mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00
Fix typo: s/languaged/language/ (#8165)
This commit is contained in:
parent
10f8c63620
commit
6279072f5f
@ -260,7 +260,7 @@ class MaskedLMOutput(ModelOutput):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
||||||
Masked languaged modeling (MLM) loss.
|
Masked language modeling (MLM) loss.
|
||||||
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
||||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||||
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||||
@ -289,7 +289,7 @@ class Seq2SeqLMOutput(ModelOutput):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
||||||
Languaged modeling loss.
|
Language modeling loss.
|
||||||
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
||||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||||
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
|
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
|
||||||
|
@ -225,7 +225,7 @@ class ProphetNetSeq2SeqLMOutput(ModelOutput):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
||||||
Languaged modeling loss.
|
Language modeling loss.
|
||||||
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, decoder_sequence_length, config.vocab_size)`):
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, decoder_sequence_length, config.vocab_size)`):
|
||||||
Prediction scores of the main stream language modeling head (scores for each vocabulary token before
|
Prediction scores of the main stream language modeling head (scores for each vocabulary token before
|
||||||
SoftMax).
|
SoftMax).
|
||||||
@ -438,7 +438,7 @@ class ProphetNetDecoderLMOutput(ModelOutput):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
||||||
Languaged modeling loss.
|
Language modeling loss.
|
||||||
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, decoder_sequence_length, config.vocab_size)`):
|
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, decoder_sequence_length, config.vocab_size)`):
|
||||||
Prediction scores of the main stream language modeling head (scores for each vocabulary token before
|
Prediction scores of the main stream language modeling head (scores for each vocabulary token before
|
||||||
SoftMax).
|
SoftMax).
|
||||||
|
@ -1124,7 +1124,7 @@ class T5ForConditionalGeneration(T5PreTrainedModel):
|
|||||||
>>> model = T5ForConditionalGeneration.from_pretrained('t5-small', return_dict=True)
|
>>> model = T5ForConditionalGeneration.from_pretrained('t5-small', return_dict=True)
|
||||||
|
|
||||||
>>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids
|
>>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids
|
||||||
labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2> </s>', return_tensors='pt').input_ids
|
>>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2> </s>', return_tensors='pt').input_ids
|
||||||
>>> outputs = model(input_ids=input_ids, labels=labels)
|
>>> outputs = model(input_ids=input_ids, labels=labels)
|
||||||
>>> loss = outputs.loss
|
>>> loss = outputs.loss
|
||||||
>>> logits = outputs.logits
|
>>> logits = outputs.logits
|
||||||
|
@ -227,7 +227,7 @@ class TFMaskedLMOutput(ModelOutput):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
||||||
Masked languaged modeling (MLM) loss.
|
Masked language modeling (MLM) loss.
|
||||||
logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
||||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
|
||||||
@ -256,7 +256,7 @@ class TFSeq2SeqLMOutput(ModelOutput):
|
|||||||
|
|
||||||
Args:
|
Args:
|
||||||
loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
loss (:obj:`tf.Tensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
|
||||||
Languaged modeling loss.
|
Language modeling loss.
|
||||||
logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
logits (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
||||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||||
past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
|
past_key_values (:obj:`List[tf.Tensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
|
||||||
|
@ -1213,7 +1213,7 @@ class TFT5ForConditionalGeneration(TFT5PreTrainedModel, TFCausalLanguageModeling
|
|||||||
>>> model = TFT5ForConditionalGeneration.from_pretrained('t5-small')
|
>>> model = TFT5ForConditionalGeneration.from_pretrained('t5-small')
|
||||||
|
|
||||||
>>> inputs = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='tf').input_ids
|
>>> inputs = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='tf').input_ids
|
||||||
labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2> </s>', return_tensors='tf').input_ids
|
>>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2> </s>', return_tensors='tf').input_ids
|
||||||
>>> outputs = model(inputs, labels=labels)
|
>>> outputs = model(inputs, labels=labels)
|
||||||
>>> loss = outputs.loss
|
>>> loss = outputs.loss
|
||||||
>>> logits = outputs.logits
|
>>> logits = outputs.logits
|
||||||
|
Loading…
Reference in New Issue
Block a user