260,7 +260,7 @@ class MaskedLMOutput(ModelOutput):
Args: Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Masked languaged modeling (MLM) loss. Masked language modeling (MLM) loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
@ -289,7 +289,7 @@ class Seq2SeqLMOutput(ModelOutput):
Args: Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Languaged modeling loss. Language modeling loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):

View File

@ -225,7 +225,7 @@ class ProphetNetSeq2SeqLMOutput(ModelOutput):
Args: Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Languaged modeling loss. Language modeling loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, decoder_sequence_length, config.vocab_size)`): logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, decoder_sequence_length, config.vocab_size)`):
Prediction scores of the main stream language modeling head (scores for each vocabulary token before Prediction scores of the main stream language modeling head (scores for each vocabulary token before
SoftMax). SoftMax).
@ -438,7 +438,7 @@ class ProphetNetDecoderLMOutput(ModelOutput):
Args: Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Languaged modeling loss. Language modeling loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, decoder_sequence_length, config.vocab_size)`): logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, decoder_sequence_length, config.vocab_size)`):
Prediction scores of the main stream language modeling head (scores for each vocabulary token before Prediction scores of the main stream language modeling head (scores for each vocabulary token before
SoftMax). SoftMax).

View File

@ -1124,7 +1124,7 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
>>> model = T5ForConditionalGeneration.from_pretrained('t5-small', return_dict=True) >>> model = T5ForConditionalGeneration.from_pretrained('t5-small', return_dict=True)
>>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids >>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids
labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2> </s>', return_tensors='pt').input_ids >>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2> </s>', return_tensors='pt').input_ids
>>> outputs = model(input_ids=input_ids, labels=labels) >>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss >>> loss = outputs.loss
>>> logits = outputs.logits >>> logits = outputs.logits

View File

@ -227,7 +227,7 @@ class TFMaskedLMOutput(ModelOutput):
Args: Args:
loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Masked languaged modeling (MLM) loss. Masked language modeling (MLM) loss.
logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``): hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
@ -256,7 +256,7 @@ class TFSeq2SeqLMOutput(ModelOutput):
Args: Args:
loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided): loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Languaged modeling loss. Language modeling loss.
logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`): logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``): past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):

View File

@ -1213,7 +1213,7 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModeling
>>> model = TFT5ForConditionalGeneration.from_pretrained('t5-small') >>> model = TFT5ForConditionalGeneration.from_pretrained('t5-small')
>>> inputs = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='tf').input_ids >>> inputs = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='tf').input_ids
labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2> </s>', return_tensors='tf').input_ids >>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2> </s>', return_tensors='tf').input_ids
>>> outputs = model(inputs, labels=labels) >>> outputs = model(inputs, labels=labels)
>>> loss = outputs.loss >>> loss = outputs.loss
>>> logits = outputs.logits >>> logits = outputs.logits