mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Merge branch 'main' into add-aimv2-model
This commit is contained in:
commit
6160836d51
@ -43,16 +43,6 @@ jobs:
|
||||
parallelism: 1
|
||||
steps:
|
||||
- checkout
|
||||
- run: python3 utils/extract_pr_number_from_circleci.py > pr_number.txt
|
||||
- run: echo $(cat pr_number.txt)
|
||||
- run: if [[ "$(cat pr_number.txt)" == "" && "$CIRCLE_BRANCH" != "main" && "$CIRCLE_BRANCH" != *-release ]]; then echo "Not a PR, not the main branch and not a release branch, skip test!"; circleci-agent step halt; fi
|
||||
- run: 'curl -L -H "Accept: application/vnd.github+json" -H "X-GitHub-Api-Version: 2022-11-28" https://api.github.com/repos/$CIRCLE_PROJECT_USERNAME/$CIRCLE_PROJECT_REPONAME/pulls/$(cat pr_number.txt) >> github.txt'
|
||||
- run: cat github.txt
|
||||
- run: (python3 -c 'import json; from datetime import datetime; fp = open("github.txt"); data = json.load(fp); fp.close(); f = "%Y-%m-%dT%H:%M:%SZ"; created = datetime.strptime(data["created_at"], f); updated = datetime.strptime(data["updated_at"], f); s = (updated - created).total_seconds(); print(int(s))' || true) > elapsed.txt
|
||||
- run: if [ "$(cat elapsed.txt)" == "" ]; then echo 60 > elapsed.txt; fi
|
||||
- run: cat elapsed.txt
|
||||
- run: if [ "$(cat elapsed.txt)" -lt "30" ]; then echo "PR is just opened, wait some actions from GitHub"; sleep 30; fi
|
||||
- run: 'if grep -q "\"draft\": true," github.txt; then echo "draft mode, skip test!"; circleci-agent step halt; fi'
|
||||
- run: uv pip install -U -e .
|
||||
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
|
||||
- run: mkdir -p test_preparation
|
||||
@ -122,8 +112,6 @@ jobs:
|
||||
|
||||
- run:
|
||||
name: "Retrieve Artifact Paths"
|
||||
env:
|
||||
CIRCLE_TOKEN: ${{ secrets.CI_ARTIFACT_TOKEN }}
|
||||
command: |
|
||||
project_slug="gh/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}"
|
||||
job_number=${CIRCLE_BUILD_NUM}
|
||||
|
15
.github/workflows/build_pr_documentation.yml
vendored
15
.github/workflows/build_pr_documentation.yml
vendored
@ -2,6 +2,15 @@ name: Build PR Documentation
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
workflow_call:
|
||||
inputs:
|
||||
pr_number:
|
||||
type: string
|
||||
required: true
|
||||
commit_sha:
|
||||
type: string
|
||||
required: true
|
||||
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
|
||||
@ -9,9 +18,9 @@ concurrency:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
|
||||
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@6e2eb04a2604817c97be03786efa494fe3acae90
|
||||
with:
|
||||
commit_sha: ${{ github.event.pull_request.head.sha }}
|
||||
pr_number: ${{ github.event.number }}
|
||||
commit_sha: ${{ inputs.commit_sha || github.event.pull_request.head.sha }}
|
||||
pr_number: ${{ inputs.pr_number || github.event.number }}
|
||||
package: transformers
|
||||
languages: en
|
||||
|
@ -9,6 +9,18 @@ on:
|
||||
start_sha:
|
||||
required: true
|
||||
type: string
|
||||
job:
|
||||
required: true
|
||||
type: string
|
||||
slack_report_channel:
|
||||
required: true
|
||||
type: string
|
||||
ci_event:
|
||||
required: true
|
||||
type: string
|
||||
report_repo_id:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
|
||||
env:
|
||||
@ -26,7 +38,7 @@ env:
|
||||
|
||||
|
||||
jobs:
|
||||
run_models_gpu:
|
||||
check_new_failures:
|
||||
name: " "
|
||||
runs-on:
|
||||
group: aws-g4dn-4xlarge-cache
|
||||
@ -36,17 +48,17 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/download-artifact@v4
|
||||
with:
|
||||
name: ci_results_run_models_gpu
|
||||
path: /transformers/ci_results_run_models_gpu
|
||||
name: ci_results_${{ inputs.job }}
|
||||
path: /transformers/ci_results_${{ inputs.job }}
|
||||
|
||||
- name: Check file
|
||||
working-directory: /transformers
|
||||
run: |
|
||||
if [ -f ci_results_run_models_gpu/new_model_failures.json ]; then
|
||||
echo "`ci_results_run_models_gpu/new_model_failures.json` exists, continue ..."
|
||||
if [ -f ci_results_${{ inputs.job }}/new_failures.json ]; then
|
||||
echo "`ci_results_${{ inputs.job }}/new_failures.json` exists, continue ..."
|
||||
echo "process=true" >> $GITHUB_ENV
|
||||
else
|
||||
echo "`ci_results_run_models_gpu/new_model_failures.json` doesn't exist, abort."
|
||||
echo "`ci_results_${{ inputs.job }}/new_failures.json` doesn't exist, abort."
|
||||
echo "process=false" >> $GITHUB_ENV
|
||||
fi
|
||||
|
||||
@ -112,14 +124,14 @@ jobs:
|
||||
- name: Check failed tests
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_run_models_gpu/new_model_failures.json --output_file new_model_failures_with_bad_commit.json
|
||||
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit.json
|
||||
|
||||
- name: Show results
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
ls -l new_model_failures_with_bad_commit.json
|
||||
cat new_model_failures_with_bad_commit.json
|
||||
ls -l new_failures_with_bad_commit.json
|
||||
cat new_failures_with_bad_commit.json
|
||||
|
||||
- name: Checkout back
|
||||
working-directory: /transformers
|
||||
@ -134,6 +146,8 @@ jobs:
|
||||
env:
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
JOB_NAME: ${{ inputs.job }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
run: |
|
||||
python3 utils/process_bad_commit_report.py
|
||||
|
||||
@ -144,6 +158,8 @@ jobs:
|
||||
env:
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
JOB_NAME: ${{ inputs.job }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
run: |
|
||||
{
|
||||
echo 'REPORT_TEXT<<EOF'
|
||||
@ -151,17 +167,31 @@ jobs:
|
||||
echo EOF
|
||||
} >> "$GITHUB_ENV"
|
||||
|
||||
- name: Prepare Slack report title
|
||||
working-directory: /transformers
|
||||
if: ${{ env.process == 'true' }}
|
||||
run: |
|
||||
pip install slack_sdk
|
||||
echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
|
||||
|
||||
- name: Send processed report
|
||||
if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
|
||||
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
||||
with:
|
||||
# Slack channel id, channel name, or user id to post message.
|
||||
# See also: https://api.slack.com/methods/chat.postMessage#channels
|
||||
channel-id: '#transformers-ci-feedback-tests'
|
||||
channel-id: '#${{ inputs.slack_report_channel }}'
|
||||
# For posting a rich message using Block Kit
|
||||
payload: |
|
||||
{
|
||||
"blocks": [
|
||||
{
|
||||
"type": "header",
|
||||
"text": {
|
||||
"type": "plain_text",
|
||||
"text": "${{ env.title }}"
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "section",
|
||||
"text": {
|
17
.github/workflows/pr-style-bot.yml
vendored
17
.github/workflows/pr-style-bot.yml
vendored
@ -11,9 +11,24 @@ permissions:
|
||||
|
||||
jobs:
|
||||
style:
|
||||
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@main
|
||||
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@639ee721e149a281fe726a50a2cc1354b48bc463
|
||||
with:
|
||||
python_quality_dependencies: "[quality]"
|
||||
style_command_type: "default"
|
||||
secrets:
|
||||
bot_token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
check-outputs:
|
||||
runs-on: ubuntu-latest
|
||||
needs: style
|
||||
steps:
|
||||
- run: echo ${{ needs.style.outputs.pr_number }}
|
||||
- run: echo ${{ needs.style.outputs.new_commit_sha }}
|
||||
|
||||
trigger:
|
||||
needs: style
|
||||
if: needs.style.outputs.new_commit_sha != ''
|
||||
uses: "./.github/workflows/build_pr_documentation.yml"
|
||||
with:
|
||||
pr_number: ${{ needs.style.outputs.pr_number }}
|
||||
commit_sha: ${{ needs.style.outputs.new_commit_sha }}
|
||||
|
2
.github/workflows/self-comment-ci.yml
vendored
2
.github/workflows/self-comment-ci.yml
vendored
@ -29,7 +29,7 @@ jobs:
|
||||
runs-on: ubuntu-22.04
|
||||
name: Get PR number
|
||||
# For security: only allow team members to run
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
|
||||
outputs:
|
||||
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
|
||||
steps:
|
||||
|
@ -1,55 +0,0 @@
|
||||
name: Self-hosted runner (AMD mi210 scheduled CI caller)
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
name: Torch pipeline CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi210
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi210
|
||||
secrets: inherit
|
@ -15,10 +15,11 @@ jobs:
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
@ -26,10 +27,11 @@ jobs:
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
@ -37,10 +39,11 @@ jobs:
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
@ -48,8 +51,9 @@ jobs:
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
slack_report_channel: "#transformers-ci-daily-amd"
|
||||
runner: mi250
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi250
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
63
.github/workflows/self-scheduled-amd-mi300-caller.yml
vendored
Normal file
63
.github/workflows/self-scheduled-amd-mi300-caller.yml
vendored
Normal file
@ -0,0 +1,63 @@
|
||||
name: Self-hosted runner scale set (AMD mi300 scheduled CI caller)
|
||||
|
||||
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
|
||||
# For example, 1gpu scale set: amd-mi300-ci-1gpu
|
||||
# 2gpu scale set: amd-mi300-ci-2gpu
|
||||
|
||||
on:
|
||||
workflow_run:
|
||||
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
|
||||
branches: ["main"]
|
||||
types: [completed]
|
||||
push:
|
||||
branches:
|
||||
- run_amd_scheduled_ci_caller*
|
||||
|
||||
jobs:
|
||||
model-ci:
|
||||
name: Model CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_models_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi300-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi300
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
name: Torch pipeline CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_pipelines_torch_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi300-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi300
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
name: Example CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_examples_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi300-ci
|
||||
docker: huggingface/transformers-pytorch-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi300
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
name: DeepSpeed CI
|
||||
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
|
||||
with:
|
||||
job: run_torch_cuda_extensions_gpu
|
||||
slack_report_channel: "#amd-hf-ci"
|
||||
runner_scale_set: amd-mi300-ci
|
||||
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
|
||||
ci_event: Scheduled CI (AMD) - mi300
|
||||
report_repo_id: optimum-amd/transformers_daily_ci
|
||||
secrets: inherit
|
7
.github/workflows/self-scheduled-caller.yml
vendored
7
.github/workflows/self-scheduled-caller.yml
vendored
@ -54,6 +54,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
torch-pipeline:
|
||||
@ -65,6 +66,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-pytorch-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
tf-pipeline:
|
||||
@ -76,6 +78,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-tensorflow-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
example-ci:
|
||||
@ -87,6 +90,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
trainer-fsdp-ci:
|
||||
@ -98,6 +102,7 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-all-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
deepspeed-ci:
|
||||
@ -110,6 +115,7 @@ jobs:
|
||||
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
|
||||
ci_event: Daily CI
|
||||
working-directory-prefix: /workspace
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
||||
quantization-ci:
|
||||
@ -121,4 +127,5 @@ jobs:
|
||||
runner: daily-ci
|
||||
docker: huggingface/transformers-quantization-latest-gpu
|
||||
ci_event: Daily CI
|
||||
report_repo_id: hf-internal-testing/transformers_daily_ci
|
||||
secrets: inherit
|
||||
|
18
.github/workflows/self-scheduled.yml
vendored
18
.github/workflows/self-scheduled.yml
vendored
@ -28,6 +28,10 @@ on:
|
||||
default: ''
|
||||
required: false
|
||||
type: string
|
||||
report_repo_id:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
|
||||
env:
|
||||
HF_HOME: /mnt/cache
|
||||
@ -584,15 +588,21 @@ jobs:
|
||||
folder_slices: ${{ needs.setup.outputs.folder_slices }}
|
||||
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
|
||||
secrets: inherit
|
||||
|
||||
check_new_model_failures:
|
||||
if: ${{ always() && inputs.ci_event == 'Daily CI' && inputs.job == 'run_models_gpu' && needs.send_results.result == 'success' }}
|
||||
name: Check new model failures
|
||||
check_new_failures:
|
||||
if: ${{ always() && inputs.ci_event == 'Daily CI' && needs.send_results.result == 'success' }}
|
||||
name: Check new failures
|
||||
needs: send_results
|
||||
uses: ./.github/workflows/check_failed_model_tests.yml
|
||||
uses: ./.github/workflows/check_failed_tests.yml
|
||||
with:
|
||||
docker: ${{ inputs.docker }}
|
||||
start_sha: ${{ github.sha }}
|
||||
job: ${{ inputs.job }}
|
||||
slack_report_channel: ${{ inputs.slack_report_channel }}
|
||||
ci_event: ${{ inputs.ci_event }}
|
||||
report_repo_id: ${{ inputs.report_repo_id }}
|
||||
|
||||
secrets: inherit
|
||||
|
40
.github/workflows/slack-report.yml
vendored
40
.github/workflows/slack-report.yml
vendored
@ -21,6 +21,9 @@ on:
|
||||
ci_event:
|
||||
required: true
|
||||
type: string
|
||||
report_repo_id:
|
||||
required: true
|
||||
type: string
|
||||
|
||||
env:
|
||||
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
|
||||
@ -55,7 +58,7 @@ jobs:
|
||||
fi
|
||||
|
||||
- name: Send message to Slack
|
||||
if: ${{ inputs.job != 'run_quantization_torch_gpu' }}
|
||||
shell: bash
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
|
||||
@ -67,6 +70,7 @@ jobs:
|
||||
CI_SHA: ${{ github.sha }}
|
||||
CI_TEST_JOB: ${{ inputs.job }}
|
||||
SETUP_STATUS: ${{ inputs.setup_status }}
|
||||
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
|
||||
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
|
||||
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
|
||||
# For a job that doesn't depend on (i.e. `needs`) `setup`, the value for `inputs.folder_slices` would be an
|
||||
@ -75,7 +79,11 @@ jobs:
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service.py "${{ inputs.folder_slices }}"
|
||||
if [ "${{ inputs.quantization_matrix }}" != "" ]; then
|
||||
python utils/notification_service.py "${{ inputs.quantization_matrix }}"
|
||||
else
|
||||
python utils/notification_service.py "${{ inputs.folder_slices }}"
|
||||
fi
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
- name: Failure table artifacts
|
||||
@ -83,31 +91,3 @@ jobs:
|
||||
with:
|
||||
name: ci_results_${{ inputs.job }}
|
||||
path: ci_results_${{ inputs.job }}
|
||||
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/download-artifact@v4
|
||||
- name: Send message to Slack for quantization workflow
|
||||
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
|
||||
env:
|
||||
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
|
||||
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
|
||||
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
|
||||
CI_EVENT: ${{ inputs.ci_event }}
|
||||
CI_SHA: ${{ github.sha }}
|
||||
CI_TEST_JOB: ${{ inputs.job }}
|
||||
SETUP_STATUS: ${{ inputs.setup_status }}
|
||||
# We pass `needs.setup.outputs.quantization_matrix` as the argument. A processing in `notification_service_quantization.py` to change
|
||||
# `quantization/bnb` to `quantization_bnb` is required, as the artifact names use `_` instead of `/`.
|
||||
run: |
|
||||
pip install huggingface_hub
|
||||
pip install slack_sdk
|
||||
pip show slack_sdk
|
||||
python utils/notification_service_quantization.py "${{ inputs.quantization_matrix }}"
|
||||
|
||||
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
|
||||
- name: Failure table artifacts
|
||||
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: ci_results_${{ inputs.job }}
|
||||
path: ci_results_${{ inputs.job }}
|
||||
|
@ -1,4 +1,4 @@
|
||||
FROM rocm/dev-ubuntu-22.04:6.2.4
|
||||
FROM rocm/pytorch:rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0
|
||||
LABEL maintainer="Hugging Face"
|
||||
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
@ -11,9 +11,6 @@ RUN apt update && \
|
||||
RUN git lfs install
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
|
||||
|
||||
RUN python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4
|
||||
|
||||
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
|
||||
|
||||
ARG REF=main
|
||||
@ -33,3 +30,6 @@ RUN cd transformers && python3 setup.py develop
|
||||
|
||||
# Remove nvml and nvidia-ml-py as it is not compatible with ROCm. apex is not tested on NVIDIA either.
|
||||
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
|
||||
|
||||
# `kernels` may causes many failing tests
|
||||
RUN python3 -m pip uninstall -y kernels
|
@ -48,3 +48,6 @@ RUN python3 -c "from deepspeed.launcher.runner import main"
|
||||
|
||||
# Remove nvml as it is not compatible with ROCm
|
||||
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
|
||||
|
||||
# `kernels` may causes many failing tests
|
||||
RUN python3 -m pip uninstall -y kernels
|
||||
|
@ -76,12 +76,12 @@
|
||||
title: Prompt engineering
|
||||
- local: llm_optims
|
||||
title: Optimizing inference
|
||||
- local: cache_explanation
|
||||
title: Caching
|
||||
- local: kv_cache
|
||||
title: KV cache strategies
|
||||
- local: serving
|
||||
title: Serving
|
||||
- local: cache_explanation
|
||||
title: Caching
|
||||
- local: llm_tutorial_optimization
|
||||
title: Getting the most out of LLMs
|
||||
- local: perplexity
|
||||
@ -388,7 +388,7 @@
|
||||
- local: model_doc/bert-japanese
|
||||
title: BertJapanese
|
||||
- local: model_doc/bertweet
|
||||
title: Bertweet
|
||||
title: BERTweet
|
||||
- local: model_doc/big_bird
|
||||
title: BigBird
|
||||
- local: model_doc/bigbird_pegasus
|
||||
@ -544,7 +544,7 @@
|
||||
- local: model_doc/mamba
|
||||
title: Mamba
|
||||
- local: model_doc/mamba2
|
||||
title: mamba2
|
||||
title: Mamba2
|
||||
- local: model_doc/marian
|
||||
title: MarianMT
|
||||
- local: model_doc/markuplm
|
||||
@ -1123,4 +1123,9 @@
|
||||
- local: internal/time_series_utils
|
||||
title: Utilities for Time Series
|
||||
title: Internal helpers
|
||||
- sections:
|
||||
- local: reference/environment_variables
|
||||
title: Environment Variables
|
||||
title: Reference
|
||||
title: API
|
||||
|
||||
|
@ -15,8 +15,7 @@ rendered properly in your Markdown viewer.
|
||||
-->
|
||||
|
||||
# Caching
|
||||
|
||||
Imagine you’re having a conversation with someone, and instead of remembering what they previously said, they have to start from scratch every time you respond. This would be slow and inefficient, right?
|
||||
Imagine you're having a conversation with someone, and instead of remembering what they previously said, they have to start from scratch every time you respond. This would be slow and inefficient, right?
|
||||
|
||||
You can extend this analogy to transformer models. Autoregressive model generation can be slow because it makes a prediction one token at a time. Each new prediction is dependent on all the previous context.
|
||||
|
||||
@ -29,8 +28,50 @@ A key-value (KV) cache eliminates this inefficiency by storing kv pairs derived
|
||||
> [!WARNING]
|
||||
> Caching should only be used for **inference**. It may cause unexpected errors if it's enabled during training.
|
||||
|
||||
To better understand how and why caching works, let's take a closer look at the structure of the attention matrices.
|
||||
|
||||
## Attention matrices
|
||||
|
||||
The **scaled dot-product attention** is calculated as shown below for a batch of size `b`, number of attention heads `h`, sequence length so far `T`, and dimension per attention head `d_head`.
|
||||
|
||||
$$
|
||||
\text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^\top}{\sqrt{d_{\text{head}}}} \times \text{mask} \right) V
|
||||
$$
|
||||
|
||||
The query (`Q`), key (`K`), and value (`V`) matrices are projections from the input embeddings of shape `(b, h, T, d_head)`.
|
||||
|
||||
For causal attention, the mask prevents the model from attending to future tokens. Once a token is processed, its representation never changes with respect to future tokens, which means \\( K_{\text{past}} \\) and \\( V_{\text{past}} \\) can be cached and reused to compute the last token's representation.
|
||||
|
||||
$$
|
||||
\text{Attention}(q_t, [\underbrace{k_1, k_2, \dots, k_{t-1}}_{\text{cached}}, k_{t}], [\underbrace{v_1, v_2, \dots, v_{t-1}}_{\text{cached}}, v_{t}])
|
||||
$$
|
||||
|
||||
At inference time, you only need the last token's query to compute the representation \\( x_t \\) that predicts the next token \\( t+1 \\). At each step, the new key and value vectors are **stored** in the cache and **appended** to the past keys and values.
|
||||
|
||||
$$
|
||||
K_{\text{cache}} \leftarrow \text{concat}(K_{\text{past}}, k_t), \quad V_{\text{cache}} \leftarrow \text{concat}(V_{\text{past}}, v_t)
|
||||
$$
|
||||
|
||||
Attention is calculated independently in each layer of the model, and caching is done on a per-layer basis.
|
||||
|
||||
Refer to the table below to compare how caching improves efficiency.
|
||||
|
||||
| without caching | with caching | | | |
|
||||
|---|---|---|---|---|
|
||||
| for each step, recompute all previous `K` and `V` | for each step, only compute current `K` and `V` | | | |
|
||||
| attention cost per step is **quadratic** with sequence length | attention cost per step is **linear** with sequence length (memory grows linearly, but compute/token remains low) | | | |
|
||||
|
||||
|
||||
|
||||
## Cache class
|
||||
|
||||
A basic KV cache interface takes a key and value tensor for the current token and returns the updated `K` and `V` tensors. This is internally managed by a model's `forward` method.
|
||||
|
||||
```py
|
||||
new_K, new_V = cache.update(k_t, v_t, layer_idx)
|
||||
attn_output = attn_layer_idx_fn(q_t, new_K, new_V)
|
||||
```
|
||||
|
||||
When you use Transformers' [`Cache`] class, the self-attention module performs several critical steps to integrate past and present information.
|
||||
|
||||
1. The attention module concatenates current kv pairs with past kv pairs stored in the cache. This creates attentions weights with the shape `(new_tokens_length, past_kv_length + new_tokens_length)`. The current and past kv pairs are essentially combined to compute the attention scores, ensuring a model is aware of previous context and the current input.
|
||||
@ -39,6 +80,27 @@ When you use Transformers' [`Cache`] class, the self-attention module performs s
|
||||
|
||||
3. It is also important to be aware of the `cache_position`. This is important if you want to reuse a prefilled [`Cache`] with the `forward` method because you have to pass a valid `cache_position` value. This indicates the input positions in a sequence. `cache_position` is unaffected by padding, and it always adds one more position for each token. For example, if a kv cache contains 10 tokens - regardless of pad tokens - the cache position for the next token should be `torch.tensor([10])`.
|
||||
|
||||
## Cache storage implementation
|
||||
|
||||
The actual storage of key-value pairs varies between cache implementations. As an example, consider the [`DynamicCache`].
|
||||
|
||||
|
||||
In [`DynamicCache`], the key-value pairs are stored as two lists of tensors. Each tensor in the lists have the shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
- `key_cache`: A list of tensors, one for each layer.
|
||||
- `value_cache`: A list of tensors, one for each layer.
|
||||
|
||||
When new tokens are processed:
|
||||
|
||||
1. For each layer, the new key and value states are concatenated with the existing cache.
|
||||
```py
|
||||
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
|
||||
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
|
||||
```
|
||||
|
||||
2. The cache grows dynamically as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token.
|
||||
|
||||
3. The cache maintains a count of seen tokens through `self._seen_tokens`. This is updated when the first layer processes a new token.
|
||||
|
||||
The example below demonstrates how to create a generation loop with [`DynamicCache`]. As discussed, the attention mask is a concatenation of past and current token values and `1` is added to the cache position for the next token.
|
||||
|
||||
```py
|
||||
@ -72,10 +134,14 @@ for _ in range(max_new_tokens):
|
||||
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
|
||||
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
|
||||
```
|
||||
|
||||
## Legacy cache format
|
||||
|
||||
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format has is dynamic because it grows as text is generated, similar to [`DynamicCache`].
|
||||
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format is dynamic because it grows as text is generated, similar to [`DynamicCache`].
|
||||
|
||||
The legacy format is essentially the same data structure but organized differently.
|
||||
- It's a tuple of tuples, where each inner tuple contains the key and value tensors for a layer.
|
||||
- The tensors have the same shape `[batch_size, num_heads, seq_len, head_dim]`.
|
||||
- The format is less flexible and doesn't support features like quantization or offloading.
|
||||
|
||||
If your project depends on this legacy format, you can convert between [`DynamicCache`] and a tuple of tuples as shown below with the [`~DynamicCache.from_legacy_cache`] and [`DynamicCache.to_legacy_cache`] functions. This is helpful if you have custom logic for manipulating a cache in a specific format.
|
||||
|
||||
|
@ -327,7 +327,6 @@ We enable custom decoding methods through model repositories, assuming a specifi
|
||||
|
||||
If a model repository holds a custom decoding method, the easiest way to try it out is to load the model and generate with it:
|
||||
|
||||
<!-- TODO before merging: 1) better repo name (use a `generate-community` org?) 2) prettify the repo -->
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
@ -430,7 +429,7 @@ This is the core of your decoding method. It *must* contain a method named `gene
|
||||
> [!WARNING]
|
||||
> `generate.py` must be placed in a folder named `custom_generate`, and not at the root level of the repository. The file paths for this feature are hardcoded.
|
||||
|
||||
Under the hood, when the base [`~GenerationMixin.generate`] method is called with a `custom_generate` argument, it first checks its Python requirements (if any), then locates the custom `generate` method in `generate.py`, and finally calls the custom `generate`. All received arguments and `model` are forwarded to your custom `generate` method.
|
||||
Under the hood, when the base [`~GenerationMixin.generate`] method is called with a `custom_generate` argument, it first checks its Python requirements (if any), then locates the custom `generate` method in `generate.py`, and finally calls the custom `generate`. All received arguments and `model` are forwarded to your custom `generate` method, with the exception of the arguments used to trigger the custom generation (`trust_remote_code` and `custom_generate`).
|
||||
|
||||
This means your `generate` can have a mix of original and custom arguments (as well as a different output type) as shown below.
|
||||
|
||||
|
@ -16,7 +16,8 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# Model debugging toolboxes
|
||||
|
||||
This page lists all the debugging and model adding tools used by the library, as well as the utility functions it provides for it.
|
||||
This page lists all the debugging and model adding tools used by the library, as well as the utility functions it
|
||||
provides for it.
|
||||
|
||||
Most of those are only useful if you are adding new models in the library.
|
||||
|
||||
@ -26,13 +27,14 @@ Most of those are only useful if you are adding new models in the library.
|
||||
|
||||
### Model addition debugger - context manager for model adders
|
||||
|
||||
This context manager is a power user tool intended for model adders.
|
||||
It tracks all forward calls within a model forward and logs a slice of each input and output on a nested Json.
|
||||
To note, this context manager enforces `torch.no_grad()`.
|
||||
This context manager is a power user tool intended for model adders. It tracks all forward calls within a model forward
|
||||
and logs a slice of each input and output on a nested JSON. To note, this context manager enforces `torch.no_grad()`.
|
||||
|
||||
### Rationale
|
||||
|
||||
Because when porting models to transformers, even from python to python, model adders often have to do a lot of manual operations, involving saving and loading tensors, comparing dtypes, etc. This small tool can hopefully shave off some time.
|
||||
When porting models to transformers, even from python to python, model adders often have to do a lot of manual
|
||||
operations, involving saving and loading tensors, comparing dtypes, etc. This small tool can hopefully shave off some
|
||||
time.
|
||||
|
||||
### Usage
|
||||
|
||||
@ -62,10 +64,10 @@ inputs = processor(text=prompt, images=random_image, return_tensors="pt")
|
||||
|
||||
# call forward method (not .generate!)
|
||||
with model_addition_debugger_context(
|
||||
model,
|
||||
debug_path="optional_path_to_your_directory",
|
||||
do_prune_layers=False # This will output ALL the layers of a model.
|
||||
):
|
||||
model,
|
||||
debug_path="optional_path_to_your_directory",
|
||||
do_prune_layers=False # This will output ALL the layers of a model.
|
||||
):
|
||||
output = model.forward(**inputs)
|
||||
|
||||
```
|
||||
@ -73,8 +75,8 @@ with model_addition_debugger_context(
|
||||
|
||||
### Reading results
|
||||
|
||||
The debugger generates two files from the forward call, both with the same base name,
|
||||
but ending either with `_SUMMARY.json` or with `_FULL_TENSORS.json`.
|
||||
The debugger generates two files from the forward call, both with the same base name, but ending either with
|
||||
`_SUMMARY.json` or with `_FULL_TENSORS.json`.
|
||||
|
||||
The first one will contain a summary of each module's _input_ and _output_ tensor values and shapes.
|
||||
|
||||
@ -142,8 +144,8 @@ The first one will contain a summary of each module's _input_ and _output_ tenso
|
||||
{ ... and so on
|
||||
```
|
||||
|
||||
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful
|
||||
for comparing two files.
|
||||
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful for comparing two files.
|
||||
|
||||
```json
|
||||
"pixel_values": {
|
||||
"shape": "torch.Size([1, 5, 576, 588])",
|
||||
@ -196,9 +198,38 @@ for comparing two files.
|
||||
},
|
||||
```
|
||||
|
||||
#### Saving tensors to disk
|
||||
|
||||
Some model adders may benefit from logging full tensor values to disk to support, for example, numerical analysis
|
||||
across implementations.
|
||||
|
||||
Set `use_repr=False` to write tensors to disk using [SafeTensors](https://huggingface.co/docs/safetensors/en/index).
|
||||
|
||||
```python
|
||||
with model_addition_debugger_context(
|
||||
model,
|
||||
debug_path="optional_path_to_your_directory",
|
||||
do_prune_layers=False,
|
||||
use_repr=False, # Defaults to True
|
||||
):
|
||||
output = model.forward(**inputs)
|
||||
```
|
||||
|
||||
When using `use_repr=False`, tensors are written to the same disk location as the `_SUMMARY.json` and
|
||||
`_FULL_TENSORS.json` files. The `value` property of entries in the `_FULL_TENSORS.json` file will contain a relative
|
||||
path reference to the associated `.safetensors` file. Each tensor is written to its own file as the `data` property of
|
||||
the state dictionary. File names are constructed using the `module_path` as a prefix with a few possible postfixes that
|
||||
are built recursively.
|
||||
|
||||
* Module inputs are denoted with the `_inputs` and outputs by `_outputs`.
|
||||
* `list` and `tuple` instances, such as `args` or function return values, will be postfixed with `_{index}`.
|
||||
* `dict` instances will be postfixed with `_{key}`.
|
||||
|
||||
### Comparing between implementations
|
||||
|
||||
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
|
||||
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See
|
||||
below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly
|
||||
identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
|
||||
|
||||
|
||||

|
||||
@ -206,8 +237,13 @@ Once the forward passes of two models have been traced by the debugger, one can
|
||||
|
||||
### Limitations and scope
|
||||
|
||||
This feature will only work for torch-based models, and would require more work and case-by-case approach for say `jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be traced once instead of reran N times with breakpoints.
|
||||
This feature will only work for torch-based models, and would require more work and case-by-case approach for say
|
||||
`jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will
|
||||
probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be
|
||||
traced once instead of reran N times with breakpoints.
|
||||
|
||||
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N layers.
|
||||
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the
|
||||
first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N
|
||||
layers.
|
||||
|
||||
[[autodoc]] model_addition_debugger_context
|
||||
|
@ -84,14 +84,17 @@ GenerationConfig {
|
||||
}
|
||||
```
|
||||
|
||||
You can customize [`~GenerationMixin.generate`] by overriding the parameters and values in [`GenerationConfig`]. Some of the most commonly adjusted parameters are [max_new_tokens](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.max_new_tokens), [num_beams](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.num_beams), [do_sample](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.do_sample), and [num_return_sequences](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.num_return_sequences).
|
||||
You can customize [`~GenerationMixin.generate`] by overriding the parameters and values in [`GenerationConfig`]. See [this section below](#common-options) for commonly adjusted parameters.
|
||||
|
||||
```py
|
||||
# enable beam search sampling strategy
|
||||
model.generate(**inputs, num_beams=4, do_sample=True)
|
||||
```
|
||||
|
||||
[`~GenerationMixin.generate`] can also be extended with external libraries or custom code. The `logits_processor` parameter accepts custom [`LogitsProcessor`] instances for manipulating the next token probability distribution. `stopping_criteria` supports custom [`StoppingCriteria`] to stop text generation. Check out the [logits-processor-zoo](https://github.com/NVIDIA/logits-processor-zoo) for more examples of external [`~GenerationMixin.generate`]-compatible extensions.
|
||||
[`~GenerationMixin.generate`] can also be extended with external libraries or custom code:
|
||||
1. the `logits_processor` parameter accepts custom [`LogitsProcessor`] instances for manipulating the next token probability distribution;
|
||||
2. the `stopping_criteria` parameters supports custom [`StoppingCriteria`] to stop text generation;
|
||||
3. other custom generation methods can be loaded through the `custom_generate` flag ([docs](generation_strategies.md/#custom-decoding-methods)).
|
||||
|
||||
Refer to the [Generation strategies](./generation_strategies) guide to learn more about search, sampling, and decoding strategies.
|
||||
|
||||
|
@ -21,7 +21,7 @@ A **Video Processor** is a utility responsible for preparing input features for
|
||||
|
||||
The video processor extends the functionality of image processors by allowing Vision Large Language Models (VLMs) to handle videos with a distinct set of arguments compared to images. It serves as the bridge between raw video data and the model, ensuring that input features are optimized for the VLM.
|
||||
|
||||
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't upadted your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
|
||||
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't updated your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
|
||||
|
||||
|
||||
### Usage Example
|
||||
|
@ -389,3 +389,9 @@ The following auto classes are available for the following multimodal tasks.
|
||||
### AutoModelForImageTextToText
|
||||
|
||||
[[autodoc]] AutoModelForImageTextToText
|
||||
|
||||
## Time Series
|
||||
|
||||
### AutoModelForTimeSeriesPrediction
|
||||
|
||||
[[autodoc]] AutoModelForTimeSeriesPrediction
|
||||
|
@ -14,116 +14,87 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# BART
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# BART
|
||||
[BART](https://huggingface.co/papers/1910.13461) is a sequence-to-sequence model that combines the pretraining objectives from BERT and GPT. It’s pretrained by corrupting text in different ways like deleting words, shuffling sentences, or masking tokens and learning how to fix it. The encoder encodes the corrupted document and the corrupted text is fixed by the decoder. As it learns to recover the original text, BART gets really good at both understanding and generating language.
|
||||
|
||||
The Bart model was proposed in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
|
||||
Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
|
||||
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019.
|
||||
You can find all the original BART checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=bart) organization.
|
||||
|
||||
According to the abstract,
|
||||
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
- Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a
|
||||
left-to-right decoder (like GPT).
|
||||
- The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme,
|
||||
where spans of text are replaced with a single mask token.
|
||||
- BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It
|
||||
matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new
|
||||
state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains
|
||||
of up to 6 ROUGE.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The authors' code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/bart).
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
## Usage tips:
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="facebook/bart-large",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create <mask> through a process known as photosynthesis.")
|
||||
|
||||
- BART is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
- Sequence-to-sequence model with an encoder and a decoder. Encoder is fed a corrupted version of the tokens, decoder is fed the original tokens (but has a mask to hide the future words like a regular transformers decoder). A composition of the following transformations are applied on the pretraining tasks for the encoder:
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
* mask random tokens (like in BERT)
|
||||
* delete random tokens
|
||||
* mask a span of k tokens with a single mask token (a span of 0 tokens is an insertion of a mask token)
|
||||
* permute sentences
|
||||
* rotate the document to make it start at a specific token
|
||||
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
## Implementation Notes
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"facebook/bart-large",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"facebook/bart-large",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
|
||||
|
||||
- Bart doesn't use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or
|
||||
[`~BartTokenizer.encode`] to get the proper splitting.
|
||||
- The forward pass of [`BartModel`] will create the `decoder_input_ids` if they are not passed.
|
||||
This is different than some other modeling APIs. A typical use case of this feature is mask filling.
|
||||
- Model predictions are intended to be identical to the original implementation when
|
||||
`forced_bos_token_id=0`. This only works, however, if the string you pass to
|
||||
[`fairseq.encode`] starts with a space.
|
||||
- [`~generation.GenerationMixin.generate`] should be used for conditional generation tasks like
|
||||
summarization, see the example in that docstrings.
|
||||
- Models that load the *facebook/bart-large-cnn* weights will not have a `mask_token_id`, or be able to perform
|
||||
mask-filling tasks.
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
## Mask Filling
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
The `facebook/bart-base` and `facebook/bart-large` checkpoints can be used to fill multi-token masks.
|
||||
|
||||
```python
|
||||
from transformers import BartForConditionalGeneration, BartTokenizer
|
||||
|
||||
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large", forced_bos_token_id=0)
|
||||
tok = BartTokenizer.from_pretrained("facebook/bart-large")
|
||||
example_english_phrase = "UN Chief Says There Is No <mask> in Syria"
|
||||
batch = tok(example_english_phrase, return_tensors="pt")
|
||||
generated_ids = model.generate(batch["input_ids"])
|
||||
assert tok.batch_decode(generated_ids, skip_special_tokens=True) == [
|
||||
"UN Chief Says There Is No Plan to Stop Chemical Weapons in Syria"
|
||||
]
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
## Resources
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BART. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
```bash
|
||||
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model facebook/bart-large --device 0
|
||||
```
|
||||
|
||||
<PipelineTag pipeline="summarization"/>
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
- A blog post on [Distributed Training: Train BART/T5 for Summarization using 🤗 Transformers and Amazon SageMaker](https://huggingface.co/blog/sagemaker-distributed-training-seq2seq).
|
||||
- A notebook on how to [finetune BART for summarization with fastai using blurr](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb). 🌎
|
||||
- A notebook on how to [finetune BART for summarization in two languages with Trainer class](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb). 🌎
|
||||
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb).
|
||||
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb).
|
||||
- [`FlaxBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/summarization).
|
||||
- An example of how to train [`BartForConditionalGeneration`] with a Hugging Face `datasets` object can be found in this [forum discussion](https://discuss.huggingface.co/t/train-bart-for-conditional-generation-e-g-summarization/1904)
|
||||
- [Summarization](https://huggingface.co/course/chapter7/5?fw=pt#summarization) chapter of the 🤗 Hugging Face course.
|
||||
- [Summarization task guide](../tasks/summarization)
|
||||
## Notes
|
||||
|
||||
<PipelineTag pipeline="fill-mask"/>
|
||||
|
||||
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
|
||||
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
|
||||
- [`FlaxBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
|
||||
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
|
||||
<PipelineTag pipeline="translation"/>
|
||||
|
||||
- A notebook on how to [finetune mBART using Seq2SeqTrainer for Hindi to English translation](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb). 🌎
|
||||
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb).
|
||||
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
|
||||
- [Translation task guide](../tasks/translation)
|
||||
|
||||
See also:
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Distilled checkpoints](https://huggingface.co/models?search=distilbart) are described in this [paper](https://arxiv.org/abs/2010.13002).
|
||||
- Inputs should be padded on the right because BERT uses absolute position embeddings.
|
||||
- The [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) checkpoint doesn't include `mask_token_id` which means it can't perform mask-filling tasks.
|
||||
- BART doesn’t use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or [`~PreTrainedTokenizerBase.encode`] to get the proper splitting.
|
||||
- The forward pass of [`BartModel`] creates the `decoder_input_ids` if they're not passed. This can be different from other model APIs, but it is a useful feature for mask-filling tasks.
|
||||
- Model predictions are intended to be identical to the original implementation when `forced_bos_token_id=0`. This only works if the text passed to `fairseq.encode` begins with a space.
|
||||
- [`~GenerationMixin.generate`] should be used for conditional generation tasks like summarization.
|
||||
|
||||
## BartConfig
|
||||
|
||||
|
@ -16,60 +16,82 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
# BERTweet
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
## BERTweet
|
||||
|
||||
The BERTweet model was proposed in [BERTweet: A pre-trained language model for English Tweets](https://www.aclweb.org/anthology/2020.emnlp-demos.2.pdf) by Dat Quoc Nguyen, Thanh Vu, Anh Tuan Nguyen.
|
||||
[BERTweet](https://huggingface.co/papers/2005.10200) shares the same architecture as [BERT-base](./bert), but it’s pretrained like [RoBERTa](./roberta) on English Tweets. It performs really well on Tweet-related tasks like part-of-speech tagging, named entity recognition, and text classification.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*We present BERTweet, the first public large-scale pre-trained language model for English Tweets. Our BERTweet, having
|
||||
the same architecture as BERT-base (Devlin et al., 2019), is trained using the RoBERTa pre-training procedure (Liu et
|
||||
al., 2019). Experiments show that BERTweet outperforms strong baselines RoBERTa-base and XLM-R-base (Conneau et al.,
|
||||
2020), producing better performance results than the previous state-of-the-art models on three Tweet NLP tasks:
|
||||
Part-of-speech tagging, Named-entity recognition and text classification.*
|
||||
You can find all the original BERTweet checkpoints under the [VinAI Research](https://huggingface.co/vinai?search_models=BERTweet) organization.
|
||||
|
||||
This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/BERTweet).
|
||||
> [!TIP]
|
||||
> Refer to the [BERT](./bert) docs for more examples of how to apply BERTweet to different language tasks.
|
||||
|
||||
## Usage example
|
||||
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
```python
|
||||
>>> import torch
|
||||
>>> from transformers import AutoModel, AutoTokenizer
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
>>> bertweet = AutoModel.from_pretrained("vinai/bertweet-base")
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
>>> # For transformers v4.x+:
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", use_fast=False)
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="vinai/bertweet-base",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create <mask> through a process known as photosynthesis.")
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
>>> # For transformers v3.x:
|
||||
>>> # tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base")
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
>>> # INPUT TWEET IS ALREADY NORMALIZED!
|
||||
>>> line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:"
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"vinai/bertweet-base",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"vinai/bertweet-base",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto"
|
||||
)
|
||||
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
|
||||
|
||||
>>> input_ids = torch.tensor([tokenizer.encode(line)])
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
>>> with torch.no_grad():
|
||||
... features = bertweet(input_ids) # Models outputs are now tuples
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
>>> # With TensorFlow 2.0+:
|
||||
>>> # from transformers import TFAutoModel
|
||||
>>> # bertweet = TFAutoModel.from_pretrained("vinai/bertweet-base")
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
<Tip>
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
This implementation is the same as BERT, except for tokenization method. Refer to [BERT documentation](bert) for
|
||||
API reference information.
|
||||
```bash
|
||||
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model vinai/bertweet-base --device 0
|
||||
```
|
||||
|
||||
</Tip>
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
- Use the [`AutoTokenizer`] or [`BertweetTokenizer`] because it’s preloaded with a custom vocabulary adapted to tweet-specific tokens like hashtags (#), mentions (@), emojis, and common abbreviations. Make sure to also install the [emoji](https://pypi.org/project/emoji/) library.
|
||||
- Inputs should be padded on the right (`padding="max_length"`) because BERT uses absolute position embeddings.
|
||||
|
||||
## BertweetTokenizer
|
||||
|
||||
|
@ -14,63 +14,87 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# BigBird
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
|
||||
<img alt= "Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# BigBird
|
||||
|
||||
The BigBird model was proposed in [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by
|
||||
Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon,
|
||||
Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention
|
||||
based transformer which extends Transformer based models, such as BERT to much longer sequences. In addition to sparse
|
||||
attention, BigBird also applies global attention as well as random attention to the input sequence. Theoretically, it
|
||||
has been shown that applying sparse, global, and random attention approximates full attention, while being
|
||||
computationally much more efficient for longer sequences. As a consequence of the capability to handle longer context,
|
||||
BigBird has shown improved performance on various long document NLP tasks, such as question answering and
|
||||
summarization, compared to BERT or RoBERTa.
|
||||
[BigBird](https://huggingface.co/papers/2007.14062) is a transformer model built to handle sequence lengths up to 4096 compared to 512 for [BERT](./bert). Traditional transformers struggle with long inputs because attention gets really expensive as the sequence length grows. BigBird fixes this by using a sparse attention mechanism, which means it doesn’t try to look at everything at once. Instead, it mixes in local attention, random attention, and a few global tokens to process the whole input. This combination gives it the best of both worlds. It keeps the computation efficient while still capturing enough of the sequence to understand it well. Because of this, BigBird is great at tasks involving long documents, like question answering, summarization, and genomic applications.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP.
|
||||
Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence
|
||||
length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that
|
||||
reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and
|
||||
is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our
|
||||
theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire
|
||||
sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to
|
||||
8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context,
|
||||
BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also
|
||||
propose novel applications to genomics data.*
|
||||
You can find all the original BigBird checkpoints under the [Google](https://huggingface.co/google?search_models=bigbird) organization.
|
||||
|
||||
This model was contributed by [vasudevgupta](https://huggingface.co/vasudevgupta). The original code can be found
|
||||
[here](https://github.com/google-research/bigbird).
|
||||
> [!TIP]
|
||||
> Click on the BigBird models in the right sidebar for more examples of how to apply BigBird to different language tasks.
|
||||
|
||||
## Usage tips
|
||||
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
- For an in-detail explanation on how BigBird's attention works, see [this blog post](https://huggingface.co/blog/big-bird).
|
||||
- BigBird comes with 2 implementations: **original_full** & **block_sparse**. For the sequence length < 1024, using
|
||||
**original_full** is advised as there is no benefit in using **block_sparse** attention.
|
||||
- The code currently uses window size of 3 blocks and 2 global blocks.
|
||||
- Sequence length must be divisible by block size.
|
||||
- Current implementation supports only **ITC**.
|
||||
- Current implementation doesn't support **num_random_blocks = 0**
|
||||
- BigBird is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline = pipeline(
|
||||
task="fill-mask",
|
||||
model="google/bigbird-roberta-base",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create [MASK] through a process known as photosynthesis.")
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"google/bigbird-roberta-base",
|
||||
)
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"google/bigbird-roberta-base",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
)
|
||||
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt").to("cuda")
|
||||
|
||||
with torch.no_grad():
|
||||
outputs = model(**inputs)
|
||||
predictions = outputs.logits
|
||||
|
||||
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
|
||||
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
|
||||
predicted_token = tokenizer.decode(predicted_token_id)
|
||||
|
||||
print(f"The predicted token is: {predicted_token}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
!echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers-cli run --task fill-mask --model google/bigbird-roberta-base --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
- Inputs should be padded on the right because BigBird uses absolute position embeddings.
|
||||
- BigBird supports `original_full` and `block_sparse` attention. If the input sequence length is less than 1024, it is recommended to use `original_full` since sparse patterns don't offer much benefit for smaller inputs.
|
||||
- The current implementation uses window size of 3 blocks and 2 global blocks, only supports the ITC-implementation, and doesn't support `num_random_blocks=0`.
|
||||
- The sequence length must be divisible by the block size.
|
||||
|
||||
## Resources
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
- Read the [BigBird](https://huggingface.co/blog/big-bird) blog post for more details about how its attention works.
|
||||
|
||||
## BigBirdConfig
|
||||
|
||||
|
@ -14,78 +14,121 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# BioGPT
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# BioGPT
|
||||
|
||||
The BioGPT model was proposed in [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. BioGPT is a domain-specific generative pre-trained Transformer language model for biomedical text generation and mining. BioGPT follows the Transformer language model backbone, and is pre-trained on 15M PubMed abstracts from scratch.
|
||||
[BioGPT](https://huggingface.co/papers/2210.10341) is a generative Transformer model based on [GPT-2](./gpt2) and pretrained on 15 million PubMed abstracts. It is designed for biomedical language tasks.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the original BioGPT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=biogpt) organization.
|
||||
|
||||
*Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.*
|
||||
> [!TIP]
|
||||
> Click on the BioGPT models in the right sidebar for more examples of how to apply BioGPT to different language tasks.
|
||||
|
||||
This model was contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/BioGPT).
|
||||
The example below demonstrates how to generate biomedical text with [`Pipeline`], [`AutoModel`], and also from the command line.
|
||||
|
||||
## Usage tips
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
- BioGPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left.
|
||||
- BioGPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows BioGPT to generate syntactically coherent text as it can be observed in the run_generation.py example script.
|
||||
- The model can take the `past_key_values` (for PyTorch) as input, which is the previously computed key/value attention pairs. Using this (past_key_values or past) value prevents the model from re-computing pre-computed values in the context of text generation. For PyTorch, see past_key_values argument of the BioGptForCausalLM.forward() method for more information on its usage.
|
||||
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
### Using Scaled Dot Product Attention (SDPA)
|
||||
|
||||
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
|
||||
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
|
||||
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
|
||||
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
|
||||
page for more information.
|
||||
|
||||
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
|
||||
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
|
||||
|
||||
```
|
||||
from transformers import BioGptForCausalLM
|
||||
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt", attn_implementation="sdpa", torch_dtype=torch.float16)
|
||||
generator = pipeline(
|
||||
task="text-generation",
|
||||
model="microsoft/biogpt",
|
||||
torch_dtype=torch.float16,
|
||||
device=0,
|
||||
)
|
||||
result = generator("Ibuprofen is best used for", truncation=True, max_length=50, do_sample=True)[0]["generated_text"]
|
||||
print(result)
|
||||
```
|
||||
|
||||
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and `microsoft/biogpt` model with a CausalLM head,
|
||||
we saw the following speedups during training.
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
| num_training_steps | batch_size | seq_len | is cuda | Time per batch (eager - s) | Time per batch (sdpa - s) | Speedup (%) | Eager peak mem (MB) | sdpa peak mem (MB) | Mem saving (%) |
|
||||
|--------------------|------------|---------|---------|----------------------------|---------------------------|-------------|---------------------|--------------------|----------------|
|
||||
| 100 | 1 | 128 | False | 0.038 | 0.031 | 21.301 | 1601.862 | 1601.497 | 0.023 |
|
||||
| 100 | 1 | 256 | False | 0.039 | 0.034 | 15.084 | 1624.944 | 1625.296 | -0.022 |
|
||||
| 100 | 2 | 128 | False | 0.039 | 0.033 | 16.820 | 1624.567 | 1625.296 | -0.045 |
|
||||
| 100 | 2 | 256 | False | 0.065 | 0.059 | 10.255 | 1672.164 | 1672.164 | 0.000 |
|
||||
| 100 | 4 | 128 | False | 0.062 | 0.058 | 6.998 | 1671.435 | 1672.164 | -0.044 |
|
||||
| 100 | 4 | 256 | False | 0.113 | 0.100 | 13.316 | 2350.179 | 1848.435 | 27.144 |
|
||||
| 100 | 8 | 128 | False | 0.107 | 0.098 | 9.883 | 2098.521 | 1848.435 | 13.530 |
|
||||
| 100 | 8 | 256 | False | 0.222 | 0.196 | 13.413 | 3989.980 | 2986.492 | 33.601 |
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/biogpt",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and `microsoft/biogpt` model with a simple AutoModel head,
|
||||
we saw the following speedups during inference.
|
||||
input_text = "Ibuprofen is best used for"
|
||||
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
||||
|
||||
| num_batches | batch_size | seq_len | is cuda | is half | use mask | Per token latency eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem eager (MB) | Mem BT (MB) | Mem saved (%) |
|
||||
|-------------|------------|---------|---------|---------|----------|------------------------------|-----------------------------|-------------|----------------|--------------|---------------|
|
||||
| 50 | 1 | 64 | True | True | True | 0.115 | 0.098 | 17.392 | 716.998 | 716.998 | 0.000 |
|
||||
| 50 | 1 | 128 | True | True | True | 0.115 | 0.093 | 24.640 | 730.916 | 730.916 | 0.000 |
|
||||
| 50 | 2 | 64 | True | True | True | 0.114 | 0.096 | 19.204 | 730.900 | 730.900 | 0.000 |
|
||||
| 50 | 2 | 128 | True | True | True | 0.117 | 0.095 | 23.529 | 759.262 | 759.262 | 0.000 |
|
||||
| 50 | 4 | 64 | True | True | True | 0.113 | 0.096 | 18.325 | 759.229 | 759.229 | 0.000 |
|
||||
| 50 | 4 | 128 | True | True | True | 0.186 | 0.178 | 4.289 | 816.478 | 816.478 | 0.000 |
|
||||
with torch.no_grad():
|
||||
generated_ids = model.generate(**inputs, max_length=50)
|
||||
|
||||
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
||||
print(output)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
## Resources
|
||||
```bash
|
||||
echo -e "Ibuprofen is best used for" | transformers-cli run --task text-generation --model microsoft/biogpt --device 0
|
||||
```
|
||||
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bit precision.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
||||
|
||||
bnb_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_use_double_quant=True
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/BioGPT-Large",
|
||||
quantization_config=bnb_config,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
input_text = "Ibuprofen is best used for"
|
||||
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
||||
with torch.no_grad():
|
||||
generated_ids = model.generate(**inputs, max_length=50)
|
||||
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
||||
print(output)
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- Pad inputs on the right because BioGPT uses absolute position embeddings.
|
||||
- BioGPT can reuse previously computed key-value attention pairs. Access this feature with the [past_key_values](https://huggingface.co/docs/transformers/main/en/model_doc/biogpt#transformers.BioGptModel.forward.past_key_values) parameter in [`BioGPTModel.forward`].
|
||||
- The `head_mask` argument is ignored when using an attention implementation other than "eager". If you want to use `head_mask`, make sure `attn_implementation="eager"`).
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/biogpt",
|
||||
attn_implementation="eager"
|
||||
)
|
||||
|
||||
## BioGptConfig
|
||||
|
||||
@ -109,7 +152,7 @@ we saw the following speedups during inference.
|
||||
[[autodoc]] BioGptForCausalLM
|
||||
- forward
|
||||
|
||||
|
||||
|
||||
## BioGptForTokenClassification
|
||||
|
||||
[[autodoc]] BioGptForTokenClassification
|
||||
|
@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
Note that [`BlenderbotSmallModel`] and
|
||||
@ -52,7 +54,7 @@ found [here](https://github.com/facebookresearch/ParlAI).
|
||||
|
||||
## Usage tips
|
||||
|
||||
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
|
||||
the left.
|
||||
|
||||
|
||||
|
@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
@ -45,7 +47,7 @@ This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The
|
||||
|
||||
## Usage tips and example
|
||||
|
||||
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
|
||||
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
|
||||
rather than the left.
|
||||
|
||||
An example:
|
||||
@ -71,7 +73,7 @@ An example:
|
||||
`facebook/blenderbot_small_90M`, have a different architecture and consequently should be used with
|
||||
[BlenderbotSmall](blenderbot-small).
|
||||
|
||||
|
||||
|
||||
## Resources
|
||||
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
|
@ -39,7 +39,7 @@ CSM can be used to simply generate speech from a text prompt:
|
||||
import torch
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# load the model and the processor
|
||||
@ -74,7 +74,7 @@ import torch
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
from datasets import load_dataset, Audio
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# load the model and the processor
|
||||
@ -119,7 +119,7 @@ import torch
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
from datasets import load_dataset, Audio
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
# load the model and the processor
|
||||
@ -176,7 +176,7 @@ import copy
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
from datasets import load_dataset
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda"
|
||||
|
||||
# set logs to ensure no recompilation and graph breaks
|
||||
@ -308,13 +308,14 @@ CSM Transformers integration supports training!
|
||||
from transformers import CsmForConditionalGeneration, AutoProcessor
|
||||
from datasets import load_dataset, Audio
|
||||
|
||||
model_id = "eustlb/csm-1b"
|
||||
model_id = "sesame/csm-1b"
|
||||
device = "cuda"
|
||||
|
||||
# load the model and the processor
|
||||
processor = AutoProcessor.from_pretrained(model_id)
|
||||
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
|
||||
model.train()
|
||||
model.codec_model.eval()
|
||||
|
||||
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
|
||||
# ensure the audio is 24kHz
|
||||
@ -355,6 +356,10 @@ The original code can be found [here](https://github.com/SesameAILabs/csm).
|
||||
|
||||
## CsmProcessor
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/eustlb/documentation-images/resolve/main/fig1.jpg"/>
|
||||
</div>
|
||||
|
||||
[[autodoc]] CsmProcessor
|
||||
- __call__
|
||||
|
||||
|
@ -28,8 +28,8 @@ We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 67
|
||||
We are super happy to make this code community-powered, and would love to see how you can best optimize the following:
|
||||
|
||||
- current implementation uses the "naive" attention compution (so not really MLA)
|
||||
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `intetrations/tensor_parallel`.
|
||||
- current implementation uses the eleuther formula for ROPE, using the orginal one would be more efficient! (should still follow our API)
|
||||
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `integrations/tensor_parallel`.
|
||||
- current implementation uses the eleuther formula for ROPE, using the original one would be more efficient! (should still follow our API)
|
||||
- static cache is not supported (this should be just a generation config issue / config shape issues)
|
||||
|
||||
### Usage tips
|
||||
|
@ -9,12 +9,11 @@ Unless required by applicable law or agreed to in writing, software distributed
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Granite
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
@ -22,49 +21,94 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Granite
|
||||
|
||||
The Granite model was proposed in [Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler](https://arxiv.org/abs/2408.13359) by Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adriana Meza Soria, David D. Cox and Rameswar Panda.
|
||||
[Granite](https://huggingface.co/papers/2408.13359) is a 3B parameter language model trained with the Power scheduler. Discovering a good learning rate for pretraining large language models is difficult because it depends on so many variables (batch size, number of training tokens, etc.) and it is expensive to perform a hyperparameter search. The Power scheduler is based on a power-law relationship between the variables and their transferability to larger models. Combining the Power scheduler with Maximum Update Parameterization (MUP) allows a model to be pretrained with one set of hyperparameters regardless of all the variables.
|
||||
|
||||
PowerLM-3B is a 3B state-of-the-art small language model trained with the Power learning rate scheduler. It is trained on a wide range of open-source and synthetic datasets with permissive licenses. PowerLM-3B has shown promising results compared to other models in the size categories across various benchmarks, including natural language multi-choices, code generation, and math reasoning.
|
||||
You can find all the original Granite checkpoints under the [IBM-Granite](https://huggingface.co/ibm-granite) organization.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
> [!TIP]
|
||||
> Click on the Granite models in the right sidebar for more examples of how to apply Granite to different language tasks.
|
||||
|
||||
*Finding the optimal learning rate for language model pretraining is a challenging task.
|
||||
This is not only because there is a complicated correlation between learning rate, batch size, number of training tokens, model size, and other hyperparameters but also because it is prohibitively expensive to perform a hyperparameter search for large language models with Billions or Trillions of parameters. Recent studies propose using small proxy models and small corpus to perform hyperparameter searches and transposing the optimal parameters to large models and large corpus. While the zero-shot transferability is theoretically and empirically proven for model size related hyperparameters, like depth and width, the zero-shot transfer from small corpus to large corpus is underexplored.
|
||||
In this paper, we study the correlation between optimal learning rate, batch size, and number of training tokens for the recently proposed WSD scheduler. After thousands of small experiments, we found a power-law relationship between variables and demonstrated its transferability across model sizes. Based on the observation, we propose a new learning rate scheduler, Power scheduler, that is agnostic about the number of training tokens and batch size. The experiment shows that combining the Power scheduler with Maximum Update Parameterization (\mup) can consistently achieve impressive performance with one set of hyperparameters regardless of the number of training tokens, batch size, model size, and even model architecture. Our 3B dense and MoE models trained with the Power scheduler achieve comparable performance as state-of-the-art small language models.
|
||||
We [open source](https://huggingface.co/collections/ibm/power-lm-66be64ae647ddf11b9808000) these pretrained models.*
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`, and from the command line.
|
||||
|
||||
Tips:
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="text-generation",
|
||||
model="ibm-granite/granite-3.3-2b-base",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device=0
|
||||
)
|
||||
pipe("Explain quantum computing in simple terms ", max_new_tokens=50)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model_path = "ibm/PowerLM-3b"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.3-2b-base")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"ibm-granite/granite-3.3-2b-base",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
|
||||
# drop device_map if running on CPU
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
|
||||
model.eval()
|
||||
inputs = tokenizer("Explain quantum computing in simple terms", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
# change input text as desired
|
||||
prompt = "Write a code to find the maximum value in a list of numbers."
|
||||
```python
|
||||
echo -e "Explain quantum computing simply." | transformers-cli run --task text-generation --model ibm-granite/granite-3.3-8b-instruct --device 0
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
# tokenize the text
|
||||
input_tokens = tokenizer(prompt, return_tensors="pt")
|
||||
# generate output tokens
|
||||
output = model.generate(**input_tokens, max_new_tokens=100)
|
||||
# decode output tokens into text
|
||||
output = tokenizer.batch_decode(output)
|
||||
# loop over the batch to print, in this example the batch size is 1
|
||||
for i in output:
|
||||
print(i)
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
||||
|
||||
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.3-8b-base")
|
||||
model = AutoModelForCausalLM.from_pretrained("ibm-granite/granite-3.3-8b-base", torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa", quantization_config=quantization_config)
|
||||
|
||||
inputs = tokenizer("Explain quantum computing in simple terms", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
|
||||
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(""ibm-granite/granite-3.3-2b-base"")
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"ibm-granite/granite-3.3-2b-base",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa",
|
||||
quantization_config=quantization_config,
|
||||
)
|
||||
|
||||
input_ids = tokenizer("Explain artificial intelligence to a 10 year old", return_tensors="pt").to("cuda")
|
||||
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
This model was contributed by [mayank-mishra](https://huggingface.co/mayank-mishra).
|
||||
|
||||
|
||||
|
||||
## GraniteConfig
|
||||
|
||||
[[autodoc]] GraniteConfig
|
||||
|
@ -99,7 +99,7 @@ quantization_config = BitsAndBytesConfig(load_in_8bit=True,
|
||||
device_map = {'model.embed_tokens': 0, 'model.layers.0': 0, 'model.layers.1': 0, 'model.layers.2': 0, 'model.layers.3': 0, 'model.layers.4': 0, 'model.layers.5': 0, 'model.layers.6': 0, 'model.layers.7': 0, 'model.layers.8': 0, 'model.layers.9': 1, 'model.layers.10': 1, 'model.layers.11': 1, 'model.layers.12': 1, 'model.layers.13': 1, 'model.layers.14': 1, 'model.layers.15': 1, 'model.layers.16': 1, 'model.layers.17': 1, 'model.layers.18': 2, 'model.layers.19': 2, 'model.layers.20': 2, 'model.layers.21': 2, 'model.layers.22': 2, 'model.layers.23': 2, 'model.layers.24': 2, 'model.layers.25': 2, 'model.layers.26': 2, 'model.layers.27': 3, 'model.layers.28': 3, 'model.layers.29': 3, 'model.layers.30': 3, 'model.layers.31': 3, 'model.layers.32': 3, 'model.layers.33': 3, 'model.layers.34': 3, 'model.layers.35': 3, 'model.layers.36': 4, 'model.layers.37': 4, 'model.layers.38': 4, 'model.layers.39': 4, 'model.layers.40': 4, 'model.layers.41': 4, 'model.layers.42': 4, 'model.layers.43': 4, 'model.layers.44': 4, 'model.layers.45': 5, 'model.layers.46': 5, 'model.layers.47': 5, 'model.layers.48': 5, 'model.layers.49': 5, 'model.layers.50': 5, 'model.layers.51': 5, 'model.layers.52': 5, 'model.layers.53': 5, 'model.layers.54': 6, 'model.layers.55': 6, 'model.layers.56': 6, 'model.layers.57': 6, 'model.layers.58': 6, 'model.layers.59': 6, 'model.layers.60': 6, 'model.layers.61': 6, 'model.layers.62': 6, 'model.layers.63': 7, 'model.layers.64': 7, 'model.layers.65': 7, 'model.layers.66': 7, 'model.layers.67': 7, 'model.layers.68': 7, 'model.layers.69': 7, 'model.layers.70': 7, 'model.layers.71': 7, 'model.final_layernorm': 7, 'lm_head': 7}
|
||||
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Large-1.6",
|
||||
torch_dtype=torch.bfloat16,
|
||||
attn_implementation="flash_attention_2",
|
||||
attn_implementation="flash_attention_2",
|
||||
quantization_config=quantization_config,
|
||||
device_map=device_map)
|
||||
|
||||
|
@ -14,47 +14,94 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
# Mamba 2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
[Mamba 2](https://huggingface.co/papers/2405.21060) is based on the state space duality (SSD) framework which connects structured state space models (SSMs) and attention variants. It uses a more efficient SSD algorithm that is 2-8x faster than Mamba and modifies the architecture to enable tensor parallelism and a grouped-value attention (GVA) head structure.
|
||||
|
||||
## Overview
|
||||
You can find all the original Mamba 2 checkpoints under the [State Space Models](https://huggingface.co/state-spaces) organization, but the examples shown below use [mistralai/Mamba-Codestral-7B-v0.1](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) because a Hugging Face implementation isn't supported yet for the original checkpoints.
|
||||
|
||||
The Mamba2 model was proposed in [Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality](https://arxiv.org/abs/2405.21060) by Tri Dao and Albert Gu. It is a State Space Model similar to Mamba 1, with better performances in a simplified architecture.
|
||||
> [!TIP]
|
||||
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
|
||||
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
*While Transformers have been the main architecture behind deep learning's success in language modeling, state-space models (SSMs) such as Mamba have recently been shown to match or outperform Transformers at small to medium scale. We show that these families of models are actually quite closely related, and develop a rich framework of theoretical connections between SSMs and variants of attention, connected through various decompositions of a well-studied class of structured semiseparable matrices. Our state space duality (SSD) framework allows us to design a new architecture (Mamba-2) whose core layer is an a refinement of Mamba's selective SSM that is 2-8X faster, while continuing to be competitive with Transformers on language modeling.*
|
||||
|
||||
Tips:
|
||||
|
||||
This version should support all implementations of Mamba 2, and in particular [Mamba-2 codestral](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) from Mistral AI. In particular, mamba 2 codestral was released with a number of `groups` equal to 8, which can be thought intuitively as similar to the number of kv heads in an attention-based model.
|
||||
This model has two different forward passes, `torch_forward` or `cuda_kernels_forward`. The latter uses the original cuda kernels if they are found in your environment, and is slower on the prefill i.e. requires a "warmup run" due to high cpu overhead, see [here](https://github.com/state-spaces/mamba/issues/389#issuecomment-2171755306) and [also here](https://github.com/state-spaces/mamba/issues/355#issuecomment-2147597457). Without compilation, the `torch_forward` implementation is faster by a factor 3 to 4. Further, there are no positional embeddings in this model, but there is an `attention_mask` and a specific logic to mask out hidden states in two places in the case of batched generation, see [here](https://github.com/state-spaces/mamba/issues/66#issuecomment-1863563829) as well. Due to this, in addition to the reimplementation of mamba2 kernels, batched generation and cached generation are expected to have slight discrepancies. Further, the results given by the cuda kernels or the torch forward are expected to be slightly different. The SSM algorithm heavily relies on tensor contractions, which have matmul equivalents but the order of operations is slightly different, making the difference greater at smaller precisions.
|
||||
Another note, shutdown of hidden states corresponding to padding tokens is done in 2 places and mostly has been tested with left-padding. Right-padding will propagate noise down the line and is not guaranteed to yield satisfactory results. `tokenizer.padding_side = "left"` ensures you are using the correct padding side.
|
||||
|
||||
This model was contributed by [Molbap](https://huggingface.co/Molbap), with tremendous help from [Anton Vlasjuk](https://github.com/vasqu).
|
||||
The original code can be found [here](https://github.com/state-spaces/mamba).
|
||||
|
||||
|
||||
# Usage
|
||||
|
||||
### A simple generation example:
|
||||
```python
|
||||
from transformers import Mamba2Config, Mamba2ForCausalLM, AutoTokenizer
|
||||
```python
|
||||
import torch
|
||||
model_id = 'mistralai/Mamba-Codestral-7B-v0.1'
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id, revision='refs/pr/9', from_slow=True, legacy=False)
|
||||
model = Mamba2ForCausalLM.from_pretrained(model_id, revision='refs/pr/9')
|
||||
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
|
||||
from transformers import pipeline
|
||||
|
||||
out = model.generate(input_ids, max_new_tokens=10)
|
||||
print(tokenizer.batch_decode(out))
|
||||
pipeline = pipeline(
|
||||
task="text-generation",
|
||||
model="mistralai/Mamba-Codestral-7B-v0.1",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device=0
|
||||
)
|
||||
pipeline("Plants create energy through a process known as")
|
||||
```
|
||||
|
||||
Here's a draft script for finetuning:
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1")
|
||||
model = AutoModelForCausalLM.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1", torch_dtype=torch.bfloat16, device_map="auto")
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model mistralai/Mamba-Codestral-7B-v0.1 --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bit integers.
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
||||
|
||||
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
|
||||
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1")
|
||||
model = AutoModelForCausalLM.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1", torch_dtype=torch.bfloat16, quantization_config=quantization_config, device_map="auto")
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
|
||||
|
||||
output = model.generate(**input_ids)
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
## Notes
|
||||
|
||||
- Codestral Mamba has `groups=8` which are similar to the number of kv heads in an attention-based model.
|
||||
- Codestral Mamba has two different forward passes, `torch_forward` or `cuda_kernels_forward`, and their results are expected to be slightly different.
|
||||
- `torch_forward` without compilation is 3-4x faster than `cuda_kernels_forward`.
|
||||
- `cuda_kernels_forward` uses the original CUDA kernels if they're available in your environment. It is slower during prefill because it requires a "warmup run" due to the higher CPU overhead (see [these](https://github.com/state-spaces/mamba/issues/389#issuecomment-2171755306) [comments](https://github.com/state-spaces/mamba/issues/355#issuecomment-2147597457) for more details).
|
||||
|
||||
- There are no positional embeddings in this model, but there is an `attention_mask` and a specific logic to mask out hidden states in two places in the case of batched generation (see this [comment](https://github.com/state-spaces/mamba/issues/66#issuecomment-1863563829) for more details). This (and the addition of the reimplemented Mamba 2 kernels) results in a slight discrepancy between batched and cached generation.
|
||||
|
||||
- The SSM algorithm heavily relies on tensor contractions, which have matmul equivalents but the order of operations is slightly different. This makes the difference greater at smaller precisions.
|
||||
|
||||
- Hidden states that correspond to padding tokens is shutdown in 2 places and is mostly tested with left-padding. Right-padding propagates noise down the line and is not guaranteed to yield satisfactory results. `tokenizer.padding_side = "left"` ensures you are using the correct padding side.
|
||||
|
||||
- The example below demonstrates how to fine-tune Mamba 2 with [PEFT](https://huggingface.co/docs/peft).
|
||||
|
||||
```python
|
||||
from trl import SFTTrainer
|
||||
from peft import LoraConfig
|
||||
|
@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
@ -155,7 +157,7 @@ Example of translating english to many romance languages, using old-style 2 char
|
||||
>>> model = MarianMTModel.from_pretrained(model_name)
|
||||
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
|
||||
>>> tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
|
||||
["c'est une phrase en anglais que nous voulons traduire en français",
|
||||
["c'est une phrase en anglais que nous voulons traduire en français",
|
||||
'Isto deve ir para o português.',
|
||||
'Y esto al español']
|
||||
```
|
||||
|
@ -51,10 +51,10 @@ The original code can be found [here](https://github.com/facebookresearch/fairse
|
||||
|
||||
## Implementation differences with SwitchTransformers
|
||||
|
||||
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that for each input, only the top two experts are selected based on the
|
||||
highest predicted probabilities from the gating network, and the remaining experts are ignored. In `SwitchTransformers`, only the top-1 probabilities are computed,
|
||||
which means that tokens have less probability of being forwarded. Moreover, if a token is not routed to any expert, `SwitchTransformers` still adds its unmodified hidden
|
||||
states (kind of like a residual connection) while they are masked in `NLLB`'s top-2 routing mechanism.
|
||||
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that for each input, only the top two experts are selected based on the
|
||||
highest predicted probabilities from the gating network, and the remaining experts are ignored. In `SwitchTransformers`, only the top-1 probabilities are computed,
|
||||
which means that tokens have less probability of being forwarded. Moreover, if a token is not routed to any expert, `SwitchTransformers` still adds its unmodified hidden
|
||||
states (kind of like a residual connection) while they are masked in `NLLB`'s top-2 routing mechanism.
|
||||
|
||||
## Generating with NLLB-MoE
|
||||
|
||||
|
@ -14,27 +14,119 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# OLMo2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# OLMo2
|
||||
[OLMo2](https://huggingface.co/papers/2501.00656) improves on [OLMo](./olmo) by changing the architecture and training recipes of the original models. This includes excluding all biases to improve training stability, non-parametric layer norm, SwiGLU activation function, rotary positional embeddings, and a modified BPE-based tokenizer that masks personal identifiable information. It is pretrained on [Dolma](https://huggingface.co/datasets/allenai/dolma), a dataset of 3T tokens.
|
||||
|
||||
The OLMo2 model is the successor of the OLMo model, which was proposed in
|
||||
[OLMo: Accelerating the Science of Language Models](https://arxiv.org/abs/2402.00838).
|
||||
You can find all the original OLMo2 checkpoints under the [OLMo2](https://huggingface.co/collections/allenai/olmo-2-674117b93ab84e98afc72edc) collection.
|
||||
|
||||
The architectural changes from the original OLMo model to this model are:
|
||||
> [!TIP]
|
||||
> Click on the OLMo2 models in the right sidebar for more examples of how to apply OLMo2 to different language tasks.
|
||||
|
||||
- RMSNorm is used instead of standard layer norm.
|
||||
- Norm is applied to attention queries and keys.
|
||||
- Norm is applied after attention/feedforward layers rather than before.
|
||||
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`] and from the command line.
|
||||
|
||||
This model was contributed by [shanearora](https://huggingface.co/shanearora).
|
||||
The original code can be found [here](https://github.com/allenai/OLMo/tree/main/olmo).
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline(
|
||||
task="text-generation",
|
||||
model="allenai/OLMo-2-0425-1B",
|
||||
torch_dtype=torch.float16,
|
||||
device=0,
|
||||
)
|
||||
|
||||
result = pipe("Plants create energy through a process known as")
|
||||
print(result)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"allenai/OLMo-2-0425-1B"
|
||||
)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"allenai/OLMo-2-0425-1B",
|
||||
torch_dtype=torch.float16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
|
||||
|
||||
output = model.generate(**input_ids, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model allenai/OLMo-2-0425-1B --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
|
||||
|
||||
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bits.
|
||||
```py
|
||||
|
||||
#pip install torchao
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
|
||||
|
||||
torchao_config = TorchAoConfig(
|
||||
"int4_weight_only",
|
||||
group_size=128
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"allenai/OLMo-2-0425-1B"
|
||||
)
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"allenai/OLMo-2-0425-1B",
|
||||
quantization_config=torchao_config,
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
attn_implementation="sdpa"
|
||||
)
|
||||
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
|
||||
|
||||
output = model.generate(**input_ids, max_length=50, cache_implementation="static")
|
||||
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
||||
|
||||
```
|
||||
|
||||
|
||||
## Notes
|
||||
|
||||
- OLMo2 uses RMSNorm instead of standard layer norm. The RMSNorm is applied to attention queries and keys, and it is applied after the attention and feedforward layers rather than before.
|
||||
- OLMo2 requires Transformers v4.48 or higher.
|
||||
- Load specific intermediate checkpoints by adding the `revision` parameter to [`~PreTrainedModel.from_pretrained`].
|
||||
|
||||
```py
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B", revision="stage1-step140000-tokens294B")
|
||||
```
|
||||
|
||||
|
||||
## Olmo2Config
|
||||
|
@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
@ -18,6 +18,7 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
|
@ -18,6 +18,8 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
|
||||
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
@ -29,7 +31,7 @@ on Java, Python and English.
|
||||
According to the abstract
|
||||
|
||||
*Code summarization and generation empower conversion between programming language (PL) and natural language (NL),
|
||||
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
|
||||
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
|
||||
a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks.
|
||||
PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding.
|
||||
Experiments on code summarization in the English language, code generation, and code translation in seven programming languages
|
||||
@ -50,7 +52,7 @@ target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
|
||||
|
||||
However, for fine-tuning, in some cases no language token is provided in cases where a single language is used. Please refer to [the paper](https://arxiv.org/abs/2103.06333) to learn more about this.
|
||||
|
||||
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
|
||||
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
|
||||
when you pass texts as the first argument or with the keyword argument `text`, and will encode target text format if
|
||||
it's passed with the `text_target` keyword argument.
|
||||
|
||||
|
@ -14,46 +14,78 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# RoFormer
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
|
||||
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
|
||||
">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# RoFormer
|
||||
|
||||
The RoFormer model was proposed in [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
|
||||
[RoFormer](https://huggingface.co/papers/2104.09864) introduces Rotary Position Embedding (RoPE) to encode token positions by rotating the inputs in 2D space. This allows a model to track absolute positions and model relative relationships. RoPE can scale to longer sequences, account for the natural decay of token dependencies, and works with the more efficient linear self-attention.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find all the RoFormer checkpoints on the [Hub](https://huggingface.co/models?search=roformer).
|
||||
|
||||
*Position encoding in transformer architecture provides supervision for dependency modeling between elements at
|
||||
different positions in the sequence. We investigate various methods to encode positional information in
|
||||
transformer-based language models and propose a novel implementation named Rotary Position Embedding(RoPE). The
|
||||
proposed RoPE encodes absolute positional information with rotation matrix and naturally incorporates explicit relative
|
||||
position dependency in self-attention formulation. Notably, RoPE comes with valuable properties such as flexibility of
|
||||
being expand to any sequence lengths, decaying inter-token dependency with increasing relative distances, and
|
||||
capability of equipping the linear self-attention with relative position encoding. As a result, the enhanced
|
||||
transformer with rotary position embedding, or RoFormer, achieves superior performance in tasks with long texts. We
|
||||
release the theoretical analysis along with some preliminary experiment results on Chinese data. The undergoing
|
||||
experiment for English benchmark will soon be updated.*
|
||||
> [!TIP]
|
||||
> Click on the RoFormer models in the right sidebar for more examples of how to apply RoFormer to different language tasks.
|
||||
|
||||
This model was contributed by [junnyu](https://huggingface.co/junnyu). The original code can be found [here](https://github.com/ZhuiyiTechnology/roformer).
|
||||
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
|
||||
|
||||
## Usage tips
|
||||
RoFormer is a BERT-like autoencoding model with rotary position embeddings. Rotary position embeddings have shown
|
||||
improved performance on classification tasks with long texts.
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
## Resources
|
||||
```py
|
||||
# uncomment to install rjieba which is needed for the tokenizer
|
||||
# !pip install rjieba
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
- [Text classification task guide](../tasks/sequence_classification)
|
||||
- [Token classification task guide](../tasks/token_classification)
|
||||
- [Question answering task guide](../tasks/question_answering)
|
||||
- [Causal language modeling task guide](../tasks/language_modeling)
|
||||
- [Masked language modeling task guide](../tasks/masked_language_modeling)
|
||||
- [Multiple choice task guide](../tasks/multiple_choice)
|
||||
pipe = pipeline(
|
||||
task="fill-mask",
|
||||
model="junnyu/roformer_chinese_base",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
output = pipe("水在零度时会[MASK]")
|
||||
print(output)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```py
|
||||
# uncomment to install rjieba which is needed for the tokenizer
|
||||
# !pip install rjieba
|
||||
import torch
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForMaskedLM.from_pretrained(
|
||||
"junnyu/roformer_chinese_base", torch_dtype=torch.float16
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
|
||||
|
||||
input_ids = tokenizer("水在零度时会[MASK]", return_tensors="pt").to(model.device)
|
||||
outputs = model(**input_ids)
|
||||
decoded = tokenizer.batch_decode(outputs.logits.argmax(-1), skip_special_tokens=True)
|
||||
print(decoded)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="transformers CLI">
|
||||
|
||||
```bash
|
||||
echo -e "水在零度时会[MASK]" | transformers-cli run --task fill-mask --model junnyu/roformer_chinese_base --device 0
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- The current RoFormer implementation is an encoder-only model. The original code can be found in the [ZhuiyiTechnology/roformer](https://github.com/ZhuiyiTechnology/roformer) repository.
|
||||
|
||||
## RoFormerConfig
|
||||
|
||||
|
@ -14,37 +14,74 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Swin Transformer V2
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# Swin Transformer V2
|
||||
|
||||
The Swin Transformer V2 model was proposed in [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
|
||||
[Swin Transformer V2](https://huggingface.co/papers/2111.09883) is a 3B parameter model that focuses on how to scale a vision model to billions of parameters. It introduces techniques like residual-post-norm combined with cosine attention for improved training stability, log-spaced continuous position bias to better handle varying image resolutions between pre-training and fine-tuning, and a new pre-training method (SimMIM) to reduce the need for large amounts of labeled data. These improvements enable efficiently training very large models (up to 3 billion parameters) capable of processing high-resolution images.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
You can find official Swin Transformer V2 checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=swinv2) organization.
|
||||
|
||||
*Large-scale NLP models have been shown to significantly improve the performance on language tasks with no signs of saturation. They also demonstrate amazing few-shot capabilities like that of human beings. This paper aims to explore large-scale models in computer vision. We tackle three major issues in training and application of large vision models, including training instability, resolution gaps between pre-training and fine-tuning, and hunger on labelled data. Three main techniques are proposed: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) A log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) A self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. Through these techniques, this paper successfully trained a 3 billion-parameter Swin Transformer V2 model, which is the largest dense vision model to date, and makes it capable of training with images of up to 1,536×1,536 resolution. It set new performance records on 4 representative vision tasks, including ImageNet-V2 image classification, COCO object detection, ADE20K semantic segmentation, and Kinetics-400 video action classification. Also note our training is much more efficient than that in Google's billion-level visual models, which consumes 40 times less labelled data and 40 times less training time.*
|
||||
> [!TIP]
|
||||
> Click on the Swin Transformer V2 models in the right sidebar for more examples of how to apply Swin Transformer V2 to vision tasks.
|
||||
|
||||
This model was contributed by [nandwalritik](https://huggingface.co/nandwalritik).
|
||||
The original code can be found [here](https://github.com/microsoft/Swin-Transformer).
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
## Resources
|
||||
```py
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Swin Transformer v2.
|
||||
pipeline = pipeline(
|
||||
task="image-classification",
|
||||
model="microsoft/swinv2-tiny-patch4-window8-256",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
|
||||
```
|
||||
|
||||
<PipelineTag pipeline="image-classification"/>
|
||||
</hfoption>
|
||||
|
||||
- [`Swinv2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
|
||||
- See also: [Image classification task guide](../tasks/image_classification)
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
Besides that:
|
||||
```py
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForImageClassification, AutoImageProcessor
|
||||
|
||||
- [`Swinv2ForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
"microsoft/swinv2-tiny-patch4-window8-256",
|
||||
)
|
||||
model = AutoModelForImageClassification.from_pretrained(
|
||||
"microsoft/swinv2-tiny-patch4-window8-256",
|
||||
device_map="auto"
|
||||
)
|
||||
|
||||
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
inputs = image_processor(image, return_tensors="pt").to(model.device)
|
||||
|
||||
with torch.no_grad():
|
||||
logits = model(**inputs).logits
|
||||
|
||||
predicted_class_id = logits.argmax(dim=-1).item()
|
||||
predicted_class_label = model.config.id2label[predicted_class_id]
|
||||
print(f"The predicted class label is: {predicted_class_label}")
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- Swin Transformer V2 can pad the inputs for any input height and width divisible by `32`.
|
||||
- Swin Transformer V2 can be used as a [backbone](../backbones). When `output_hidden_states = True`, it outputs both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
|
||||
|
||||
## Swinv2Config
|
||||
|
||||
|
@ -14,100 +14,101 @@ rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# ZoeDepth
|
||||
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
<div style="float: right;">
|
||||
<div class="flex flex-wrap space-x-1">
|
||||
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
|
||||
</div>
|
||||
</div>
|
||||
|
||||
## Overview
|
||||
# ZoeDepth
|
||||
|
||||
The ZoeDepth model was proposed in [ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth](https://arxiv.org/abs/2302.12288) by Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, Matthias Müller. ZoeDepth extends the [DPT](dpt) framework for metric (also called absolute) depth estimation. ZoeDepth is pre-trained on 12 datasets using relative depth and fine-tuned on two domains (NYU and KITTI) using metric depth. A lightweight head is used with a novel bin adjustment design called metric bins module for each domain. During inference, each input image is automatically routed to the appropriate head using a latent classifier.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
*This paper tackles the problem of depth estimation from a single image. Existing work either focuses on generalization performance disregarding metric scale, i.e. relative depth estimation, or state-of-the-art results on specific datasets, i.e. metric depth estimation. We propose the first approach that combines both worlds, leading to a model with excellent generalization performance while maintaining metric scale. Our flagship model, ZoeD-M12-NK, is pre-trained on 12 datasets using relative depth and fine-tuned on two datasets using metric depth. We use a lightweight head with a novel bin adjustment design called metric bins module for each domain. During inference, each input image is automatically routed to the appropriate head using a latent classifier. Our framework admits multiple configurations depending on the datasets used for relative depth pre-training and metric fine-tuning. Without pre-training, we can already significantly improve the state of the art (SOTA) on the NYU Depth v2 indoor dataset. Pre-training on twelve datasets and fine-tuning on the NYU Depth v2 indoor dataset, we can further improve SOTA for a total of 21% in terms of relative absolute error (REL). Finally, ZoeD-M12-NK is the first model that can jointly train on multiple datasets (NYU Depth v2 and KITTI) without a significant drop in performance and achieve unprecedented zero-shot generalization performance to eight unseen datasets from both indoor and outdoor domains.*
|
||||
[ZoeDepth](https://huggingface.co/papers/2302.12288) is a depth estimation model that combines the generalization performance of relative depth estimation (how far objects are from each other) and metric depth estimation (precise depth measurement on metric scale) from a single image. It is pre-trained on 12 datasets using relative depth and 2 datasets (NYU Depth v2 and KITTI) for metric accuracy. A lightweight head with a metric bin module for each domain is used, and during inference, it automatically selects the appropriate head for each input image with a latent classifier.
|
||||
|
||||
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/zoedepth_architecture_bis.png"
|
||||
alt="drawing" width="600"/>
|
||||
|
||||
<small> ZoeDepth architecture. Taken from the <a href="https://arxiv.org/abs/2302.12288">original paper.</a> </small>
|
||||
You can find all the original ZoeDepth checkpoints under the [Intel](https://huggingface.co/Intel?search=zoedepth) organization.
|
||||
|
||||
This model was contributed by [nielsr](https://huggingface.co/nielsr).
|
||||
The original code can be found [here](https://github.com/isl-org/ZoeDepth).
|
||||
The example below demonstrates how to estimate depth with [`Pipeline`] or the [`AutoModel`] class.
|
||||
|
||||
## Usage tips
|
||||
<hfoptions id="usage">
|
||||
<hfoption id="Pipeline">
|
||||
|
||||
- ZoeDepth is an absolute (also called metric) depth estimation model, unlike DPT which is a relative depth estimation model. This means that ZoeDepth is able to estimate depth in metric units like meters.
|
||||
```py
|
||||
import requests
|
||||
import torch
|
||||
from transformers import pipeline
|
||||
from PIL import Image
|
||||
|
||||
The easiest to perform inference with ZoeDepth is by leveraging the [pipeline API](../main_classes/pipelines.md):
|
||||
|
||||
```python
|
||||
>>> from transformers import pipeline
|
||||
>>> from PIL import Image
|
||||
>>> import requests
|
||||
|
||||
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
|
||||
>>> pipe = pipeline(task="depth-estimation", model="Intel/zoedepth-nyu-kitti")
|
||||
>>> result = pipe(image)
|
||||
>>> depth = result["depth"]
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
pipeline = pipeline(
|
||||
task="depth-estimation",
|
||||
model="Intel/zoedepth-nyu-kitti",
|
||||
torch_dtype=torch.float16,
|
||||
device=0
|
||||
)
|
||||
results = pipeline(image)
|
||||
results["depth"]
|
||||
```
|
||||
|
||||
Alternatively, one can also perform inference using the classes:
|
||||
</hfoption>
|
||||
<hfoption id="AutoModel">
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoImageProcessor, ZoeDepthForDepthEstimation
|
||||
>>> import torch
|
||||
>>> import numpy as np
|
||||
>>> from PIL import Image
|
||||
>>> import requests
|
||||
```py
|
||||
import torch
|
||||
import requests
|
||||
from PIL import Image
|
||||
from transformers import AutoModelForDepthEstimation, AutoImageProcessor
|
||||
|
||||
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
||||
>>> image = Image.open(requests.get(url, stream=True).raw)
|
||||
image_processor = AutoImageProcessor.from_pretrained(
|
||||
"Intel/zoedepth-nyu-kitti"
|
||||
)
|
||||
model = AutoModelForDepthEstimation.from_pretrained(
|
||||
"Intel/zoedepth-nyu-kitti",
|
||||
device_map="auto"
|
||||
)
|
||||
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
|
||||
image = Image.open(requests.get(url, stream=True).raw)
|
||||
inputs = image_processor(image, return_tensors="pt").to("cuda")
|
||||
|
||||
>>> image_processor = AutoImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti")
|
||||
>>> model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti")
|
||||
with torch.no_grad():
|
||||
outputs = model(inputs)
|
||||
|
||||
>>> # prepare image for the model
|
||||
>>> inputs = image_processor(images=image, return_tensors="pt")
|
||||
# interpolate to original size and visualize the prediction
|
||||
## ZoeDepth dynamically pads the input image, so pass the original image size as argument
|
||||
## to `post_process_depth_estimation` to remove the padding and resize to original dimensions.
|
||||
post_processed_output = image_processor.post_process_depth_estimation(
|
||||
outputs,
|
||||
source_sizes=[(image.height, image.width)],
|
||||
)
|
||||
|
||||
>>> with torch.no_grad():
|
||||
... outputs = model(inputs)
|
||||
|
||||
>>> # interpolate to original size and visualize the prediction
|
||||
>>> ## ZoeDepth dynamically pads the input image. Thus we pass the original image size as argument
|
||||
>>> ## to `post_process_depth_estimation` to remove the padding and resize to original dimensions.
|
||||
>>> post_processed_output = image_processor.post_process_depth_estimation(
|
||||
... outputs,
|
||||
... source_sizes=[(image.height, image.width)],
|
||||
... )
|
||||
|
||||
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
|
||||
>>> depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
|
||||
>>> depth = depth.detach().cpu().numpy() * 255
|
||||
>>> depth = Image.fromarray(depth.astype("uint8"))
|
||||
predicted_depth = post_processed_output[0]["predicted_depth"]
|
||||
depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
|
||||
depth = depth.detach().cpu().numpy() * 255
|
||||
Image.fromarray(depth.astype("uint8"))
|
||||
```
|
||||
|
||||
<Tip>
|
||||
<p>In the <a href="https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L131">original implementation</a> ZoeDepth model performs inference on both the original and flipped images and averages out the results. The <code>post_process_depth_estimation</code> function can handle this for us by passing the flipped outputs to the optional <code>outputs_flipped</code> argument:</p>
|
||||
<pre><code class="language-Python">>>> with torch.no_grad():
|
||||
... outputs = model(pixel_values)
|
||||
... outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
|
||||
>>> post_processed_output = image_processor.post_process_depth_estimation(
|
||||
... outputs,
|
||||
... source_sizes=[(image.height, image.width)],
|
||||
... outputs_flipped=outputs_flipped,
|
||||
... )
|
||||
</code></pre>
|
||||
</Tip>
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Notes
|
||||
|
||||
- In the [original implementation](https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L131) ZoeDepth performs inference on both the original and flipped images and averages the results. The `post_process_depth_estimation` function handles this by passing the flipped outputs to the optional `outputs_flipped` argument as shown below.
|
||||
```py
|
||||
with torch.no_grad():
|
||||
outputs = model(pixel_values)
|
||||
outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
|
||||
post_processed_output = image_processor.post_process_depth_estimation(
|
||||
outputs,
|
||||
source_sizes=[(image.height, image.width)],
|
||||
outputs_flipped=outputs_flipped,
|
||||
)
|
||||
```
|
||||
|
||||
## Resources
|
||||
|
||||
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ZoeDepth.
|
||||
|
||||
- A demo notebook regarding inference with ZoeDepth models can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ZoeDepth). 🌎
|
||||
- Refer to this [notebook](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ZoeDepth) for an inference example.
|
||||
|
||||
## ZoeDepthConfig
|
||||
|
||||
|
@ -243,13 +243,7 @@ class Olmo2Attention(OlmoAttention):
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
|
58
docs/source/en/reference/environment_variables.md
Normal file
58
docs/source/en/reference/environment_variables.md
Normal file
@ -0,0 +1,58 @@
|
||||
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
|
||||
the License. You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
|
||||
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
|
||||
specific language governing permissions and limitations under the License.
|
||||
|
||||
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
|
||||
rendered properly in your Markdown viewer.
|
||||
|
||||
-->
|
||||
|
||||
# Environment Variables
|
||||
|
||||
## HF_ENABLE_PARALLEL_LOADING
|
||||
|
||||
By default this is disabled. Enables the loading of torch and safetensor based weights to be loaded in parallel. Can decrease the time to load large models significantly, often times producing speed ups around ~50%.
|
||||
|
||||
Can be set to a string equal to `"false"` or `"true"`. e.g. `os.environ["HF_ENABLE_PARALLEL_LOADING"] = "true"`.
|
||||
|
||||
e.g. `facebook/opt-30b` on an AWS EC2 g4dn.metal instance can be made to load in ~30s with this enabled vs ~55s without it.
|
||||
|
||||
Profile before committing to using this environment variable, this will not produce speed ups for smaller models.
|
||||
|
||||
```py
|
||||
import os
|
||||
|
||||
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "true"
|
||||
|
||||
from transformers import pipeline
|
||||
|
||||
model = pipeline(task="text-generation", model="facebook/opt-30b", device_map="auto")
|
||||
```
|
||||
|
||||
## HF_PARALLEL_LOADING_WORKERS
|
||||
|
||||
Determines how many threads should be used when parallel loading is enabled. Default is `8`.
|
||||
|
||||
If the number of files that are being loaded is less than the number of threads specified, the number that is actually spawned will be equal to the number of files.
|
||||
|
||||
e.g. If you specify 8 workers, and there are only 2 files, only 2 workers will be spawned.
|
||||
|
||||
Tune as you see fit.
|
||||
|
||||
```py
|
||||
import os
|
||||
|
||||
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "true"
|
||||
os.environ["HF_PARALLEL_LOADING_WORKERS"] = "4"
|
||||
|
||||
from transformers import pipeline
|
||||
|
||||
model = pipeline(task="text-generation", model="facebook/opt-30b", device_map="auto")
|
||||
```
|
@ -372,3 +372,10 @@ AutoModel.register(NewModelConfig, NewModel)
|
||||
### AutoModelForImageTextToText
|
||||
|
||||
[[autodoc]] AutoModelForImageTextToText
|
||||
|
||||
## Time Series
|
||||
|
||||
### AutoModelForTimeSeriesPrediction
|
||||
|
||||
[[autodoc]] AutoModelForTimeSeriesPrediction
|
||||
|
||||
|
@ -373,3 +373,10 @@ AutoModel.register(NewModelConfig, NewModel)
|
||||
### FlaxAutoModelForVision2Seq[[transformers.FlaxAutoModelForVision2Seq]]
|
||||
|
||||
[[autodoc]] FlaxAutoModelForVision2Seq
|
||||
|
||||
## Time Series
|
||||
|
||||
### AutoModelForTimeSeriesPrediction[[transformers.AutoModelForTimeSeriesPrediction]]
|
||||
|
||||
[[autodoc]] AutoModelForTimeSeriesPrediction
|
||||
|
||||
|
4
examples/metrics-monitoring/README.md
Normal file
4
examples/metrics-monitoring/README.md
Normal file
@ -0,0 +1,4 @@
|
||||
# Metrics Monitoring
|
||||
|
||||
## Continuous Batching Metrics in Transformers
|
||||
|
974
examples/metrics-monitoring/continuous-batching-dashboard.json
Normal file
974
examples/metrics-monitoring/continuous-batching-dashboard.json
Normal file
@ -0,0 +1,974 @@
|
||||
{
|
||||
"annotations": {
|
||||
"list": [
|
||||
{
|
||||
"builtIn": 1,
|
||||
"datasource": {
|
||||
"type": "grafana",
|
||||
"uid": "-- Grafana --"
|
||||
},
|
||||
"enable": true,
|
||||
"hide": true,
|
||||
"iconColor": "rgba(0, 211, 255, 1)",
|
||||
"name": "Annotations & Alerts",
|
||||
"target": {
|
||||
"limit": 100,
|
||||
"matchAny": false,
|
||||
"tags": [],
|
||||
"type": "dashboard"
|
||||
},
|
||||
"type": "dashboard"
|
||||
}
|
||||
]
|
||||
},
|
||||
"editable": true,
|
||||
"fiscalYearStartMonth": 0,
|
||||
"graphTooltip": 0,
|
||||
"id": 2,
|
||||
"links": [],
|
||||
"panels": [
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"description": "Memory usage of the PagedAttentionCache",
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "thresholds"
|
||||
},
|
||||
"mappings": [],
|
||||
"max": 10737418240,
|
||||
"min": 0,
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "yellow",
|
||||
"value": 5368709120
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 8589934592
|
||||
}
|
||||
]
|
||||
},
|
||||
"unit": "bytes"
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 6,
|
||||
"x": 0,
|
||||
"y": 0
|
||||
},
|
||||
"id": 2,
|
||||
"options": {
|
||||
"minVizHeight": 75,
|
||||
"minVizWidth": 75,
|
||||
"orientation": "auto",
|
||||
"reduceOptions": {
|
||||
"calcs": [
|
||||
"lastNotNull"
|
||||
],
|
||||
"fields": "",
|
||||
"values": false
|
||||
},
|
||||
"showThresholdLabels": false,
|
||||
"showThresholdMarkers": true,
|
||||
"sizing": "auto"
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "kv_cache_memory_bytes",
|
||||
"fullMetaSearch": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "__auto",
|
||||
"range": true,
|
||||
"refId": "A",
|
||||
"useBackend": false
|
||||
}
|
||||
],
|
||||
"title": "KV Cache Memory Usage",
|
||||
"transparent": true,
|
||||
"type": "gauge"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "thresholds"
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "dark-blue"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 6,
|
||||
"x": 6,
|
||||
"y": 0
|
||||
},
|
||||
"id": 13,
|
||||
"options": {
|
||||
"colorMode": "value",
|
||||
"graphMode": "area",
|
||||
"justifyMode": "auto",
|
||||
"orientation": "auto",
|
||||
"percentChangeColorMode": "standard",
|
||||
"reduceOptions": {
|
||||
"calcs": [
|
||||
"lastNotNull"
|
||||
],
|
||||
"fields": "",
|
||||
"values": false
|
||||
},
|
||||
"showPercentChange": false,
|
||||
"textMode": "auto",
|
||||
"wideLayout": true
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "active_requests_count",
|
||||
"fullMetaSearch": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "__auto",
|
||||
"range": true,
|
||||
"refId": "A",
|
||||
"useBackend": false
|
||||
}
|
||||
],
|
||||
"title": "Active Requests",
|
||||
"transparent": true,
|
||||
"type": "stat"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "thresholds"
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "dark-orange"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 6,
|
||||
"x": 12,
|
||||
"y": 0
|
||||
},
|
||||
"id": 14,
|
||||
"options": {
|
||||
"colorMode": "value",
|
||||
"graphMode": "area",
|
||||
"justifyMode": "auto",
|
||||
"orientation": "auto",
|
||||
"percentChangeColorMode": "standard",
|
||||
"reduceOptions": {
|
||||
"calcs": [
|
||||
"lastNotNull"
|
||||
],
|
||||
"fields": "",
|
||||
"values": false
|
||||
},
|
||||
"showPercentChange": false,
|
||||
"textMode": "auto",
|
||||
"wideLayout": true
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "waiting_requests_count",
|
||||
"fullMetaSearch": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "__auto",
|
||||
"range": true,
|
||||
"refId": "A",
|
||||
"useBackend": false
|
||||
}
|
||||
],
|
||||
"title": "Waiting Requests",
|
||||
"transparent": true,
|
||||
"type": "stat"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"description": "Ratio of decode tokens to prefill tokens in a batch",
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "thresholds"
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "blue"
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 6,
|
||||
"x": 18,
|
||||
"y": 0
|
||||
},
|
||||
"id": 6,
|
||||
"options": {
|
||||
"colorMode": "value",
|
||||
"graphMode": "none",
|
||||
"justifyMode": "auto",
|
||||
"orientation": "auto",
|
||||
"percentChangeColorMode": "standard",
|
||||
"reduceOptions": {
|
||||
"calcs": [
|
||||
"lastNotNull"
|
||||
],
|
||||
"fields": "",
|
||||
"values": false
|
||||
},
|
||||
"showPercentChange": false,
|
||||
"textMode": "auto",
|
||||
"wideLayout": true
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "decode_prefill_ratio",
|
||||
"fullMetaSearch": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "__auto",
|
||||
"range": true,
|
||||
"refId": "A",
|
||||
"useBackend": false
|
||||
}
|
||||
],
|
||||
"title": "Decode/Prefill Ratio",
|
||||
"transparent": true,
|
||||
"type": "stat"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "palette-classic"
|
||||
},
|
||||
"custom": {
|
||||
"axisBorderShow": false,
|
||||
"axisCenteredZero": false,
|
||||
"axisColorMode": "text",
|
||||
"axisLabel": "",
|
||||
"axisPlacement": "auto",
|
||||
"barAlignment": 0,
|
||||
"barWidthFactor": 0.6,
|
||||
"drawStyle": "line",
|
||||
"fillOpacity": 0,
|
||||
"gradientMode": "none",
|
||||
"hideFrom": {
|
||||
"legend": false,
|
||||
"tooltip": false,
|
||||
"viz": false
|
||||
},
|
||||
"insertNulls": false,
|
||||
"lineInterpolation": "linear",
|
||||
"lineWidth": 1,
|
||||
"pointSize": 5,
|
||||
"scaleDistribution": {
|
||||
"type": "linear"
|
||||
},
|
||||
"showPoints": "auto",
|
||||
"spanNulls": false,
|
||||
"stacking": {
|
||||
"group": "A",
|
||||
"mode": "none"
|
||||
},
|
||||
"thresholdsStyle": {
|
||||
"mode": "off"
|
||||
}
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 80
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 12,
|
||||
"x": 0,
|
||||
"y": 8
|
||||
},
|
||||
"id": 10,
|
||||
"options": {
|
||||
"legend": {
|
||||
"calcs": [],
|
||||
"displayMode": "list",
|
||||
"placement": "bottom",
|
||||
"showLegend": true
|
||||
},
|
||||
"tooltip": {
|
||||
"hideZeros": false,
|
||||
"mode": "single",
|
||||
"sort": "none"
|
||||
}
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"editorMode": "code",
|
||||
"expr": "rate(decode_tokens_processed_total[$__rate_interval])",
|
||||
"legendFormat": "__auto",
|
||||
"range": true,
|
||||
"refId": "A"
|
||||
}
|
||||
],
|
||||
"title": "Decode tokens throupught tok/s",
|
||||
"type": "timeseries"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "palette-classic"
|
||||
},
|
||||
"custom": {
|
||||
"axisBorderShow": false,
|
||||
"axisCenteredZero": false,
|
||||
"axisColorMode": "text",
|
||||
"axisLabel": "",
|
||||
"axisPlacement": "auto",
|
||||
"barAlignment": 0,
|
||||
"barWidthFactor": 0.6,
|
||||
"drawStyle": "line",
|
||||
"fillOpacity": 0,
|
||||
"gradientMode": "none",
|
||||
"hideFrom": {
|
||||
"legend": false,
|
||||
"tooltip": false,
|
||||
"viz": false
|
||||
},
|
||||
"insertNulls": false,
|
||||
"lineInterpolation": "linear",
|
||||
"lineWidth": 1,
|
||||
"pointSize": 5,
|
||||
"scaleDistribution": {
|
||||
"type": "linear"
|
||||
},
|
||||
"showPoints": "auto",
|
||||
"spanNulls": false,
|
||||
"stacking": {
|
||||
"group": "A",
|
||||
"mode": "none"
|
||||
},
|
||||
"thresholdsStyle": {
|
||||
"mode": "off"
|
||||
}
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 80
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 12,
|
||||
"x": 12,
|
||||
"y": 8
|
||||
},
|
||||
"id": 11,
|
||||
"options": {
|
||||
"legend": {
|
||||
"calcs": [],
|
||||
"displayMode": "list",
|
||||
"placement": "bottom",
|
||||
"showLegend": true
|
||||
},
|
||||
"tooltip": {
|
||||
"hideZeros": false,
|
||||
"mode": "single",
|
||||
"sort": "none"
|
||||
}
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"editorMode": "code",
|
||||
"expr": "rate(prefill_tokens_processed_total[$__rate_interval])",
|
||||
"legendFormat": "__auto",
|
||||
"range": true,
|
||||
"refId": "A"
|
||||
}
|
||||
],
|
||||
"title": "Prefill rate tok/s",
|
||||
"type": "timeseries"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "palette-classic"
|
||||
},
|
||||
"custom": {
|
||||
"axisBorderShow": false,
|
||||
"axisCenteredZero": false,
|
||||
"axisColorMode": "text",
|
||||
"axisLabel": "",
|
||||
"axisPlacement": "auto",
|
||||
"barAlignment": 0,
|
||||
"barWidthFactor": 0.6,
|
||||
"drawStyle": "line",
|
||||
"fillOpacity": 0,
|
||||
"gradientMode": "none",
|
||||
"hideFrom": {
|
||||
"legend": false,
|
||||
"tooltip": false,
|
||||
"viz": false
|
||||
},
|
||||
"insertNulls": false,
|
||||
"lineInterpolation": "linear",
|
||||
"lineWidth": 1,
|
||||
"pointSize": 5,
|
||||
"scaleDistribution": {
|
||||
"type": "linear"
|
||||
},
|
||||
"showPoints": "auto",
|
||||
"spanNulls": false,
|
||||
"stacking": {
|
||||
"group": "A",
|
||||
"mode": "none"
|
||||
},
|
||||
"thresholdsStyle": {
|
||||
"mode": "off"
|
||||
}
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 80
|
||||
}
|
||||
]
|
||||
}
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 12,
|
||||
"x": 0,
|
||||
"y": 16
|
||||
},
|
||||
"id": 9,
|
||||
"options": {
|
||||
"legend": {
|
||||
"calcs": [],
|
||||
"displayMode": "list",
|
||||
"placement": "bottom",
|
||||
"showLegend": true
|
||||
},
|
||||
"tooltip": {
|
||||
"hideZeros": false,
|
||||
"mode": "single",
|
||||
"sort": "none"
|
||||
}
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"editorMode": "code",
|
||||
"expr": "histogram_quantile(0.95, sum by(le) (rate(batch_fill_percentage_percent_bucket[$__rate_interval])))",
|
||||
"legendFormat": "p95",
|
||||
"range": true,
|
||||
"refId": "A"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"editorMode": "code",
|
||||
"expr": "histogram_quantile(0.99, sum by(le) (rate(batch_fill_percentage_percent_bucket[$__rate_interval])))",
|
||||
"hide": false,
|
||||
"instant": false,
|
||||
"legendFormat": "p99",
|
||||
"range": true,
|
||||
"refId": "B"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"editorMode": "code",
|
||||
"expr": "histogram_quantile(0.5, sum by(le) (rate(batch_fill_percentage_percent_bucket[$__rate_interval])))",
|
||||
"hide": false,
|
||||
"instant": false,
|
||||
"legendFormat": "p50",
|
||||
"range": true,
|
||||
"refId": "C"
|
||||
}
|
||||
],
|
||||
"title": "Batch fill percentage percentiles",
|
||||
"type": "timeseries"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"description": "KV Cache Memory Usage Over Time",
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "palette-classic"
|
||||
},
|
||||
"custom": {
|
||||
"axisBorderShow": false,
|
||||
"axisCenteredZero": false,
|
||||
"axisColorMode": "text",
|
||||
"axisLabel": "",
|
||||
"axisPlacement": "auto",
|
||||
"barAlignment": 0,
|
||||
"barWidthFactor": 0.6,
|
||||
"drawStyle": "line",
|
||||
"fillOpacity": 20,
|
||||
"gradientMode": "none",
|
||||
"hideFrom": {
|
||||
"legend": false,
|
||||
"tooltip": false,
|
||||
"viz": false
|
||||
},
|
||||
"insertNulls": false,
|
||||
"lineInterpolation": "linear",
|
||||
"lineWidth": 2,
|
||||
"pointSize": 5,
|
||||
"scaleDistribution": {
|
||||
"type": "linear"
|
||||
},
|
||||
"showPoints": "auto",
|
||||
"spanNulls": false,
|
||||
"stacking": {
|
||||
"group": "A",
|
||||
"mode": "none"
|
||||
},
|
||||
"thresholdsStyle": {
|
||||
"mode": "off"
|
||||
}
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 80
|
||||
}
|
||||
]
|
||||
},
|
||||
"unit": "bytes"
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 12,
|
||||
"x": 12,
|
||||
"y": 16
|
||||
},
|
||||
"id": 4,
|
||||
"options": {
|
||||
"legend": {
|
||||
"calcs": [],
|
||||
"displayMode": "list",
|
||||
"placement": "bottom",
|
||||
"showLegend": true
|
||||
},
|
||||
"tooltip": {
|
||||
"hideZeros": false,
|
||||
"mode": "single",
|
||||
"sort": "none"
|
||||
}
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "kv_cache_memory_bytes",
|
||||
"fullMetaSearch": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "Used memory",
|
||||
"range": true,
|
||||
"refId": "A",
|
||||
"useBackend": false
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "kv_cache_free_memory_bytes",
|
||||
"fullMetaSearch": false,
|
||||
"hide": false,
|
||||
"includeNullMetadata": true,
|
||||
"instant": false,
|
||||
"legendFormat": "free memory",
|
||||
"range": true,
|
||||
"refId": "B",
|
||||
"useBackend": false
|
||||
}
|
||||
],
|
||||
"title": "KV Cache Memory Usage Over Time",
|
||||
"type": "timeseries"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "thresholds"
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 80
|
||||
}
|
||||
]
|
||||
},
|
||||
"unit": "ms"
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 12,
|
||||
"x": 0,
|
||||
"y": 24
|
||||
},
|
||||
"id": 8,
|
||||
"options": {
|
||||
"displayMode": "gradient",
|
||||
"legend": {
|
||||
"calcs": [],
|
||||
"displayMode": "list",
|
||||
"placement": "bottom",
|
||||
"showLegend": false
|
||||
},
|
||||
"maxVizHeight": 300,
|
||||
"minVizHeight": 10,
|
||||
"minVizWidth": 0,
|
||||
"namePlacement": "auto",
|
||||
"orientation": "auto",
|
||||
"reduceOptions": {
|
||||
"calcs": [
|
||||
"lastNotNull"
|
||||
],
|
||||
"fields": "",
|
||||
"values": false
|
||||
},
|
||||
"showUnfilled": true,
|
||||
"sizing": "auto",
|
||||
"valueMode": "color"
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "histogram_quantile(0.95, sum by(le) (rate(ttft_milliseconds_bucket[$__rate_interval])))",
|
||||
"fullMetaSearch": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "p95",
|
||||
"range": true,
|
||||
"refId": "A",
|
||||
"useBackend": false
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "histogram_quantile(0.5, sum by(le) (rate(ttft_milliseconds_bucket[$__rate_interval])))",
|
||||
"fullMetaSearch": false,
|
||||
"hide": false,
|
||||
"includeNullMetadata": true,
|
||||
"legendFormat": "p50",
|
||||
"range": true,
|
||||
"refId": "B",
|
||||
"useBackend": false
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"disableTextWrap": false,
|
||||
"editorMode": "builder",
|
||||
"expr": "histogram_quantile(0.99, sum by(le) (rate(ttft_milliseconds_bucket[$__rate_interval])))",
|
||||
"fullMetaSearch": false,
|
||||
"hide": false,
|
||||
"includeNullMetadata": false,
|
||||
"instant": false,
|
||||
"legendFormat": "p99",
|
||||
"range": true,
|
||||
"refId": "C",
|
||||
"useBackend": false
|
||||
}
|
||||
],
|
||||
"title": "Time to First Token (TTFT)",
|
||||
"type": "bargauge"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"fieldConfig": {
|
||||
"defaults": {
|
||||
"color": {
|
||||
"mode": "palette-classic"
|
||||
},
|
||||
"custom": {
|
||||
"axisBorderShow": false,
|
||||
"axisCenteredZero": false,
|
||||
"axisColorMode": "text",
|
||||
"axisLabel": "",
|
||||
"axisPlacement": "auto",
|
||||
"barAlignment": 0,
|
||||
"barWidthFactor": 0.6,
|
||||
"drawStyle": "line",
|
||||
"fillOpacity": 0,
|
||||
"gradientMode": "none",
|
||||
"hideFrom": {
|
||||
"legend": false,
|
||||
"tooltip": false,
|
||||
"viz": false
|
||||
},
|
||||
"insertNulls": false,
|
||||
"lineInterpolation": "linear",
|
||||
"lineWidth": 1,
|
||||
"pointSize": 5,
|
||||
"scaleDistribution": {
|
||||
"type": "linear"
|
||||
},
|
||||
"showPoints": "auto",
|
||||
"spanNulls": false,
|
||||
"stacking": {
|
||||
"group": "A",
|
||||
"mode": "none"
|
||||
},
|
||||
"thresholdsStyle": {
|
||||
"mode": "off"
|
||||
}
|
||||
},
|
||||
"mappings": [],
|
||||
"thresholds": {
|
||||
"mode": "absolute",
|
||||
"steps": [
|
||||
{
|
||||
"color": "green"
|
||||
},
|
||||
{
|
||||
"color": "red",
|
||||
"value": 80
|
||||
}
|
||||
]
|
||||
},
|
||||
"unit": "ms"
|
||||
},
|
||||
"overrides": []
|
||||
},
|
||||
"gridPos": {
|
||||
"h": 8,
|
||||
"w": 12,
|
||||
"x": 12,
|
||||
"y": 24
|
||||
},
|
||||
"id": 12,
|
||||
"options": {
|
||||
"legend": {
|
||||
"calcs": [],
|
||||
"displayMode": "list",
|
||||
"placement": "bottom",
|
||||
"showLegend": true
|
||||
},
|
||||
"tooltip": {
|
||||
"hideZeros": false,
|
||||
"mode": "single",
|
||||
"sort": "none"
|
||||
}
|
||||
},
|
||||
"pluginVersion": "12.0.0",
|
||||
"targets": [
|
||||
{
|
||||
"editorMode": "code",
|
||||
"expr": "histogram_quantile(0.5, sum by(le) (rate(request_latency_milliseconds_bucket[$__rate_interval])))",
|
||||
"legendFormat": "p50",
|
||||
"range": true,
|
||||
"refId": "A"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"editorMode": "code",
|
||||
"expr": "histogram_quantile(0.95, sum by(le) (rate(request_latency_milliseconds_bucket[$__rate_interval])))",
|
||||
"hide": false,
|
||||
"instant": false,
|
||||
"legendFormat": "p95",
|
||||
"range": true,
|
||||
"refId": "B"
|
||||
},
|
||||
{
|
||||
"datasource": {
|
||||
"type": "prometheus",
|
||||
"uid": "PBFA97CFB590B2093"
|
||||
},
|
||||
"editorMode": "code",
|
||||
"expr": "histogram_quantile(0.99, sum by(le) (rate(request_latency_milliseconds_bucket[$__rate_interval])))",
|
||||
"hide": false,
|
||||
"instant": false,
|
||||
"legendFormat": "p99",
|
||||
"range": true,
|
||||
"refId": "C"
|
||||
}
|
||||
],
|
||||
"title": "Request latency percentiles",
|
||||
"type": "timeseries"
|
||||
}
|
||||
],
|
||||
"preload": false,
|
||||
"refresh": "5s",
|
||||
"schemaVersion": 41,
|
||||
"tags": [],
|
||||
"templating": {
|
||||
"list": []
|
||||
},
|
||||
"time": {
|
||||
"from": "now-15m",
|
||||
"to": "now"
|
||||
},
|
||||
"timepicker": {},
|
||||
"timezone": "",
|
||||
"title": "Transformers Continuous Batching Metrics",
|
||||
"uid": "Lw6CTvVSz",
|
||||
"version": 5
|
||||
}
|
55
examples/metrics-monitoring/docker-compose.yml
Normal file
55
examples/metrics-monitoring/docker-compose.yml
Normal file
@ -0,0 +1,55 @@
|
||||
services:
|
||||
memcached:
|
||||
image: memcached:1.6.29
|
||||
container_name: memcached
|
||||
ports:
|
||||
- "11211:11211"
|
||||
environment:
|
||||
- MEMCACHED_MAX_MEMORY=64m # Set the maximum memory usage
|
||||
- MEMCACHED_THREADS=4 # Number of threads to use
|
||||
|
||||
prometheus:
|
||||
image: prom/prometheus:latest
|
||||
command:
|
||||
- "--config.file=/etc/prometheus/prometheus.yml"
|
||||
- --web.enable-otlp-receiver # Enable OTLP receiver
|
||||
- --web.enable-remote-write-receiver
|
||||
- --enable-feature=exemplar-storage
|
||||
- --enable-feature=native-histograms
|
||||
volumes:
|
||||
- ./prometheus.yml:/etc/prometheus/prometheus.yml
|
||||
ports:
|
||||
- "9090:9090"
|
||||
|
||||
tempo:
|
||||
image: grafana/tempo:latest
|
||||
command: [ "-config.file=/etc/tempo.yaml" ]
|
||||
volumes:
|
||||
- ./tempo.yaml:/etc/tempo.yaml
|
||||
ports:
|
||||
- "14268:14268" # jaeger ingest
|
||||
- "3200:3200" # tempo
|
||||
- "9095:9095" # tempo grpc
|
||||
- "4317:4317" # otlp grpc
|
||||
- "4318:4318" # otlp http
|
||||
- "9411:9411" # zipkin
|
||||
depends_on:
|
||||
- memcached
|
||||
|
||||
grafana:
|
||||
image: grafana/grafana:latest
|
||||
volumes:
|
||||
- ./continuous-batching-dashboard.json:/etc/grafana/provisioning/dashboards/continuous-batching-dashboard.json
|
||||
- ./grafana-dashboard.yaml:/etc/grafana/provisioning/dashboards/grafana-dashboard.yaml
|
||||
- ./grafana-datasources.yaml:/etc/grafana/provisioning/datasources/datasources.yaml
|
||||
environment:
|
||||
- GF_AUTH_ANONYMOUS_ENABLED=true
|
||||
- GF_AUTH_ANONYMOUS_ORG_ROLE=Admin
|
||||
- GF_AUTH_DISABLE_LOGIN_FORM=true
|
||||
- GF_FEATURE_TOGGLES_ENABLE=traceqlEditor metricsSummary
|
||||
- GF_INSTALL_PLUGINS=https://storage.googleapis.com/integration-artifacts/grafana-exploretraces-app/grafana-exploretraces-app-latest.zip;grafana-traces-app
|
||||
ports:
|
||||
- "3000:3000"
|
||||
depends_on:
|
||||
- prometheus
|
||||
- tempo
|
11
examples/metrics-monitoring/grafana-dashboard.yaml
Normal file
11
examples/metrics-monitoring/grafana-dashboard.yaml
Normal file
@ -0,0 +1,11 @@
|
||||
apiVersion: 1
|
||||
|
||||
providers:
|
||||
- name: 'Transformers Dashboards'
|
||||
orgId: 1
|
||||
folder: 'Transformers'
|
||||
type: file
|
||||
disableDeletion: false
|
||||
editable: true
|
||||
options:
|
||||
path: /etc/grafana/provisioning/dashboards
|
14
examples/metrics-monitoring/grafana-datasources.yaml
Normal file
14
examples/metrics-monitoring/grafana-datasources.yaml
Normal file
@ -0,0 +1,14 @@
|
||||
apiVersion: 1
|
||||
|
||||
datasources:
|
||||
- name: Prometheus
|
||||
type: prometheus
|
||||
access: proxy
|
||||
url: http://prometheus:9090
|
||||
isDefault: true
|
||||
|
||||
- name: Tempo
|
||||
type: tempo
|
||||
access: proxy
|
||||
url: http://tempo:3200
|
||||
uid: tempo
|
48
examples/metrics-monitoring/metrics_example.py
Normal file
48
examples/metrics-monitoring/metrics_example.py
Normal file
@ -0,0 +1,48 @@
|
||||
# Example usage of the trace and attach_tracer decorators
|
||||
|
||||
from transformers.utils.metrics import attach_tracer, traced
|
||||
|
||||
|
||||
@attach_tracer()
|
||||
class ExampleClass:
|
||||
def __init__(self, name):
|
||||
# The attach_tracer decorator has already created self.tracer for us
|
||||
self.name = name
|
||||
|
||||
@traced # This method will use the tracer from the class instance
|
||||
def process_data(self, data):
|
||||
# This method is traced and can use self.tracer
|
||||
return f"Processed {data} with {self.name}"
|
||||
|
||||
@traced(span_name="custom_operation") # With custom span name
|
||||
def special_operation(self, value):
|
||||
# Also traced, with a custom span name
|
||||
return value * 2
|
||||
|
||||
@traced(
|
||||
additional_attributes=[
|
||||
("name", "object.name", lambda x: x.upper()), # Using a transform function
|
||||
("name", "object.fixed_value", "static_value"), # Using a fixed value
|
||||
]
|
||||
)
|
||||
def operation_with_attributes(self):
|
||||
# This will add the specified attributes to the span
|
||||
return "Operation completed"
|
||||
|
||||
|
||||
# For functions without a class, the traced decorator still works
|
||||
@traced
|
||||
def standalone_function(arg1, arg2):
|
||||
# For functions, a tracer is created based on the module name
|
||||
return arg1 + arg2
|
||||
|
||||
|
||||
# Usage:
|
||||
if __name__ == "__main__":
|
||||
# With OpenTelemetry configured, these will produce traces
|
||||
example = ExampleClass("test_object")
|
||||
example.process_data("sample")
|
||||
example.special_operation(42)
|
||||
example.operation_with_attributes()
|
||||
|
||||
result = standalone_function(1, 2)
|
3
examples/metrics-monitoring/prometheus.yml
Normal file
3
examples/metrics-monitoring/prometheus.yml
Normal file
@ -0,0 +1,3 @@
|
||||
global:
|
||||
scrape_interval: 15s
|
||||
|
90
examples/metrics-monitoring/tempo.yaml
Normal file
90
examples/metrics-monitoring/tempo.yaml
Normal file
@ -0,0 +1,90 @@
|
||||
stream_over_http_enabled: true
|
||||
server:
|
||||
http_listen_port: 3200
|
||||
log_level: info
|
||||
|
||||
|
||||
cache:
|
||||
background:
|
||||
writeback_goroutines: 5
|
||||
caches:
|
||||
- roles:
|
||||
- frontend-search
|
||||
memcached:
|
||||
addresses: dns+memcached:11211
|
||||
|
||||
query_frontend:
|
||||
search:
|
||||
duration_slo: 5s
|
||||
throughput_bytes_slo: 1.073741824e+09
|
||||
metadata_slo:
|
||||
duration_slo: 5s
|
||||
throughput_bytes_slo: 1.073741824e+09
|
||||
trace_by_id:
|
||||
duration_slo: 100ms
|
||||
metrics:
|
||||
max_duration: 200h # maximum duration of a metrics query, increase for local setups
|
||||
query_backend_after: 5m
|
||||
duration_slo: 5s
|
||||
throughput_bytes_slo: 1.073741824e+09
|
||||
|
||||
distributor:
|
||||
receivers: # this configuration will listen on all ports and protocols that tempo is capable of.
|
||||
jaeger: # the receives all come from the OpenTelemetry collector. more configuration information can
|
||||
protocols: # be found there: https://github.com/open-telemetry/opentelemetry-collector/tree/main/receiver
|
||||
thrift_http: #
|
||||
endpoint: "tempo:14268" # for a production deployment you should only enable the receivers you need!
|
||||
grpc:
|
||||
endpoint: "tempo:14250"
|
||||
thrift_binary:
|
||||
endpoint: "tempo:6832"
|
||||
thrift_compact:
|
||||
endpoint: "tempo:6831"
|
||||
zipkin:
|
||||
endpoint: "tempo:9411"
|
||||
otlp:
|
||||
protocols:
|
||||
grpc:
|
||||
endpoint: "tempo:4317"
|
||||
http:
|
||||
endpoint: "tempo:4318"
|
||||
opencensus:
|
||||
endpoint: "tempo:55678"
|
||||
|
||||
ingester:
|
||||
max_block_duration: 5m # cut the headblock when this much time passes. this is being set for demo purposes and should probably be left alone normally
|
||||
|
||||
compactor:
|
||||
compaction:
|
||||
block_retention: 720h # overall Tempo trace retention. set for demo purposes
|
||||
|
||||
metrics_generator:
|
||||
registry:
|
||||
external_labels:
|
||||
source: tempo
|
||||
cluster: docker-compose
|
||||
storage:
|
||||
path: /var/tempo/generator/wal
|
||||
remote_write:
|
||||
- url: http://prometheus:9090/api/v1/write
|
||||
send_exemplars: true
|
||||
traces_storage:
|
||||
path: /var/tempo/generator/traces
|
||||
processor:
|
||||
local_blocks:
|
||||
filter_server_spans: false
|
||||
flush_to_storage: true
|
||||
|
||||
storage:
|
||||
trace:
|
||||
backend: local # backend configuration to use
|
||||
wal:
|
||||
path: /var/tempo/wal # where to store the wal locally
|
||||
local:
|
||||
path: /var/tempo/blocks
|
||||
|
||||
overrides:
|
||||
defaults:
|
||||
metrics_generator:
|
||||
processors: [service-graphs, span-metrics, local-blocks] # enables metrics generator
|
||||
generate_native_histograms: both
|
109
examples/pytorch/continuous_batching.py
Normal file
109
examples/pytorch/continuous_batching.py
Normal file
@ -0,0 +1,109 @@
|
||||
import time
|
||||
|
||||
import datasets
|
||||
import torch
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.generation import GenerationConfig
|
||||
|
||||
|
||||
torch.set_float32_matmul_precision("high")
|
||||
|
||||
model_id = "meta-llama/Llama-3.2-3b-Instruct"
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id, attn_implementation="sdpa_paged", torch_dtype=torch.bfloat16, device_map="auto"
|
||||
).eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
|
||||
|
||||
generation_config = GenerationConfig(
|
||||
max_new_tokens=512,
|
||||
eos_token_id=tokenizer.eos_token_id,
|
||||
pad_token_id=tokenizer.pad_token_id,
|
||||
use_cache=False,
|
||||
num_blocks=2048,
|
||||
block_size=128,
|
||||
do_sample=True,
|
||||
max_batch_tokens=1024, # Maximum number of tokens to process in a single batch
|
||||
scheduler="prefill_first",
|
||||
)
|
||||
|
||||
train_dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
|
||||
|
||||
# --- Example 1: Simple Version using generate_batch ---
|
||||
print("--- Running CB Generation Example ---")
|
||||
|
||||
|
||||
def tokenize_function(examples):
|
||||
return tokenizer(examples["question"])
|
||||
|
||||
|
||||
tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
|
||||
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
|
||||
|
||||
start_time_simple = time.time()
|
||||
# model.forward = torch.compile(model.forward, mode="max-autotune-no-cudagraphs", fullgraph=True)
|
||||
batch_outputs = model.generate_batch(
|
||||
inputs=simple_batch_inputs,
|
||||
generation_config=generation_config,
|
||||
)
|
||||
end_time_simple = time.time()
|
||||
|
||||
for request in batch_outputs:
|
||||
input_text = tokenizer.decode(batch_outputs[request].prompt_ids, skip_special_tokens=False)
|
||||
try:
|
||||
output_text = tokenizer.decode(batch_outputs[request].generated_tokens, skip_special_tokens=False)
|
||||
except Exception as e:
|
||||
print(f"Decoding failed for request {request}: {e}")
|
||||
output_text = tokenizer.decode(batch_outputs[request].generated_tokens[1:], skip_special_tokens=False)
|
||||
if len(output_text) > 0:
|
||||
print("-" * 20)
|
||||
print(f"{request} Input: {input_text}")
|
||||
print(f"{request} Output: {output_text}")
|
||||
else:
|
||||
print("", end="\r\r\r\r")
|
||||
print("-" * 20)
|
||||
print("--- Finished CB Generation Example ---\n\n")
|
||||
|
||||
|
||||
print(f"CB generation took: {end_time_simple - start_time_simple:.2f} seconds")
|
||||
|
||||
|
||||
# train_dataset = train_dataset.select(range(5)) # Use only 5 examples for the simple version
|
||||
|
||||
# tokenized_test_prompts = tokenizer(_TEST_PROMPTS, padding=True, padding_side="left", truncation=True, max_length=512)
|
||||
# simple_batch_inputs = list(tokenized_test_prompts["input_ids"])
|
||||
|
||||
# def tokenize_function(examples):
|
||||
# # Truncate to avoid overly long prompts exceeding max context length
|
||||
# return tokenizer(examples["question"], padding=True, truncation=True, max_length=512)
|
||||
|
||||
|
||||
# tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
|
||||
# simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
|
||||
|
||||
|
||||
# model.config.attn_implementation = "sdpa"
|
||||
# start_time_simple = time.time()
|
||||
# batch_size = 64
|
||||
# full_outputs = []
|
||||
# from tqdm import tqdm
|
||||
|
||||
# for i in tqdm(range(0, len(simple_batch_inputs)-batch_size, batch_size)):
|
||||
# outputs = model.generate(
|
||||
# torch.tensor(simple_batch_inputs[i:i+batch_size], device=model.device),
|
||||
# generation_config=GenerationConfig(
|
||||
# max_new_tokens=16, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id
|
||||
# ),
|
||||
# )
|
||||
# full_outputs.extend(outputs.tolist())
|
||||
|
||||
# end_time_simple = time.time()
|
||||
# print(f"\nSimple batch generation took: {end_time_simple - start_time_simple:.2f} seconds")
|
||||
|
||||
# print("\nResults from simple generate_batch:")
|
||||
# for i, request in enumerate(full_outputs):
|
||||
# output_text = tokenizer.decode(request, skip_special_tokens=False)
|
||||
# print("-" * 20)
|
||||
# print(f" Output: {output_text}")
|
||||
# print("-" * 20)
|
||||
# print("--- Finished Simple Batch Generation Example ---\n\n")
|
6
setup.py
6
setup.py
@ -201,6 +201,9 @@ _deps = [
|
||||
"pytest-rich",
|
||||
"libcst",
|
||||
"rich",
|
||||
"opentelemetry-api",
|
||||
"opentelemetry-exporter-otlp",
|
||||
"opentelemetry-sdk",
|
||||
]
|
||||
|
||||
|
||||
@ -435,6 +438,9 @@ extras["torchhub"] = deps_list(
|
||||
|
||||
extras["benchmark"] = deps_list("optimum-benchmark")
|
||||
|
||||
# OpenTelemetry dependencies for metrics collection in continuous batching
|
||||
extras["open-telemetry"] = deps_list("opentelemetry-api", "opentelemetry-exporter-otlp", "opentelemetry-sdk")
|
||||
|
||||
# when modifying the following list, make sure to update src/transformers/dependency_versions_check.py
|
||||
install_requires = [
|
||||
deps["filelock"], # filesystem locks, e.g., to prevent parallel downloads
|
||||
|
@ -1716,6 +1716,19 @@ class EncoderDecoderCache(Cache):
|
||||
self.self_attention_cache.batch_select_indices(indices)
|
||||
self.cross_attention_cache.batch_select_indices(indices)
|
||||
|
||||
def get_max_cache_shape(self) -> Optional[int]:
|
||||
"""Returns the maximum sequence length (i.e. max capacity) of the cache object"""
|
||||
return self.self_attention_cache.get_max_cache_shape()
|
||||
|
||||
def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
|
||||
"""
|
||||
Return a tuple (kv_length, kv_offset) corresponding to the length and offset that will be returned for
|
||||
the given layer at `layer_idx`.
|
||||
The masks are then prepared according to the given lengths (kv_length, kv_offset) and patterns (i.e. sliding_window, chunk_size),
|
||||
for each layer.
|
||||
"""
|
||||
return self.self_attention_cache.get_mask_sizes(cache_position, layer_idx)
|
||||
|
||||
|
||||
class HybridCache(Cache):
|
||||
"""
|
||||
@ -1967,7 +1980,8 @@ class HybridChunkedCache(Cache):
|
||||
else:
|
||||
self.sliding_window = config.sliding_window
|
||||
self.max_cache_len = max_cache_len
|
||||
self._sliding_window_max_len = min(self.sliding_window, max_cache_len)
|
||||
# Sliding layers can't be larger than the overall max cache len
|
||||
self.sliding_window = min(self.sliding_window, self.max_cache_len)
|
||||
self.max_batch_size = max_batch_size
|
||||
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
||||
self._dtype = dtype
|
||||
@ -1989,7 +2003,7 @@ class HybridChunkedCache(Cache):
|
||||
num_key_value_heads = key_states.shape[1]
|
||||
device = key_states.device
|
||||
global_cache_shape = (self.max_batch_size, num_key_value_heads, self.max_cache_len, self.head_dim)
|
||||
sliding_cache_shape = (self.max_batch_size, num_key_value_heads, self._sliding_window_max_len, self.head_dim)
|
||||
sliding_cache_shape = (self.max_batch_size, num_key_value_heads, self.sliding_window, self.head_dim)
|
||||
# Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
|
||||
# breaks when updating the cache.
|
||||
cache_shape = sliding_cache_shape if self.is_sliding[layer_idx] else global_cache_shape
|
||||
@ -2163,7 +2177,7 @@ class OffloadedHybridCache(HybridChunkedCache):
|
||||
device = key_states.device if self.is_sliding[layer_idx] else self.offload_device
|
||||
pin_memory = not self.is_sliding[layer_idx]
|
||||
global_cache_shape = (self.max_batch_size, num_key_value_heads, self.max_cache_len, self.head_dim)
|
||||
sliding_cache_shape = (self.max_batch_size, num_key_value_heads, self._sliding_window_max_len, self.head_dim)
|
||||
sliding_cache_shape = (self.max_batch_size, num_key_value_heads, self.sliding_window, self.head_dim)
|
||||
# Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
|
||||
# breaks when updating the cache.
|
||||
cache_shape = sliding_cache_shape if self.is_sliding[layer_idx] else global_cache_shape
|
||||
@ -2231,7 +2245,7 @@ class OffloadedHybridCache(HybridChunkedCache):
|
||||
|
||||
def _prefetch_layer_in_context(self, layer_idx: int) -> None:
|
||||
"""Performs the actual copy of the layer to device cache."""
|
||||
if len(self.key_cache) >= layer_idx:
|
||||
if len(self.key_cache) > layer_idx:
|
||||
self.device_key_cache[self.active_device_layer].copy_(self.key_cache[layer_idx], non_blocking=True)
|
||||
self.device_value_cache[self.active_device_layer].copy_(self.value_cache[layer_idx], non_blocking=True)
|
||||
# The layer was not yet initialized
|
||||
|
@ -13,9 +13,11 @@
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import copy
|
||||
import json
|
||||
import os
|
||||
import platform
|
||||
import re
|
||||
import string
|
||||
import time
|
||||
import warnings
|
||||
@ -25,7 +27,15 @@ from threading import Thread
|
||||
from typing import Optional
|
||||
|
||||
import yaml
|
||||
from huggingface_hub.utils import disable_progress_bars
|
||||
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
GenerationConfig,
|
||||
PreTrainedTokenizer,
|
||||
TextIteratorStreamer,
|
||||
logging,
|
||||
)
|
||||
from transformers.utils import is_rich_available, is_torch_available
|
||||
|
||||
from . import BaseTransformersCLICommand
|
||||
@ -42,13 +52,7 @@ if is_rich_available():
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
from transformers import (
|
||||
AutoModelForCausalLM,
|
||||
AutoTokenizer,
|
||||
BitsAndBytesConfig,
|
||||
GenerationConfig,
|
||||
TextIteratorStreamer,
|
||||
)
|
||||
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, PreTrainedModel
|
||||
|
||||
|
||||
ALLOWED_KEY_CHARS = set(string.ascii_letters + string.whitespace)
|
||||
@ -68,6 +72,7 @@ DEFAULT_EXAMPLES = {
|
||||
"numbers": {"text": "Count to 10 but skip every number ending with an 'e'"},
|
||||
"birds": {"text": "Why aren't birds real?"},
|
||||
"socks": {"text": "Why is it important to eat socks after meditating?"},
|
||||
"numbers2": {"text": "Which number is larger, 9.9 or 9.11?"},
|
||||
}
|
||||
|
||||
# Printed at the start of a chat session
|
||||
@ -76,7 +81,7 @@ HELP_STRING_MINIMAL = """
|
||||
**TRANSFORMERS CHAT INTERFACE**
|
||||
|
||||
Chat interface to try out a model. Besides chatting with the model, here are some basic commands:
|
||||
- **!help**: shows all available commands
|
||||
- **!help**: shows all available commands (set generation settings, save chat, etc.)
|
||||
- **!status**: shows the current status of the model and generation settings
|
||||
- **!clear**: clears the current conversation and starts a new one
|
||||
- **!exit**: closes the interface
|
||||
@ -140,6 +145,9 @@ class RichInterface:
|
||||
for i, outputs in enumerate(output_stream):
|
||||
if not outputs or i == 0:
|
||||
continue
|
||||
# Escapes single words encased in <>, e.g. <think> -> \<think\>, for proper rendering in Markdown.
|
||||
# It only escapes single words that may have `_`, optionally following a `/` (e.g. </think>)
|
||||
outputs = re.sub(r"<(/*)(\w*)>", r"\<\1\2\>", outputs)
|
||||
text += outputs
|
||||
# Render the accumulated text as Markdown
|
||||
# NOTE: this is a workaround for the rendering "unstandard markdown"
|
||||
@ -224,6 +232,7 @@ class ChatArguments:
|
||||
system_prompt: Optional[str] = field(default=None, metadata={"help": "System prompt."})
|
||||
save_folder: str = field(default="./chat_history/", metadata={"help": "Folder to save chat history."})
|
||||
examples_path: Optional[str] = field(default=None, metadata={"help": "Path to a yaml file with examples."})
|
||||
verbose: bool = field(default=False, metadata={"help": "Whether to show runtime warnings in the chat interface."})
|
||||
|
||||
# Generation settings
|
||||
generation_config: Optional[str] = field(
|
||||
@ -246,7 +255,9 @@ class ChatArguments:
|
||||
repetition_penalty: float = field(default=1.0, metadata={"help": "Repetition penalty."})
|
||||
eos_tokens: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "EOS tokens to stop the generation. If multiple they should be comma separated."},
|
||||
metadata={
|
||||
"help": "EOS tokens (text format) to stop the generation. If multiple they should be comma separated."
|
||||
},
|
||||
)
|
||||
eos_token_ids: Optional[str] = field(
|
||||
default=None,
|
||||
@ -431,6 +442,9 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
|
||||
# 2. b. strings should be quoted
|
||||
def is_number(s: str) -> bool:
|
||||
# handle negative numbers
|
||||
if s.startswith("-"):
|
||||
s = s[1:]
|
||||
return s.replace(".", "", 1).isdigit()
|
||||
|
||||
generate_flags_as_dict = {k: f'"{v}"' if not is_number(v) else v for k, v in generate_flags_as_dict.items()}
|
||||
@ -464,16 +478,19 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
return processed_generate_flags
|
||||
|
||||
def get_generation_parameterization(
|
||||
self, args: ChatArguments, tokenizer: AutoTokenizer
|
||||
self, args: ChatArguments, tokenizer: AutoTokenizer, model: PreTrainedModel
|
||||
) -> tuple[GenerationConfig, dict]:
|
||||
"""
|
||||
Returns a GenerationConfig object holding the generation parameters for the CLI command.
|
||||
"""
|
||||
# No generation config arg provided -> use base generation config, apply CLI defaults
|
||||
# No generation config arg provided -> use default generation config, apply CLI defaults
|
||||
if args.generation_config is None:
|
||||
generation_config = GenerationConfig()
|
||||
# We start off from the checkpoint's generation config
|
||||
generation_config = copy.deepcopy(model.generation_config)
|
||||
# Apply deprecated CLI args on top of the default generation config
|
||||
pad_token_id, eos_token_ids = self.parse_eos_tokens(tokenizer, args.eos_tokens, args.eos_token_ids)
|
||||
pad_token_id, eos_token_ids = self.parse_eos_tokens(
|
||||
tokenizer, generation_config, args.eos_tokens, args.eos_token_ids
|
||||
)
|
||||
deprecated_kwargs = {
|
||||
"max_new_tokens": args.max_new_tokens,
|
||||
"do_sample": args.do_sample,
|
||||
@ -504,13 +521,16 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
|
||||
@staticmethod
|
||||
def parse_eos_tokens(
|
||||
tokenizer: AutoTokenizer, eos_tokens: Optional[str], eos_token_ids: Optional[str]
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
generation_config: GenerationConfig,
|
||||
eos_tokens: Optional[str],
|
||||
eos_token_ids: Optional[str],
|
||||
) -> tuple[int, list[int]]:
|
||||
"""Retrieves the pad token ID and all possible EOS token IDs."""
|
||||
if tokenizer.pad_token_id is None:
|
||||
pad_token_id = tokenizer.eos_token_id
|
||||
if generation_config.pad_token_id is None:
|
||||
pad_token_id = generation_config.eos_token_id
|
||||
else:
|
||||
pad_token_id = tokenizer.pad_token_id
|
||||
pad_token_id = generation_config.pad_token_id
|
||||
|
||||
all_eos_token_ids = []
|
||||
|
||||
@ -521,7 +541,7 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
all_eos_token_ids.extend([int(token_id) for token_id in eos_token_ids.split(",")])
|
||||
|
||||
if len(all_eos_token_ids) == 0:
|
||||
all_eos_token_ids.append(tokenizer.eos_token_id)
|
||||
all_eos_token_ids.append(generation_config.eos_token_id)
|
||||
|
||||
return pad_token_id, all_eos_token_ids
|
||||
|
||||
@ -547,7 +567,7 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
|
||||
return quantization_config
|
||||
|
||||
def load_model_and_tokenizer(self, args: ChatArguments) -> tuple[AutoModelForCausalLM, AutoTokenizer]:
|
||||
def load_model_and_tokenizer(self, args: ChatArguments) -> tuple["AutoModelForCausalLM", AutoTokenizer]:
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
args.model_name_or_path_positional,
|
||||
revision=args.model_revision,
|
||||
@ -588,6 +608,7 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
Handles all user commands except for `!exit`. May update the chat history (e.g. reset it) or the
|
||||
generation config (e.g. set a new flag).
|
||||
"""
|
||||
valid_command = True
|
||||
|
||||
if user_input == "!clear":
|
||||
chat = self.clear_chat_history(args.system_prompt)
|
||||
@ -649,10 +670,11 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
)
|
||||
|
||||
else:
|
||||
valid_command = False
|
||||
interface.print_color(text=f"'{user_input}' is not a valid command. Showing help message.", color="red")
|
||||
interface.print_help()
|
||||
|
||||
return chat, generation_config, model_kwargs
|
||||
return chat, valid_command, generation_config, model_kwargs
|
||||
|
||||
# -----------------------------------------------------------------------------------------------------------------
|
||||
# Main logic
|
||||
@ -676,7 +698,12 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
|
||||
model, tokenizer = self.load_model_and_tokenizer(args)
|
||||
generation_streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True)
|
||||
generation_config, model_kwargs = self.get_generation_parameterization(args, tokenizer)
|
||||
generation_config, model_kwargs = self.get_generation_parameterization(args, tokenizer, model)
|
||||
|
||||
# if not verbose -> disable warnings, progress bars, etc in the chat interface
|
||||
if not args.verbose:
|
||||
logging.set_verbosity_error()
|
||||
disable_progress_bars()
|
||||
|
||||
interface = RichInterface(model_name=args.model_name_or_path_positional, user_name=user)
|
||||
interface.clear()
|
||||
@ -694,7 +721,7 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
if user_input == "!exit":
|
||||
break
|
||||
else:
|
||||
chat, generation_config, model_kwargs = self.handle_non_exit_user_commands(
|
||||
chat, valid_command, generation_config, model_kwargs = self.handle_non_exit_user_commands(
|
||||
user_input=user_input,
|
||||
args=args,
|
||||
interface=interface,
|
||||
@ -704,7 +731,7 @@ class ChatCommand(BaseTransformersCLICommand):
|
||||
chat=chat,
|
||||
)
|
||||
# `!example` sends a user message to the model
|
||||
if not user_input.startswith("!example"):
|
||||
if not valid_command or not user_input.startswith("!example"):
|
||||
continue
|
||||
else:
|
||||
chat.append({"role": "user", "content": user_input})
|
||||
|
@ -32,6 +32,7 @@ from ..utils import (
|
||||
is_torch_available,
|
||||
is_torch_hpu_available,
|
||||
is_torch_npu_available,
|
||||
is_torch_xpu_available,
|
||||
)
|
||||
from . import BaseTransformersCLICommand
|
||||
|
||||
@ -89,15 +90,25 @@ class EnvironmentCommand(BaseTransformersCLICommand):
|
||||
|
||||
pt_version = "not installed"
|
||||
pt_cuda_available = "NA"
|
||||
pt_accelerator = "NA"
|
||||
if is_torch_available():
|
||||
import torch
|
||||
|
||||
pt_version = torch.__version__
|
||||
pt_cuda_available = torch.cuda.is_available()
|
||||
pt_xpu_available = torch.xpu.is_available()
|
||||
pt_xpu_available = is_torch_xpu_available()
|
||||
pt_npu_available = is_torch_npu_available()
|
||||
pt_hpu_available = is_torch_hpu_available()
|
||||
|
||||
if pt_cuda_available:
|
||||
pt_accelerator = "CUDA"
|
||||
elif pt_xpu_available:
|
||||
pt_accelerator = "XPU"
|
||||
elif pt_npu_available:
|
||||
pt_accelerator = "NPU"
|
||||
elif pt_hpu_available:
|
||||
pt_accelerator = "HPU"
|
||||
|
||||
tf_version = "not installed"
|
||||
tf_cuda_available = "NA"
|
||||
if is_tf_available():
|
||||
@ -141,7 +152,7 @@ class EnvironmentCommand(BaseTransformersCLICommand):
|
||||
"Accelerate version": f"{accelerate_version}",
|
||||
"Accelerate config": f"{accelerate_config_str}",
|
||||
"DeepSpeed version": f"{deepspeed_version}",
|
||||
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
|
||||
"PyTorch version (accelerator?)": f"{pt_version} ({pt_accelerator})",
|
||||
"Tensorflow version (GPU?)": f"{tf_version} ({tf_cuda_available})",
|
||||
"Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})",
|
||||
"Jax version": f"{jax_version}",
|
||||
|
@ -28,8 +28,6 @@ from .modeling_gguf_pytorch_utils import load_gguf_checkpoint
|
||||
from .utils import (
|
||||
CONFIG_NAME,
|
||||
PushToHubMixin,
|
||||
add_model_info_to_auto_map,
|
||||
add_model_info_to_custom_pipelines,
|
||||
cached_file,
|
||||
copy_func,
|
||||
download_url,
|
||||
@ -214,7 +212,7 @@ class PretrainedConfig(PushToHubMixin):
|
||||
# Attributes with defaults
|
||||
self.return_dict = kwargs.pop("return_dict", True)
|
||||
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
|
||||
self.output_attentions = kwargs.pop("output_attentions", False)
|
||||
self._output_attentions = kwargs.pop("output_attentions", False)
|
||||
self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models
|
||||
self.torch_dtype = kwargs.pop("torch_dtype", None) # Only used by PyTorch models
|
||||
self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
|
||||
@ -331,6 +329,22 @@ class PretrainedConfig(PushToHubMixin):
|
||||
def name_or_path(self, value):
|
||||
self._name_or_path = str(value) # Make sure that name_or_path is a string (for JSON encoding)
|
||||
|
||||
@property
|
||||
def output_attentions(self):
|
||||
"""
|
||||
`bool`: Whether or not the model should returns all attentions.
|
||||
"""
|
||||
return self._output_attentions
|
||||
|
||||
@output_attentions.setter
|
||||
def output_attentions(self, value):
|
||||
if self._attn_implementation != "eager":
|
||||
raise ValueError(
|
||||
"The `output_attentions` attribute is not supported when using the `attn_implementation` set to "
|
||||
f"{self._attn_implementation}. Please set it to 'eager' instead."
|
||||
)
|
||||
self._output_attentions = value
|
||||
|
||||
@property
|
||||
def use_return_dict(self) -> bool:
|
||||
"""
|
||||
@ -697,15 +711,6 @@ class PretrainedConfig(PushToHubMixin):
|
||||
else:
|
||||
logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}")
|
||||
|
||||
if "auto_map" in config_dict and not is_local:
|
||||
config_dict["auto_map"] = add_model_info_to_auto_map(
|
||||
config_dict["auto_map"], pretrained_model_name_or_path
|
||||
)
|
||||
if "custom_pipelines" in config_dict and not is_local:
|
||||
config_dict["custom_pipelines"] = add_model_info_to_custom_pipelines(
|
||||
config_dict["custom_pipelines"], pretrained_model_name_or_path
|
||||
)
|
||||
|
||||
# timm models are not saved with the model_type in the config file
|
||||
if "model_type" not in config_dict and is_timm_config_dict(config_dict):
|
||||
config_dict["model_type"] = "timm_wrapper"
|
||||
@ -1004,6 +1009,8 @@ class PretrainedConfig(PushToHubMixin):
|
||||
|
||||
if "_auto_class" in d:
|
||||
del d["_auto_class"]
|
||||
if "_output_attentions" in d:
|
||||
d["output_attentions"] = d.pop("_output_attentions")
|
||||
if "_commit_hash" in d:
|
||||
del d["_commit_hash"]
|
||||
if "_attn_implementation_internal" in d:
|
||||
@ -1026,11 +1033,7 @@ class PretrainedConfig(PushToHubMixin):
|
||||
Register this class with a given auto class. This should only be used for custom configurations as the ones in
|
||||
the library are already mapped with `AutoConfig`.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is experimental and may have some slight breaking changes in the next releases.
|
||||
|
||||
</Tip>
|
||||
|
||||
Args:
|
||||
auto_class (`str` or `type`, *optional*, defaults to `"AutoConfig"`):
|
||||
|
@ -103,4 +103,7 @@ deps = {
|
||||
"pytest-rich": "pytest-rich",
|
||||
"libcst": "libcst",
|
||||
"rich": "rich",
|
||||
"opentelemetry-api": "opentelemetry-api",
|
||||
"opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp",
|
||||
"opentelemetry-sdk": "opentelemetry-sdk",
|
||||
}
|
||||
|
@ -667,7 +667,9 @@ def _raise_timeout_error(signum, frame):
|
||||
TIME_OUT_REMOTE_CODE = 15
|
||||
|
||||
|
||||
def resolve_trust_remote_code(trust_remote_code, model_name, has_local_code, has_remote_code, error_message=None):
|
||||
def resolve_trust_remote_code(
|
||||
trust_remote_code, model_name, has_local_code, has_remote_code, error_message=None, upstream_repo=None
|
||||
):
|
||||
"""
|
||||
Resolves the `trust_remote_code` argument. If there is remote code to be loaded, the user must opt-in to loading
|
||||
it.
|
||||
@ -688,11 +690,25 @@ def resolve_trust_remote_code(trust_remote_code, model_name, has_local_code, has
|
||||
Returns:
|
||||
The resolved `trust_remote_code` value.
|
||||
"""
|
||||
# Originally, `trust_remote_code` was used to load models with custom code.
|
||||
error_message = (
|
||||
error_message
|
||||
or f"The repository `{model_name}` contains custom code which must be executed to correctly load the model."
|
||||
)
|
||||
if error_message is None:
|
||||
if upstream_repo is not None:
|
||||
error_message = (
|
||||
f"The repository {model_name} references custom code contained in {upstream_repo} which "
|
||||
f"must be executed to correctly load the model. You can inspect the repository "
|
||||
f"content at https://hf.co/{upstream_repo} .\n"
|
||||
)
|
||||
elif os.path.isdir(model_name):
|
||||
error_message = (
|
||||
f"The repository {model_name} contains custom code which must be executed "
|
||||
f"to correctly load the model. You can inspect the repository "
|
||||
f"content at {os.path.abspath(model_name)} .\n"
|
||||
)
|
||||
else:
|
||||
error_message = (
|
||||
f"The repository {model_name} contains custom code which must be executed "
|
||||
f"to correctly load the model. You can inspect the repository "
|
||||
f"content at https://hf.co/{model_name} .\n"
|
||||
)
|
||||
|
||||
if trust_remote_code is None:
|
||||
if has_local_code:
|
||||
|
@ -29,8 +29,6 @@ from .utils import (
|
||||
FEATURE_EXTRACTOR_NAME,
|
||||
PushToHubMixin,
|
||||
TensorType,
|
||||
add_model_info_to_auto_map,
|
||||
add_model_info_to_custom_pipelines,
|
||||
cached_file,
|
||||
copy_func,
|
||||
download_url,
|
||||
@ -551,16 +549,6 @@ class FeatureExtractionMixin(PushToHubMixin):
|
||||
f"loading configuration file {feature_extractor_file} from cache at {resolved_feature_extractor_file}"
|
||||
)
|
||||
|
||||
if not is_local:
|
||||
if "auto_map" in feature_extractor_dict:
|
||||
feature_extractor_dict["auto_map"] = add_model_info_to_auto_map(
|
||||
feature_extractor_dict["auto_map"], pretrained_model_name_or_path
|
||||
)
|
||||
if "custom_pipelines" in feature_extractor_dict:
|
||||
feature_extractor_dict["custom_pipelines"] = add_model_info_to_custom_pipelines(
|
||||
feature_extractor_dict["custom_pipelines"], pretrained_model_name_or_path
|
||||
)
|
||||
|
||||
return feature_extractor_dict, kwargs
|
||||
|
||||
@classmethod
|
||||
@ -673,11 +661,7 @@ class FeatureExtractionMixin(PushToHubMixin):
|
||||
Register this class with a given auto class. This should only be used for custom feature extractors as the ones
|
||||
in the library are already mapped with `AutoFeatureExtractor`.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is experimental and may have some slight breaking changes in the next releases.
|
||||
|
||||
</Tip>
|
||||
|
||||
Args:
|
||||
auto_class (`str` or `type`, *optional*, defaults to `"AutoFeatureExtractor"`):
|
||||
|
@ -97,6 +97,9 @@ else:
|
||||
"validate_stopping_criteria",
|
||||
"StopStringCriteria",
|
||||
]
|
||||
_import_structure["continuous_batching"] = [
|
||||
"ContinuousMixin",
|
||||
]
|
||||
_import_structure["utils"] = [
|
||||
"GenerationMixin",
|
||||
"GreedySearchEncoderDecoderOutput",
|
||||
@ -213,6 +216,7 @@ if TYPE_CHECKING:
|
||||
EarlyExitCandidateGenerator,
|
||||
PromptLookupCandidateGenerator,
|
||||
)
|
||||
from .continuous_batching import ContinuousMixin
|
||||
from .logits_process import (
|
||||
AlternatingCodebooksLogitsProcessor,
|
||||
ClassifierFreeGuidanceLogitsProcessor,
|
||||
|
@ -821,7 +821,7 @@ class GenerationConfig(PushToHubMixin):
|
||||
warning_message = (
|
||||
f"The following generation flags are not valid and may be ignored: {attributes_with_issues}."
|
||||
)
|
||||
if logger.getEffectiveLevel() >= logging.WARNING:
|
||||
if logging.get_verbosity() >= logging.WARNING:
|
||||
warning_message += " Set `TRANSFORMERS_VERBOSITY=info` for more details."
|
||||
logger.warning(warning_message)
|
||||
logger.info(info_message)
|
||||
|
1444
src/transformers/generation/continuous_batching.py
Normal file
1444
src/transformers/generation/continuous_batching.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -531,13 +531,16 @@ class FlaxGenerationMixin:
|
||||
if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
|
||||
else begin_index + 1
|
||||
)
|
||||
if generation_config.forced_decoder_ids is not None and len(generation_config.forced_decoder_ids) > 0:
|
||||
if (
|
||||
getattr(generation_config, "forced_decoder_ids", None) is not None
|
||||
and len(generation_config.forced_decoder_ids) > 0
|
||||
):
|
||||
# generation starts after the last token that is forced
|
||||
begin_index += generation_config.forced_decoder_ids[-1][0]
|
||||
processors.append(
|
||||
FlaxSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
|
||||
)
|
||||
if generation_config.forced_decoder_ids is not None:
|
||||
if getattr(generation_config, "forced_decoder_ids", None) is not None:
|
||||
forced_decoder_ids = [
|
||||
[input_ids_seq_length + i[0] - 1, i[1]] for i in generation_config.forced_decoder_ids
|
||||
]
|
||||
|
@ -2051,6 +2051,10 @@ class WhisperNoSpeechDetection(LogitsProcessor):
|
||||
self.inputs = {**self.model.prepare_inputs_for_generation(**inputs), **inputs}
|
||||
self.inputs["input_features"] = self.inputs.pop("inputs")
|
||||
|
||||
# Whisper encoder-decoder does not accept the input_ids as input
|
||||
if "input_ids" not in inspect.signature(self.model.forward).parameters:
|
||||
self.inputs.pop("input_ids", None)
|
||||
|
||||
@property
|
||||
def no_speech_prob(self):
|
||||
return self._no_speech_prob
|
||||
|
@ -1490,14 +1490,14 @@ class TFGenerationMixin:
|
||||
if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
|
||||
else begin_index + 1
|
||||
)
|
||||
if generation_config.forced_decoder_ids is not None:
|
||||
if getattr(generation_config, "forced_decoder_ids", None) is not None:
|
||||
begin_index += generation_config.forced_decoder_ids[-1][
|
||||
0
|
||||
] # generation starts after the last token that is forced
|
||||
processors.append(
|
||||
TFSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
|
||||
)
|
||||
if generation_config.forced_decoder_ids is not None:
|
||||
if getattr(generation_config, "forced_decoder_ids", None) is not None:
|
||||
processors.append(TFForceTokensLogitsProcessor(generation_config.forced_decoder_ids))
|
||||
|
||||
processors = self._merge_criteria_processor_list(processors, logits_processor)
|
||||
|
@ -79,6 +79,7 @@ from .configuration_utils import (
|
||||
GenerationConfig,
|
||||
GenerationMode,
|
||||
)
|
||||
from .continuous_batching import ContinuousMixin
|
||||
from .logits_process import (
|
||||
EncoderNoRepeatNGramLogitsProcessor,
|
||||
EncoderRepetitionPenaltyLogitsProcessor,
|
||||
@ -352,7 +353,7 @@ GenerateBeamOutput = Union[GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDec
|
||||
GenerateOutput = Union[GenerateNonBeamOutput, GenerateBeamOutput]
|
||||
|
||||
|
||||
class GenerationMixin:
|
||||
class GenerationMixin(ContinuousMixin):
|
||||
"""
|
||||
A class containing all functions for auto-regressive text generation, to be used as a mixin in model classes.
|
||||
Inheriting from this class causes the model to have special generation-related behavior, such as loading a
|
||||
@ -635,7 +636,7 @@ class GenerationMixin:
|
||||
and attention_mask is not None
|
||||
and attention_mask.ndim == 2
|
||||
):
|
||||
if model_inputs["inputs_embeds"] is not None:
|
||||
if not self.config.is_encoder_decoder and model_inputs["inputs_embeds"] is not None:
|
||||
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
|
||||
else:
|
||||
batch_size, sequence_length = model_inputs[input_ids_key].shape[:2]
|
||||
@ -654,7 +655,6 @@ class GenerationMixin:
|
||||
|
||||
# If it's not defined, it means the model uses the new general mask API
|
||||
if causal_mask_creation_function is None: # can't be found
|
||||
output_attentions = kwargs.get("output_attentions", False)
|
||||
token_type_ids = getattr(model_input, "token_type_ids", None)
|
||||
# Some models may overwrite the general one
|
||||
causal_mask_creation_function = getattr(self, "create_masks_for_generate", create_masks_for_generate)
|
||||
@ -665,7 +665,6 @@ class GenerationMixin:
|
||||
attention_mask=attention_mask,
|
||||
cache_position=cache_position,
|
||||
past_key_values=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
token_type_ids=token_type_ids,
|
||||
)
|
||||
else:
|
||||
@ -1099,10 +1098,10 @@ class GenerationMixin:
|
||||
def _get_logits_processor(
|
||||
self,
|
||||
generation_config: GenerationConfig,
|
||||
input_ids_seq_length: int,
|
||||
encoder_input_ids: torch.LongTensor,
|
||||
prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
|
||||
logits_processor: Optional[LogitsProcessorList],
|
||||
input_ids_seq_length: Optional[int] = None,
|
||||
encoder_input_ids: torch.LongTensor = None,
|
||||
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
||||
logits_processor: Optional[LogitsProcessorList] = None,
|
||||
device: Optional[str] = None,
|
||||
model_kwargs: Optional[Dict[str, Any]] = None,
|
||||
negative_prompt_ids: Optional[torch.Tensor] = None,
|
||||
@ -1114,6 +1113,8 @@ class GenerationMixin:
|
||||
"""
|
||||
# instantiate processors list
|
||||
processors = LogitsProcessorList()
|
||||
if logits_processor is None:
|
||||
logits_processor = []
|
||||
|
||||
if generation_config.guidance_scale is not None and generation_config.guidance_scale != 1:
|
||||
processors.append(
|
||||
@ -1183,7 +1184,7 @@ class GenerationMixin:
|
||||
)
|
||||
if (
|
||||
generation_config.min_length is not None
|
||||
and generation_config._eos_token_tensor is not None
|
||||
and getattr(generation_config, "_eos_token_tensor", None) is not None
|
||||
and generation_config.min_length > 0
|
||||
):
|
||||
processors.append(
|
||||
@ -1195,7 +1196,7 @@ class GenerationMixin:
|
||||
)
|
||||
if (
|
||||
generation_config.min_new_tokens is not None
|
||||
and generation_config._eos_token_tensor is not None
|
||||
and getattr(generation_config, "_eos_token_tensor", None) is not None
|
||||
and generation_config.min_new_tokens > 0
|
||||
):
|
||||
processors.append(
|
||||
@ -2344,9 +2345,15 @@ class GenerationMixin:
|
||||
if custom_generate is not None:
|
||||
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
||||
# Get all `generate` arguments in a single variable. Custom functions are responsible for handling them:
|
||||
# they receive the same inputs as `generate`, only with `model` instead of `self`. They can access to
|
||||
# methods from `GenerationMixin` through `model`.
|
||||
global_keys_to_exclude = {"self", "kwargs"}
|
||||
# they receive the same inputs as `generate`, with `model` instead of `self` and excluding the arguments to
|
||||
# trigger the custom generation. They can access to methods from `GenerationMixin` through `model`.
|
||||
global_keys_to_exclude = {
|
||||
"self",
|
||||
"kwargs",
|
||||
"global_keys_to_exclude",
|
||||
"trust_remote_code",
|
||||
"custom_generate",
|
||||
}
|
||||
generate_arguments = {key: value for key, value in locals().items() if key not in global_keys_to_exclude}
|
||||
generate_arguments.update(kwargs)
|
||||
|
||||
|
@ -28,8 +28,6 @@ from .feature_extraction_utils import BatchFeature as BaseBatchFeature
|
||||
from .utils import (
|
||||
IMAGE_PROCESSOR_NAME,
|
||||
PushToHubMixin,
|
||||
add_model_info_to_auto_map,
|
||||
add_model_info_to_custom_pipelines,
|
||||
cached_file,
|
||||
copy_func,
|
||||
download_url,
|
||||
@ -380,14 +378,6 @@ class ImageProcessingMixin(PushToHubMixin):
|
||||
logger.info(
|
||||
f"loading configuration file {image_processor_file} from cache at {resolved_image_processor_file}"
|
||||
)
|
||||
if "auto_map" in image_processor_dict:
|
||||
image_processor_dict["auto_map"] = add_model_info_to_auto_map(
|
||||
image_processor_dict["auto_map"], pretrained_model_name_or_path
|
||||
)
|
||||
if "custom_pipelines" in image_processor_dict:
|
||||
image_processor_dict["custom_pipelines"] = add_model_info_to_custom_pipelines(
|
||||
image_processor_dict["custom_pipelines"], pretrained_model_name_or_path
|
||||
)
|
||||
|
||||
return image_processor_dict, kwargs
|
||||
|
||||
@ -508,11 +498,7 @@ class ImageProcessingMixin(PushToHubMixin):
|
||||
Register this class with a given auto class. This should only be used for custom image processors as the ones
|
||||
in the library are already mapped with `AutoImageProcessor `.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is experimental and may have some slight breaking changes in the next releases.
|
||||
|
||||
</Tip>
|
||||
|
||||
Args:
|
||||
auto_class (`str` or `type`, *optional*, defaults to `"AutoImageProcessor "`):
|
||||
|
45
src/transformers/integrations/eager_paged.py
Normal file
45
src/transformers/integrations/eager_paged.py
Normal file
@ -0,0 +1,45 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
"""
|
||||
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
||||
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
||||
"""
|
||||
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
||||
if n_rep == 1:
|
||||
return hidden_states
|
||||
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
||||
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
||||
|
||||
|
||||
def eager_paged_attention_forward(
|
||||
module: nn.Module,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
scaling: float,
|
||||
dropout: float = 0.0,
|
||||
**kwargs,
|
||||
):
|
||||
cache = kwargs.pop("cache", None)
|
||||
if cache is not None:
|
||||
key, value = cache.update(key, value, module.layer_idx, **kwargs)
|
||||
|
||||
key_states = repeat_kv(key, module.num_key_value_groups)
|
||||
value_states = repeat_kv(value, module.num_key_value_groups)
|
||||
|
||||
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
||||
if attention_mask is not None:
|
||||
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||||
attn_weights = attn_weights + causal_mask
|
||||
|
||||
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
||||
return attn_output, attn_weights
|
@ -11,7 +11,6 @@
|
||||
# specific language governing permissions and limitations under the License.
|
||||
|
||||
import logging
|
||||
from contextlib import contextmanager
|
||||
from typing import Callable, Optional
|
||||
|
||||
import torch
|
||||
@ -110,14 +109,13 @@ class TorchExportableModuleForDecoderOnlyLM(torch.nn.Module):
|
||||
example_input_ids = input_ids if input_ids is not None else torch.tensor([[1]], dtype=torch.long)
|
||||
example_cache_position = cache_position if cache_position is not None else torch.tensor([0], dtype=torch.long)
|
||||
|
||||
with patch_mask_interface():
|
||||
exported_program = torch.export.export(
|
||||
self.model,
|
||||
args=(example_input_ids, example_cache_position),
|
||||
kwargs={},
|
||||
dynamic_shapes=dynamic_shapes,
|
||||
strict=strict if strict is not None else True,
|
||||
)
|
||||
exported_program = torch.export.export(
|
||||
self.model,
|
||||
args=(example_input_ids, example_cache_position),
|
||||
kwargs={},
|
||||
dynamic_shapes=dynamic_shapes,
|
||||
strict=strict if strict is not None else True,
|
||||
)
|
||||
return exported_program
|
||||
|
||||
@staticmethod
|
||||
@ -456,24 +454,6 @@ class TorchExportableModuleWithHybridCache(torch.nn.Module):
|
||||
return outputs.logits
|
||||
|
||||
|
||||
@contextmanager
|
||||
def patch_mask_interface():
|
||||
"""
|
||||
Context manager to locally use a simple dict instead of `AttentionMaskInterface`, as otherwise export will fail
|
||||
with `strict=True` due to dynamo skip rules, i.e. `torch._dynamo.exc.Unsupported: 'inline in skipfiles:
|
||||
Mapping.__contains__ | __contains__, skipped according trace_rules.lookup SKIP_DIRS'`.
|
||||
Note that this seem to be an issue only for python<3.11.
|
||||
"""
|
||||
import transformers
|
||||
|
||||
original = transformers.masking_utils.ALL_MASK_ATTENTION_FUNCTIONS
|
||||
transformers.masking_utils.ALL_MASK_ATTENTION_FUNCTIONS = ALL_MASK_ATTENTION_FUNCTIONS._global_mapping
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
transformers.masking_utils.ALL_MASK_ATTENTION_FUNCTIONS = original
|
||||
|
||||
|
||||
def convert_and_export_with_cache(
|
||||
model: PreTrainedModel,
|
||||
example_input_ids: Optional[torch.Tensor] = None,
|
||||
@ -515,14 +495,13 @@ def convert_and_export_with_cache(
|
||||
)
|
||||
|
||||
if is_torch_greater_or_equal("2.6.0"):
|
||||
with patch_mask_interface():
|
||||
exported_program = torch.export.export(
|
||||
TorchExportableModuleWithStaticCache(model),
|
||||
args=(example_input_ids, example_cache_position),
|
||||
kwargs={},
|
||||
dynamic_shapes=dynamic_shapes,
|
||||
strict=strict if strict is not None else True,
|
||||
)
|
||||
exported_program = torch.export.export(
|
||||
TorchExportableModuleWithStaticCache(model),
|
||||
args=(example_input_ids, example_cache_position),
|
||||
kwargs={},
|
||||
dynamic_shapes=dynamic_shapes,
|
||||
strict=strict if strict is not None else True,
|
||||
)
|
||||
else:
|
||||
if dynamic_shapes is not None:
|
||||
logging.warning(
|
||||
@ -534,14 +513,13 @@ def convert_and_export_with_cache(
|
||||
#
|
||||
# Due to issue https://github.com/pytorch/pytorch/issues/128394, we need to switch to use an internal
|
||||
# export API and pre_dispatch=False. Switch to use the public API once the issue is included in 2.5 release.
|
||||
with patch_mask_interface():
|
||||
exported_program = torch.export._trace._export(
|
||||
TorchExportableModuleWithStaticCache(model),
|
||||
args=(example_input_ids,),
|
||||
kwargs={"cache_position": example_cache_position},
|
||||
pre_dispatch=False,
|
||||
strict=True,
|
||||
)
|
||||
exported_program = torch.export._trace._export(
|
||||
TorchExportableModuleWithStaticCache(model),
|
||||
args=(example_input_ids,),
|
||||
kwargs={"cache_position": example_cache_position},
|
||||
pre_dispatch=False,
|
||||
strict=True,
|
||||
)
|
||||
return exported_program
|
||||
|
||||
|
||||
@ -634,10 +612,9 @@ class Seq2SeqLMExportableModule(torch.nn.Module):
|
||||
|
||||
# Export the encoder
|
||||
with torch.no_grad():
|
||||
with patch_mask_interface():
|
||||
exported_encoder = torch.export.export(
|
||||
wrapped_encoder, (encoder_input_ids,), dynamic_shapes={"input_ids": {1: seq_len_dim}}, strict=True
|
||||
)
|
||||
exported_encoder = torch.export.export(
|
||||
wrapped_encoder, (encoder_input_ids,), dynamic_shapes={"input_ids": {1: seq_len_dim}}, strict=True
|
||||
)
|
||||
|
||||
return exported_encoder
|
||||
|
||||
@ -657,17 +634,16 @@ class Seq2SeqLMExportableModule(torch.nn.Module):
|
||||
|
||||
# Export the decoder
|
||||
with torch.no_grad():
|
||||
with patch_mask_interface():
|
||||
exported_decoder = torch.export.export(
|
||||
wrapped_decoder,
|
||||
(decoder_input_ids, encoder_hidden_states, cache_position),
|
||||
dynamic_shapes={
|
||||
"decoder_input_ids": None,
|
||||
"encoder_hidden_states": {1: encoder_seq_len_dim},
|
||||
"cache_position": None,
|
||||
},
|
||||
strict=True,
|
||||
)
|
||||
exported_decoder = torch.export.export(
|
||||
wrapped_decoder,
|
||||
(decoder_input_ids, encoder_hidden_states, cache_position),
|
||||
dynamic_shapes={
|
||||
"decoder_input_ids": None,
|
||||
"encoder_hidden_states": {1: encoder_seq_len_dim},
|
||||
"cache_position": None,
|
||||
},
|
||||
strict=True,
|
||||
)
|
||||
|
||||
return exported_decoder
|
||||
|
||||
|
@ -3,8 +3,11 @@ from typing import Optional, Tuple
|
||||
import torch
|
||||
|
||||
from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask
|
||||
from ..utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
_use_top_left_mask = flash_attn_supports_top_left_mask()
|
||||
|
||||
|
||||
@ -20,6 +23,12 @@ def flash_attention_forward(
|
||||
softcap: Optional[float] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, None]:
|
||||
if kwargs.get("output_attentions", False) or kwargs.get("head_mask", None) is not None:
|
||||
logger.warning_once(
|
||||
"`flash_attention_2` does not support `output_attentions=True` or `head_mask`."
|
||||
" Please set your attention to `eager` if you want any of these features."
|
||||
)
|
||||
|
||||
# This is before the transpose
|
||||
seq_len = query.shape[2]
|
||||
|
||||
|
64
src/transformers/integrations/flash_paged.py
Normal file
64
src/transformers/integrations/flash_paged.py
Normal file
@ -0,0 +1,64 @@
|
||||
import torch
|
||||
|
||||
from ..generation.continuous_batching import PagedAttentionCache
|
||||
from ..utils import is_flash_attn_2_available
|
||||
|
||||
|
||||
if is_flash_attn_2_available():
|
||||
from flash_attn import flash_attn_varlen_func
|
||||
|
||||
|
||||
def paged_attention_forward(
|
||||
module: torch.nn.Module,
|
||||
q: torch.Tensor,
|
||||
k: torch.Tensor,
|
||||
v: torch.Tensor,
|
||||
attention_mask: torch.Tensor = None,
|
||||
cache: PagedAttentionCache = None,
|
||||
cumulative_seqlens_q=None,
|
||||
cumulative_seqlens_k=None,
|
||||
max_seqlen_q=None,
|
||||
max_seqlen_k=None,
|
||||
block_tables=None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
r"""Perform the forward pass of attention with paged key-value cache.
|
||||
|
||||
This function handles the cache updates and performs the attention computation
|
||||
using the flash_attn_varlen_func for efficient processing.
|
||||
|
||||
Args:
|
||||
q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
|
||||
k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch. but if there is a block table it can be the full k
|
||||
v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch. but if there is a block table it can be the full v
|
||||
cumulative_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
||||
of the sequences in the batch, used to index into q.
|
||||
cumulative_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
||||
of the sequences in the batch, used to index into kv.
|
||||
max_seqlen_q: int. Maximum query sequence length in the batch.
|
||||
max_seqlen_k: int. Maximum key sequence length in the batch.
|
||||
dropout_p: float. Dropout probability.
|
||||
softmax_scale: float. The scaling of QK^T before applying softmax.
|
||||
Default to 1 / sqrt(headdim).
|
||||
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
||||
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
||||
softcap: float. Anything > 0 activates softcapping attention.
|
||||
"""
|
||||
k, v = cache.update(k, v, module.layer_idx, cumulative_seqlens_k=cumulative_seqlens_k, **kwargs)
|
||||
|
||||
attn_output = flash_attn_varlen_func(
|
||||
q.transpose(1, 2).squeeze(0),
|
||||
k.transpose(1, 2).squeeze(0),
|
||||
v.transpose(1, 2).squeeze(0),
|
||||
cumulative_seqlens_q.to(torch.int32),
|
||||
cumulative_seqlens_k.to(torch.int32),
|
||||
max_seqlen_q,
|
||||
max_seqlen_k,
|
||||
softmax_scale=module.scaling,
|
||||
causal=True, # kind of a must, it automatically aligns the mask for q < k
|
||||
window_size=(-1, -1), # -1 means infinite context window
|
||||
# block_table=block_tables, -> torch.Tensor
|
||||
# **kwargs,
|
||||
)
|
||||
|
||||
return attn_output, None
|
@ -31,13 +31,15 @@ from typing import Optional, Tuple, Union
|
||||
import torch
|
||||
from packaging import version
|
||||
|
||||
from ..utils import is_torch_flex_attn_available
|
||||
from ..utils import is_torch_flex_attn_available, logging
|
||||
from ..utils.import_utils import _torch_version, is_torchdynamo_compiling
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch.nn.attention.flex_attention import BlockMask, flex_attention
|
||||
from torch.nn.attention.flex_attention import create_block_mask as create_block_causal_mask_flex
|
||||
from torch.nn.attention.flex_attention import BlockMask, create_block_mask, flex_attention
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class WrappedFlexAttention:
|
||||
@ -98,21 +100,23 @@ def compile_friendly_flex_attention(
|
||||
Offset = Union[torch.Tensor, int]
|
||||
|
||||
|
||||
# TODO: deprecate / rename to make_flex_block_mask for clarity as it's not only causal anymore
|
||||
def make_flex_block_causal_mask(
|
||||
attention_mask_2d: torch.Tensor,
|
||||
attention_chunk_size: Optional[int] = None,
|
||||
query_length=None,
|
||||
key_length=None,
|
||||
offsets: Optional[Tuple[Offset, Offset]] = None,
|
||||
is_causal: Optional[bool] = True,
|
||||
) -> "BlockMask":
|
||||
"""
|
||||
IMPORTANT NOTICE: This function is deprecated in favor of using the mask primitives in `masking_utils.py`,
|
||||
and will be removed in a future version without warnings. New code should not use it. It is only kept here
|
||||
for BC for now, while models using it are being patched accordingly.
|
||||
|
||||
Create a block causal document mask for a batch of sequences, both packed and unpacked.
|
||||
Create Block causal logic and passing it into :func:`torch.nn.attention.flex_attention.create_block_mask`.
|
||||
The resultant BlockMask is a compressed representation of the full block causal
|
||||
Create a block (causal) document mask for a batch of sequences, both packed and unpacked.
|
||||
Create Block (causal) logic and passing it into :func:`torch.nn.attention.flex_attention.create_block_mask`.
|
||||
The resultant BlockMask is a compressed representation of the full (causal) block
|
||||
mask. BlockMask is essential for performant computation of flex attention.
|
||||
See: https://pytorch.org/blog/flexattention/
|
||||
|
||||
@ -170,7 +174,21 @@ def make_flex_block_causal_mask(
|
||||
causal_doc_mask = causal_mask_mod(batch_idx, head_idx, q_idx, kv_idx)
|
||||
return chunk_mask & causal_doc_mask
|
||||
|
||||
mask_mod_maybe_combined = causal_mask_mod if attention_chunk_size is None else chunk_causal_mask_mod
|
||||
def default_mask_mod(batch_idx, head_idx, q_idx, kv_idx):
|
||||
"""
|
||||
Utilizes default attention mask to enable encoder and encoder-decoder
|
||||
attention masks.
|
||||
"""
|
||||
document_mask = document_ids[batch_idx, q_idx] == document_ids[batch_idx, kv_idx]
|
||||
# kv indexing is crucial in order to work correctly
|
||||
padding_mask = attention_mask_2d[batch_idx, kv_idx] > 0
|
||||
final_mask = padding_mask & document_mask
|
||||
return final_mask
|
||||
|
||||
if not is_causal:
|
||||
mask_mod_maybe_combined = default_mask_mod
|
||||
else:
|
||||
mask_mod_maybe_combined = causal_mask_mod if attention_chunk_size is None else chunk_causal_mask_mod
|
||||
|
||||
if offsets is not None:
|
||||
q_offset = offsets[0]
|
||||
@ -182,7 +200,8 @@ def make_flex_block_causal_mask(
|
||||
return mask_mod_maybe_combined(batch_idx, head_idx, offset_q, offset_kv)
|
||||
else:
|
||||
mask_mod = mask_mod_maybe_combined
|
||||
return create_block_causal_mask_flex(
|
||||
|
||||
return create_block_mask(
|
||||
mask_mod=mask_mod,
|
||||
B=batch_size,
|
||||
H=None, # attention head
|
||||
@ -216,21 +235,32 @@ def flex_attention_forward(
|
||||
head_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if head_mask is not None:
|
||||
logger.warning_once(
|
||||
"`flex_attention` does not support `head_mask`. Please set your attention to `eager` if you want this feature."
|
||||
)
|
||||
|
||||
if kwargs.get("dropout", 0.0) > 0:
|
||||
raise ValueError(
|
||||
"`flex_attention` does not support `dropout`. Please use it with inference"
|
||||
" only (`model.eval()`) or turn off the attention dropout in the respective config."
|
||||
)
|
||||
|
||||
block_mask = None
|
||||
causal_mask = None
|
||||
score_mask = None
|
||||
if isinstance(attention_mask, BlockMask):
|
||||
block_mask = attention_mask
|
||||
else:
|
||||
causal_mask = attention_mask
|
||||
score_mask = attention_mask
|
||||
|
||||
if causal_mask is not None:
|
||||
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
||||
if score_mask is not None:
|
||||
score_mask = score_mask[:, :, :, : key.shape[-2]]
|
||||
|
||||
def score_mod(score, batch_idx, head_idx, q_idx, kv_idx):
|
||||
if softcap is not None:
|
||||
score = softcap * torch.tanh(score / softcap)
|
||||
if causal_mask is not None:
|
||||
score = score + causal_mask[batch_idx][0][q_idx][kv_idx]
|
||||
if score_mask is not None:
|
||||
score = score + score_mask[batch_idx][0][q_idx][kv_idx]
|
||||
if head_mask is not None:
|
||||
score = score + head_mask[batch_idx][head_idx][0][0]
|
||||
return score
|
||||
|
@ -37,6 +37,8 @@ if SPARSE_MODE not in [TOP_LEFT_ALIGNED_CAUSAL_MASK_MODE, DOWN_RIGHT_ALIGNED_CAU
|
||||
"or 3 (down-right aligned causal mask)."
|
||||
)
|
||||
|
||||
ATTN_MASK_NPU = None
|
||||
|
||||
|
||||
def is_npu_fa2_top_left_aligned_causal_mask():
|
||||
return SPARSE_MODE == TOP_LEFT_ALIGNED_CAUSAL_MASK_MODE if is_torch_npu_available() else False
|
||||
@ -171,7 +173,9 @@ def npu_flash_attn_func(
|
||||
head_num = q.shape[2]
|
||||
output = torch_npu.npu_fusion_attention(q, k, v, head_num, "BSND", keep_prob=keep_prob, scale=softmax_scale)[0]
|
||||
else:
|
||||
attn_mask_npu = torch.triu(torch.ones([2048, 2048], device=q.device), diagonal=1).bool()
|
||||
global ATTN_MASK_NPU
|
||||
if ATTN_MASK_NPU is None:
|
||||
ATTN_MASK_NPU = torch.triu(torch.ones([2048, 2048], device=q.device), diagonal=1).bool()
|
||||
head_num = q.shape[2]
|
||||
output = torch_npu.npu_fusion_attention(
|
||||
q,
|
||||
@ -181,7 +185,7 @@ def npu_flash_attn_func(
|
||||
"BSND",
|
||||
keep_prob=keep_prob,
|
||||
scale=softmax_scale,
|
||||
atten_mask=attn_mask_npu,
|
||||
atten_mask=ATTN_MASK_NPU,
|
||||
sparse_mode=SPARSE_MODE,
|
||||
)[0]
|
||||
|
||||
@ -222,7 +226,9 @@ def npu_flash_attn_varlen_func(
|
||||
actual_seq_kvlen=tuple(cu_seqlens_k[1:].cpu().numpy().tolist()),
|
||||
)[0]
|
||||
else:
|
||||
attn_mask_npu = torch.triu(torch.ones([2048, 2048], device=q.device), diagonal=1).bool()
|
||||
global ATTN_MASK_NPU
|
||||
if ATTN_MASK_NPU is None:
|
||||
ATTN_MASK_NPU = torch.triu(torch.ones([2048, 2048], device=q.device), diagonal=1).bool()
|
||||
head_num = q.shape[1]
|
||||
output = torch_npu.npu_fusion_attention(
|
||||
q,
|
||||
@ -231,7 +237,7 @@ def npu_flash_attn_varlen_func(
|
||||
head_num,
|
||||
pse=None,
|
||||
padding_mask=None,
|
||||
atten_mask=attn_mask_npu,
|
||||
atten_mask=ATTN_MASK_NPU,
|
||||
scale=softmax_scale,
|
||||
keep_prob=keep_prob,
|
||||
input_layout="TND",
|
||||
|
@ -2,6 +2,11 @@ from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
from ..utils import logging
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
"""
|
||||
@ -26,13 +31,18 @@ def sdpa_attention_forward(
|
||||
is_causal: Optional[bool] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, None]:
|
||||
if kwargs.get("output_attentions", False) or kwargs.get("head_mask", None) is not None:
|
||||
logger.warning_once(
|
||||
"`sdpa` attention does not support `output_attentions=True` or `head_mask`."
|
||||
" Please set your attention to `eager` if you want any of these features."
|
||||
)
|
||||
|
||||
if hasattr(module, "num_key_value_groups"):
|
||||
key = repeat_kv(key, module.num_key_value_groups)
|
||||
value = repeat_kv(value, module.num_key_value_groups)
|
||||
|
||||
causal_mask = attention_mask
|
||||
if attention_mask is not None and causal_mask.ndim == 4:
|
||||
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
|
||||
if attention_mask is not None and attention_mask.ndim == 4:
|
||||
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
|
||||
|
||||
# SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions
|
||||
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
||||
@ -44,7 +54,9 @@ def sdpa_attention_forward(
|
||||
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
||||
# Note that it is important to check first for the shape, otherwise compile will fail with `argument 'is_causal' must be bool, not SymBool`
|
||||
if is_causal is None:
|
||||
is_causal = query.shape[2] > 1 and causal_mask is None
|
||||
# The last condition is for encoder (decoder) models which specify this by passing their own `is_causal` flag
|
||||
# This is mainly due to those models having mixed implementations for encoder, decoder, and encoder-decoder attns
|
||||
is_causal = query.shape[2] > 1 and attention_mask is None and getattr(module, "is_causal", True)
|
||||
|
||||
# Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor.
|
||||
# We convert it to a bool for the SDPA kernel that only accepts bools.
|
||||
@ -55,7 +67,7 @@ def sdpa_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attn_mask=causal_mask,
|
||||
attn_mask=attention_mask,
|
||||
dropout_p=dropout,
|
||||
scale=scaling,
|
||||
is_causal=is_causal,
|
||||
|
51
src/transformers/integrations/sdpa_paged.py
Normal file
51
src/transformers/integrations/sdpa_paged.py
Normal file
@ -0,0 +1,51 @@
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
"""
|
||||
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
||||
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
||||
"""
|
||||
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
||||
if n_rep == 1:
|
||||
return hidden_states
|
||||
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
||||
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
||||
|
||||
|
||||
def sdpa_attention_paged_forward(
|
||||
module: torch.nn.Module,
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
dropout: float = 0.0,
|
||||
scaling: Optional[float] = None,
|
||||
is_causal: Optional[bool] = None,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.Tensor, None]:
|
||||
cache = kwargs.pop("cache", None)
|
||||
if cache is not None:
|
||||
key, value = cache.update(key, value, module.layer_idx, **kwargs)
|
||||
if hasattr(module, "num_key_value_groups"):
|
||||
key = repeat_kv(key, module.num_key_value_groups)
|
||||
value = repeat_kv(value, module.num_key_value_groups)
|
||||
|
||||
causal_mask = attention_mask
|
||||
query = query.contiguous()
|
||||
key = key.contiguous()
|
||||
value = value.contiguous()
|
||||
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attn_mask=causal_mask,
|
||||
dropout_p=dropout,
|
||||
scale=scaling,
|
||||
is_causal=False,
|
||||
)
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
||||
return attn_output, None
|
@ -900,7 +900,7 @@ def verify_tp_plan(expected_keys: list[str], tp_plan: Optional[dict[str, str]]):
|
||||
unused_rules = tp_plan
|
||||
|
||||
for key in generic_keys:
|
||||
param_name, _ = key.rsplit(".", 1) if "." in key else key
|
||||
param_name = key.rsplit(".", 1)[0] if "." in key else key
|
||||
generic_param_name = re.sub(r"\d+", "*", param_name)
|
||||
|
||||
if generic_param_name in tp_plan:
|
||||
|
@ -25,11 +25,16 @@ from .utils.import_utils import is_torch_flex_attn_available, is_torch_greater_o
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from torch._dynamo._trace_wrapped_higher_order_op import TransformGetItemToIndex
|
||||
from torch.nn.attention.flex_attention import BlockMask, create_block_mask
|
||||
|
||||
else:
|
||||
# Register a fake type to avoid crashing for annotations and `isinstance` checks
|
||||
BlockMask = torch.Tensor
|
||||
|
||||
_is_torch_greater_or_equal_than_2_5 = is_torch_greater_or_equal("2.5", accept_dev=True)
|
||||
_is_torch_greater_or_equal_than_2_6 = is_torch_greater_or_equal("2.6", accept_dev=True)
|
||||
|
||||
if _is_torch_greater_or_equal_than_2_6:
|
||||
from torch._dynamo._trace_wrapped_higher_order_op import TransformGetItemToIndex
|
||||
|
||||
|
||||
def and_masks(*mask_functions: list[Callable]) -> Callable:
|
||||
@ -415,14 +420,14 @@ def sdpa_mask_older_torch(
|
||||
|
||||
# Due to a bug in versions of torch<2.5, we need to update the mask in case a query is not attending to any
|
||||
# tokens (due to padding). See details in https://github.com/pytorch/pytorch/issues/110213
|
||||
if allow_torch_fix:
|
||||
if not _is_torch_greater_or_equal_than_2_5 and allow_torch_fix:
|
||||
causal_mask |= torch.all(~causal_mask, dim=-1, keepdim=True)
|
||||
return causal_mask
|
||||
|
||||
|
||||
# We use the version with newer torch whenever possible, as it is more general and can handle arbitrary mask functions
|
||||
# (especially mask_function indexing a tensor, such as the padding mask function)
|
||||
sdpa_mask = sdpa_mask_recent_torch if is_torch_flex_attn_available() else sdpa_mask_older_torch
|
||||
sdpa_mask = sdpa_mask_recent_torch if _is_torch_greater_or_equal_than_2_6 else sdpa_mask_older_torch
|
||||
|
||||
|
||||
def eager_mask(
|
||||
@ -522,7 +527,7 @@ def flex_attention_mask(
|
||||
mask_function: Callable = causal_mask_function,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
**kwargs,
|
||||
) -> "BlockMask":
|
||||
) -> BlockMask:
|
||||
"""
|
||||
Create a 4D block mask which is a compressed representation of the full 4D block causal mask. BlockMask is essential
|
||||
for performant computation of flex attention. See: https://pytorch.org/blog/flexattention/
|
||||
@ -623,7 +628,11 @@ def _preprocess_mask_arguments(
|
||||
return True, attention_mask, None, None
|
||||
|
||||
# For TGI/vLLM backends, or other custom attention without equivalent mask creation: we don't need a mask!
|
||||
if config._attn_implementation not in ALL_MASK_ATTENTION_FUNCTIONS:
|
||||
# Note: it's not ideal to check the `_global_mapping` attribute instead of the object itself, however otherwise
|
||||
# full graph dynamo tracing (i.e. torch.export or compile with `fullgraph=True`) will fail on Python<3.11
|
||||
# with `torch._dynamo.exc.Unsupported: 'inline in skipfiles:Mapping.__contains__ | __contains__, skipped
|
||||
# according trace_rules.lookup SKIP_DIRS'` -- can be removed when we require Python>=3.11
|
||||
if config._attn_implementation not in ALL_MASK_ATTENTION_FUNCTIONS._global_mapping:
|
||||
return True, None, None, None
|
||||
|
||||
# Move the mask to correct device, and potentially switch dtype for efficiency
|
||||
@ -640,33 +649,15 @@ def _preprocess_mask_arguments(
|
||||
return False, attention_mask, kv_length, kv_offset
|
||||
|
||||
|
||||
def _get_mask_interface(config: PretrainedConfig, output_attentions: bool = False) -> Callable:
|
||||
"""
|
||||
Return the mask interface (a function) to be used, based on the type of attention found in the config.
|
||||
|
||||
Args:
|
||||
config (`PretrainedConfig`):
|
||||
The model config.
|
||||
output_attentions (`bool`, optional):
|
||||
Whether we return the attention scores or not. By default `False`.
|
||||
"""
|
||||
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS[config._attn_implementation]
|
||||
# Sdpa fallbacks to eager in the Attention modules if `output_attentions=True`
|
||||
if config._attn_implementation == "sdpa" and output_attentions:
|
||||
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS["eager"]
|
||||
return mask_interface
|
||||
|
||||
|
||||
def create_causal_mask(
|
||||
config: PretrainedConfig,
|
||||
input_embeds: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Optional[Cache],
|
||||
output_attentions: bool = False,
|
||||
or_mask_function: Optional[Callable] = None,
|
||||
and_mask_function: Optional[Callable] = None,
|
||||
) -> Optional[Union[torch.Tensor, "BlockMask"]]:
|
||||
) -> Optional[Union[torch.Tensor, BlockMask]]:
|
||||
"""
|
||||
Create a standard causal mask based on the attention implementation used (stored in the config). If `past_key_values`
|
||||
has an HybridCache structure, this function will return the mask corresponding to one of the "full_attention" layers (to align
|
||||
@ -685,8 +676,6 @@ def create_causal_mask(
|
||||
A tensor of shape (query_length,) indicating the current indices of the input sequence elements.
|
||||
past_key_values (`Cache`, optional):
|
||||
The past key values, if we use a cache.
|
||||
output_attentions (`bool`, optional):
|
||||
Whether we return the attention scores or not. By default `False`.
|
||||
or_mask_function (`Callable`, optional):
|
||||
An optional mask function to combine with the causal mask function (by doing the union of both). This is
|
||||
useful to easily overlay another mask on top of the causal one, for example for image tokens handling.
|
||||
@ -708,7 +697,7 @@ def create_causal_mask(
|
||||
|
||||
batch_size, dtype = input_embeds.shape[0], input_embeds.dtype
|
||||
mask_factory_function = causal_mask_function
|
||||
mask_interface = _get_mask_interface(config, output_attentions)
|
||||
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS[config._attn_implementation]
|
||||
|
||||
# Do not allow skip if we are compiling (this is to match BC)
|
||||
# TODO: cyril -> probably revisit and remove this, but a lot of tests rely on it
|
||||
@ -716,13 +705,13 @@ def create_causal_mask(
|
||||
|
||||
# Allow slight deviations from causal mask
|
||||
if or_mask_function is not None:
|
||||
if not _is_torch_greater_or_equal_than_2_5:
|
||||
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.5")
|
||||
if not _is_torch_greater_or_equal_than_2_6:
|
||||
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
|
||||
mask_factory_function = or_masks(mask_factory_function, or_mask_function)
|
||||
allow_is_causal_skip = False
|
||||
if and_mask_function is not None:
|
||||
if not _is_torch_greater_or_equal_than_2_5:
|
||||
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.5")
|
||||
if not _is_torch_greater_or_equal_than_2_6:
|
||||
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
|
||||
mask_factory_function = and_masks(mask_factory_function, and_mask_function)
|
||||
allow_is_causal_skip = False
|
||||
|
||||
@ -747,10 +736,9 @@ def create_sliding_window_causal_mask(
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Optional[Cache],
|
||||
output_attentions: bool = False,
|
||||
or_mask_function: Optional[Callable] = None,
|
||||
and_mask_function: Optional[Callable] = None,
|
||||
) -> Optional[Union[torch.Tensor, "BlockMask"]]:
|
||||
) -> Optional[Union[torch.Tensor, BlockMask]]:
|
||||
"""
|
||||
Create a sliding window causal mask based on the attention implementation used (stored in the config). This type
|
||||
of attention pattern was mostly democratized by Mistral. If `past_key_values` has an HybridCache structure, this
|
||||
@ -770,8 +758,6 @@ def create_sliding_window_causal_mask(
|
||||
A tensor of shape (query_length,) indicating the current indices of the input sequence elements.
|
||||
past_key_values (`Cache`, optional):
|
||||
The past key values, if we use a cache.
|
||||
output_attentions (`bool`, optional):
|
||||
Whether we return the attention scores or not. By default `False`.
|
||||
or_mask_function (`Callable`, optional):
|
||||
An optional mask function to combine with the sliding causal mask function (by doing the union of both). This is
|
||||
useful to easily overlay another mask on top of the sliding causal one, for example for image tokens handling.
|
||||
@ -797,7 +783,7 @@ def create_sliding_window_causal_mask(
|
||||
|
||||
batch_size, dtype = input_embeds.shape[0], input_embeds.dtype
|
||||
mask_factory_function = sliding_window_causal_mask_function(sliding_window)
|
||||
mask_interface = _get_mask_interface(config, output_attentions)
|
||||
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS[config._attn_implementation]
|
||||
|
||||
# Do not allow skip if we are compiling (this is to match BC)
|
||||
# TODO: cyril -> probably revisit and remove this, but a lot of tests rely on it
|
||||
@ -805,13 +791,13 @@ def create_sliding_window_causal_mask(
|
||||
|
||||
# Allow slight deviations from sliding causal mask
|
||||
if or_mask_function is not None:
|
||||
if not _is_torch_greater_or_equal_than_2_5:
|
||||
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.5")
|
||||
if not _is_torch_greater_or_equal_than_2_6:
|
||||
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
|
||||
mask_factory_function = or_masks(mask_factory_function, or_mask_function)
|
||||
allow_is_causal_skip = False
|
||||
if and_mask_function is not None:
|
||||
if not _is_torch_greater_or_equal_than_2_5:
|
||||
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.5")
|
||||
if not _is_torch_greater_or_equal_than_2_6:
|
||||
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
|
||||
mask_factory_function = and_masks(mask_factory_function, and_mask_function)
|
||||
allow_is_causal_skip = False
|
||||
|
||||
@ -837,10 +823,9 @@ def create_chunked_causal_mask(
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Optional[Cache],
|
||||
output_attentions: bool = False,
|
||||
or_mask_function: Optional[Callable] = None,
|
||||
and_mask_function: Optional[Callable] = None,
|
||||
) -> Optional[Union[torch.Tensor, "BlockMask"]]:
|
||||
) -> Optional[Union[torch.Tensor, BlockMask]]:
|
||||
"""
|
||||
Create a chunked attention causal mask based on the attention implementation used (stored in the config). This type
|
||||
of attention pattern was mostly democratized by Llama4. If `past_key_values` has an HybridCache structure, this
|
||||
@ -860,8 +845,6 @@ def create_chunked_causal_mask(
|
||||
A tensor of shape (query_length,) indicating the current indices of the input sequence elements.
|
||||
past_key_values (`Cache`, optional):
|
||||
The past key values, if we use a cache.
|
||||
output_attentions (`bool`, optional):
|
||||
Whether we return the attention scores or not. By default `False`.
|
||||
or_mask_function (`Callable`, optional):
|
||||
An optional mask function to combine with the chunked causal mask function (by doing the union of both). This is
|
||||
useful to easily overlay another mask on top of the chunked causal one, for example for image tokens handling.
|
||||
@ -894,7 +877,7 @@ def create_chunked_causal_mask(
|
||||
|
||||
batch_size, dtype = input_embeds.shape[0], input_embeds.dtype
|
||||
mask_factory_function = chunked_causal_mask_function(chunk_size)
|
||||
mask_interface = _get_mask_interface(config, output_attentions)
|
||||
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS[config._attn_implementation]
|
||||
|
||||
# Do not allow skip if we are compiling (this is to match BC)
|
||||
# TODO: cyril -> probably revisit and remove this, but a lot of tests rely on it
|
||||
@ -902,13 +885,13 @@ def create_chunked_causal_mask(
|
||||
|
||||
# Allow slight deviations from chunked causal mask
|
||||
if or_mask_function is not None:
|
||||
if not _is_torch_greater_or_equal_than_2_5:
|
||||
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.5")
|
||||
if not _is_torch_greater_or_equal_than_2_6:
|
||||
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
|
||||
mask_factory_function = or_masks(mask_factory_function, or_mask_function)
|
||||
allow_is_causal_skip = False
|
||||
if and_mask_function is not None:
|
||||
if not _is_torch_greater_or_equal_than_2_5:
|
||||
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.5")
|
||||
if not _is_torch_greater_or_equal_than_2_6:
|
||||
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
|
||||
mask_factory_function = and_masks(mask_factory_function, and_mask_function)
|
||||
allow_is_causal_skip = False
|
||||
|
||||
@ -941,7 +924,6 @@ def create_masks_for_generate(
|
||||
attention_mask: Optional[torch.Tensor],
|
||||
cache_position: torch.Tensor,
|
||||
past_key_values: Optional[Cache],
|
||||
output_attentions: bool = False,
|
||||
or_mask_function: Optional[Callable] = None,
|
||||
and_mask_function: Optional[Callable] = None,
|
||||
**kwargs,
|
||||
@ -963,8 +945,6 @@ def create_masks_for_generate(
|
||||
A tensor of shape (query_length,) indicating the current indices of the input sequence elements.
|
||||
past_key_values (`Cache`, optional):
|
||||
The past key values, if we use a cache.
|
||||
output_attentions (`bool`, optional):
|
||||
Whether we return the attention scores or not. By default `False`.
|
||||
or_mask_function (`Callable`, optional):
|
||||
An optional mask function to combine with the other mask function (by doing the union of both). This is
|
||||
useful to easily overlay another mask on top of the causal one, for example for image tokens handling.
|
||||
@ -981,7 +961,6 @@ def create_masks_for_generate(
|
||||
"attention_mask": attention_mask,
|
||||
"cache_position": cache_position,
|
||||
"past_key_values": past_key_values,
|
||||
"output_attentions": output_attentions,
|
||||
"or_mask_function": or_mask_function,
|
||||
"and_mask_function": and_mask_function,
|
||||
}
|
||||
|
@ -21,6 +21,8 @@ from contextlib import contextmanager, redirect_stdout
|
||||
from io import StringIO
|
||||
from typing import Optional
|
||||
|
||||
from safetensors.torch import save_file
|
||||
|
||||
from transformers.utils.import_utils import requires
|
||||
|
||||
from .utils import is_torch_available
|
||||
@ -65,64 +67,94 @@ def _dtensor_repr(x):
|
||||
return "DTensor(non-rank0)"
|
||||
|
||||
|
||||
def _serialize_io(value):
|
||||
def _serialize_tensor_like_io(
|
||||
value, debug_path: Optional[str] = None, use_repr: bool = True, path_to_value: Optional[str] = None
|
||||
):
|
||||
"""
|
||||
Converts Tensors and DTensors to a JSON-serializable dictionary representation.
|
||||
|
||||
Args:
|
||||
value: Any Python object, often including torch Tensors, lists, dicts, etc.
|
||||
debug_path (`str`, *optional*, defaults to `None`): Directory to dump debug JSON and SafeTensors files.
|
||||
use_repr (bool, *optional*, defaults to `True`): Whether to save a `repr()`-ized version of the tensor as the
|
||||
`value` property in the asscoiated FULL_TENSORS.json file, or to store the full tensors in separate
|
||||
SafeTensors file and store the relative path to that file in the `value` property in the dictionary.
|
||||
path_to_value (`str`, *optional*, defaults to `None`): The file name for the SafeTensors file holding the full
|
||||
tensor value if `use_repr=False`.
|
||||
|
||||
Returns:
|
||||
A nested Python structure (list, dict, or sanitized string) that is safe to json.dump.
|
||||
"""
|
||||
torch.set_printoptions(sci_mode=True)
|
||||
|
||||
if use_repr:
|
||||
value_out = _repr_to_list(value)
|
||||
elif path_to_value:
|
||||
if not path_to_value.endswith(".safetensors"):
|
||||
path_to_value += ".safetensors"
|
||||
|
||||
filepath = os.path.join(debug_path, path_to_value) if debug_path else path_to_value
|
||||
save_file({"data": value.contiguous().detach().cpu()}, filepath)
|
||||
value_out = f"./{path_to_value}"
|
||||
else:
|
||||
raise ValueError(f"{use_repr=} and {path_to_value=} cannot both be falsy.")
|
||||
|
||||
out = {
|
||||
"shape": repr(value.shape),
|
||||
"dtype": repr(value.dtype),
|
||||
"value": value_out,
|
||||
}
|
||||
if value.dtype in {torch.float16, torch.float32, torch.bfloat16}:
|
||||
out.update(
|
||||
{
|
||||
"mean": _sanitize_repr_for_diff(repr(value.mean())),
|
||||
"std": _sanitize_repr_for_diff(repr(value.std())),
|
||||
"min": _sanitize_repr_for_diff(repr(value.min())),
|
||||
"max": _sanitize_repr_for_diff(repr(value.max())),
|
||||
}
|
||||
)
|
||||
return out
|
||||
|
||||
|
||||
def _serialize_io(value, debug_path: Optional[str] = None, use_repr: bool = True, path_to_value: Optional[str] = None):
|
||||
"""
|
||||
Recursively build a JSON-serializable Python structure from `value`.
|
||||
Tensors and DTensors become sanitized repr strings.
|
||||
Tensors and DTensors become either sanitized repr strings, or are saved to disk as SafeTensors files and their
|
||||
relative paths are recorded in the returned Python structure.
|
||||
Lists/tuples/dicts are recursed into.
|
||||
All memory addresses are replaced with a stable placeholder.
|
||||
|
||||
Args:
|
||||
value: Any Python object, often including torch Tensors, lists, dicts, etc.
|
||||
debug_path (`str`, *optional*, defaults to `None`): Directory to dump debug JSON and SafeTensors files.
|
||||
use_repr (bool, *optional*, defaults to `True`): Whether to save a `repr()`-ized version of the tensors as the
|
||||
`value` property in the asscoiated FULL_TENSORS.json file, or to store full tensors in separate SafeTensors
|
||||
files and store the relative path to that file in the `value` property.
|
||||
path_to_value (`str`, *optional*, defaults to `None`): The file name for the SafeTensors file holding the full
|
||||
tensor value if `use_repr=False`.
|
||||
|
||||
Returns:
|
||||
A nested Python structure (list, dict, or sanitized string) that is safe to json.dump.
|
||||
"""
|
||||
if isinstance(value, (list, tuple)):
|
||||
return [_serialize_io(v) for v in value]
|
||||
return [
|
||||
_serialize_io(v, debug_path=debug_path, use_repr=use_repr, path_to_value=f"{path_to_value}_{i}")
|
||||
for i, v in enumerate(value)
|
||||
]
|
||||
|
||||
if isinstance(value, dict):
|
||||
return {k: _serialize_io(v) for k, v in value.items()}
|
||||
return {
|
||||
k: _serialize_io(v, debug_path=debug_path, use_repr=use_repr, path_to_value=f"{path_to_value}_{k}")
|
||||
for k, v in value.items()
|
||||
}
|
||||
|
||||
if hasattr(value, "_local_tensor"):
|
||||
# DTensor-like handling, just use local tensor attribute
|
||||
torch.set_printoptions(sci_mode=True)
|
||||
val_repr = _repr_to_list(value)
|
||||
out = {
|
||||
"shape": repr(value._local_tensor.shape),
|
||||
"dtype": repr(value._local_tensor.dtype),
|
||||
"value": val_repr,
|
||||
}
|
||||
if value._local_tensor.dtype in {torch.float16, torch.float32, torch.bfloat16}:
|
||||
value = value._local_tensor.clone()
|
||||
out.update(
|
||||
{
|
||||
"mean": _sanitize_repr_for_diff(repr(value.mean())),
|
||||
"std": _sanitize_repr_for_diff(repr(value.std())),
|
||||
"min": _sanitize_repr_for_diff(repr(value.min())),
|
||||
"max": _sanitize_repr_for_diff(repr(value.max())),
|
||||
}
|
||||
)
|
||||
return out
|
||||
return _serialize_tensor_like_io(
|
||||
value._local_tensor, debug_path=debug_path, use_repr=use_repr, path_to_value=path_to_value
|
||||
)
|
||||
|
||||
if isinstance(value, torch.Tensor):
|
||||
torch.set_printoptions(sci_mode=True)
|
||||
val_repr = _repr_to_list(value)
|
||||
out = {
|
||||
"shape": repr(value.shape),
|
||||
"dtype": repr(value.dtype),
|
||||
"value": val_repr,
|
||||
}
|
||||
if value.dtype in {torch.float16, torch.float32, torch.bfloat16}:
|
||||
out.update(
|
||||
{
|
||||
"mean": _sanitize_repr_for_diff(repr(value.mean())),
|
||||
"std": _sanitize_repr_for_diff(repr(value.std())),
|
||||
"min": _sanitize_repr_for_diff(repr(value.min())),
|
||||
"max": _sanitize_repr_for_diff(repr(value.max())),
|
||||
}
|
||||
)
|
||||
return out
|
||||
return _serialize_tensor_like_io(value, debug_path=debug_path, use_repr=use_repr, path_to_value=path_to_value)
|
||||
|
||||
return _sanitize_repr_for_diff(repr(value))
|
||||
|
||||
@ -199,7 +231,7 @@ def log_model_debug_trace(debug_path, model):
|
||||
os.makedirs(debug_path, exist_ok=True)
|
||||
base = os.path.join(debug_path, model._debugger_module_dump_name + "_debug_tree")
|
||||
except Exception as e:
|
||||
raise ValueError(f"Unexpected or existing debug_path={debug_path}. {e}")
|
||||
raise ValueError(f"Unexpected or existing debug_path={debug_path}.") from e
|
||||
else:
|
||||
base = model._debugger_module_dump_name + "_debug_tree"
|
||||
|
||||
@ -240,6 +272,7 @@ def _attach_debugger_logic(
|
||||
model,
|
||||
debug_path: Optional[str] = ".",
|
||||
do_prune_layers: Optional[bool] = True,
|
||||
use_repr: bool = True,
|
||||
):
|
||||
"""
|
||||
Attaches a debugging wrapper to every module in the model.
|
||||
@ -250,6 +283,9 @@ def _attach_debugger_logic(
|
||||
model (`PreTrainedModel`, `nn.Module`): Model to wrap.
|
||||
debug_path (`str`): Optional directory to dump debug JSON files.
|
||||
do_prune_layers (`bool`, *optional*, defaults to `True`): Whether to prune intermediate layers.
|
||||
use_repr (bool, *optional*, defaults to `True`): Whether to save a `repr()`-ized version of the tensors as the
|
||||
`value` property in the asscoiated FULL_TENSORS.json file, or to store full tensors in separate SafeTensors
|
||||
files and store the relative path to that file in the `value` property.
|
||||
"""
|
||||
class_name = model.__class__.__name__
|
||||
|
||||
@ -258,6 +294,12 @@ def _attach_debugger_logic(
|
||||
model._debugger_model_call_stack = []
|
||||
model._debugger_module_dump_name = class_name # used for final JSON filename
|
||||
|
||||
if debug_path:
|
||||
try:
|
||||
os.makedirs(debug_path, exist_ok=True)
|
||||
except Exception as e:
|
||||
raise ValueError(f"Unexpected or existing debug_path={debug_path}.") from e
|
||||
|
||||
def wrap_forward(module, full_path):
|
||||
orig_forward = module.forward
|
||||
|
||||
@ -268,7 +310,12 @@ def _attach_debugger_logic(
|
||||
dict_inputs = {k: dict_inputs[k] for k in dict_inputs if len(dict_inputs[k]) > 0}
|
||||
node = {
|
||||
"module_path": full_path,
|
||||
"inputs": _serialize_io(dict_inputs),
|
||||
"inputs": _serialize_io(
|
||||
dict_inputs,
|
||||
debug_path=debug_path,
|
||||
use_repr=use_repr,
|
||||
path_to_value=f"{full_path}_inputs",
|
||||
),
|
||||
"outputs": None,
|
||||
"children": [],
|
||||
}
|
||||
@ -280,7 +327,12 @@ def _attach_debugger_logic(
|
||||
if sum(1 for _ in module.named_children()) > 0:
|
||||
node["outputs"] = None
|
||||
else:
|
||||
node["outputs"] = _serialize_io(out)
|
||||
node["outputs"] = _serialize_io(
|
||||
out,
|
||||
debug_path=debug_path,
|
||||
use_repr=use_repr,
|
||||
path_to_value=f"{full_path}_outputs",
|
||||
)
|
||||
|
||||
finished = model._debugger_model_call_stack.pop()
|
||||
# prune empty vertices here as well (mostly empty children nodes)
|
||||
@ -307,7 +359,12 @@ def _attach_debugger_logic(
|
||||
if _is_rank_zero():
|
||||
top_node = {
|
||||
"module_path": f"{class_name} (top-level)",
|
||||
"inputs": _serialize_io({"args": inps, "kwargs": kws}),
|
||||
"inputs": _serialize_io(
|
||||
{"args": inps, "kwargs": kws},
|
||||
debug_path=debug_path,
|
||||
use_repr=use_repr,
|
||||
path_to_value=f"{class_name}_inputs",
|
||||
),
|
||||
"outputs": None,
|
||||
"children": [],
|
||||
}
|
||||
@ -315,7 +372,12 @@ def _attach_debugger_logic(
|
||||
|
||||
out = real_top_forward(*inps, **kws)
|
||||
if _is_rank_zero() and model._debugger_model_call_stack:
|
||||
top_node["outputs"] = _serialize_io(out)
|
||||
top_node["outputs"] = _serialize_io(
|
||||
out,
|
||||
debug_path=debug_path,
|
||||
use_repr=use_repr,
|
||||
path_to_value=f"{class_name}_outputs",
|
||||
)
|
||||
finished = model._debugger_model_call_stack.pop()
|
||||
model._call_tree["inputs"] = finished["inputs"]
|
||||
model._call_tree["outputs"] = finished["outputs"]
|
||||
@ -335,11 +397,21 @@ def _attach_debugger_logic(
|
||||
|
||||
@requires(backends=("torch",))
|
||||
@contextmanager
|
||||
def model_addition_debugger_context(model, debug_path: Optional[str] = None, do_prune_layers: Optional[bool] = True):
|
||||
def model_addition_debugger_context(
|
||||
model,
|
||||
debug_path: Optional[str] = None,
|
||||
do_prune_layers: Optional[bool] = True,
|
||||
use_repr: Optional[bool] = True,
|
||||
):
|
||||
"""
|
||||
# Model addition debugger - context manager for model adders
|
||||
This context manager is a power user tool intended for model adders.
|
||||
It tracks all forward calls within a model forward and logs a slice of each input and output on a nested Json.
|
||||
|
||||
It tracks all forward calls within a model forward and logs a slice of each input and output on a nested JSON file.
|
||||
If `use_repr=True` (the default), the JSON file will record a `repr()`-ized version of the tensors as a list of
|
||||
strings. If `use_repr=False`, the full tensors will be stored in spearate SafeTensors files and the JSON file will
|
||||
provide a relative path to that file.
|
||||
|
||||
To note, this context manager enforces `torch.no_grad()`.
|
||||
|
||||
## Usage
|
||||
@ -348,10 +420,10 @@ def model_addition_debugger_context(model, debug_path: Optional[str] = None, do_
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
from PIL import Image
|
||||
import requests
|
||||
from transformers import LlavaProcessor, LlavaForConditionalGeneration
|
||||
from transformers.model_debugging_utils import model_addition_debugger_context
|
||||
from transformers import LlavaProcessor, LlavaForConditionalGeneration, model_addition_debugger_context
|
||||
|
||||
torch.random.manual_seed(673)
|
||||
|
||||
# load pretrained model and processor
|
||||
@ -376,7 +448,7 @@ def model_addition_debugger_context(model, debug_path: Optional[str] = None, do_
|
||||
"""
|
||||
orig_forwards = {m: m.forward for _, m in model.named_modules()}
|
||||
orig_forwards[model] = model.forward
|
||||
_attach_debugger_logic(model, debug_path, do_prune_layers)
|
||||
_attach_debugger_logic(model, debug_path, do_prune_layers, use_repr)
|
||||
try:
|
||||
yield model
|
||||
finally:
|
||||
|
@ -427,9 +427,9 @@ class FlashAttentionKwargs(TypedDict, total=False):
|
||||
Keyword arguments for Flash Attention with Compile.
|
||||
|
||||
Attributes:
|
||||
cu_seq_lens_q (`torch.LongTensor`, *optional*)
|
||||
cumulative_seqlens_q (`torch.LongTensor`, *optional*)
|
||||
Gets cumulative sequence length for query state.
|
||||
cu_seq_lens_k (`torch.LongTensor`, *optional*)
|
||||
cumulative_seqlens_k (`torch.LongTensor`, *optional*)
|
||||
Gets cumulative sequence length for key state.
|
||||
max_length_q (`int`, *optional*):
|
||||
Maximum sequence length for query state.
|
||||
@ -437,7 +437,7 @@ class FlashAttentionKwargs(TypedDict, total=False):
|
||||
Maximum sequence length for key state.
|
||||
"""
|
||||
|
||||
cu_seq_lens_q: Optional[torch.LongTensor]
|
||||
cu_seq_lens_k: Optional[torch.LongTensor]
|
||||
cumulative_seqlens_q: Optional[torch.LongTensor]
|
||||
cumulative_seqlens_k: Optional[torch.LongTensor]
|
||||
max_length_q: Optional[int]
|
||||
max_length_k: Optional[int]
|
||||
|
@ -1218,11 +1218,7 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin):
|
||||
Register this class with a given auto class. This should only be used for custom models as the ones in the
|
||||
library are already mapped with an auto class.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is experimental and may have some slight breaking changes in the next releases.
|
||||
|
||||
</Tip>
|
||||
|
||||
Args:
|
||||
auto_class (`str` or `type`, *optional*, defaults to `"FlaxAutoModel"`):
|
||||
|
@ -78,6 +78,9 @@ def convert_tf_weight_name_to_pt_weight_name(
|
||||
tf_name = tf_name[len(name_scope) :]
|
||||
tf_name = tf_name.lstrip("/")
|
||||
tf_name = tf_name.replace(":0", "") # device ids
|
||||
if (len(tf_name) > 2048 and "___" in tf_name) or tf_name.count("___") > 10:
|
||||
# ReDOS check
|
||||
raise ValueError("TF variable name is too long or contains too many ___ separators: " + tf_name)
|
||||
tf_name = re.sub(
|
||||
r"/[^/]*___([^/]*)/", r"/\1/", tf_name
|
||||
) # '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch)
|
||||
|
@ -3229,11 +3229,7 @@ class TFPreTrainedModel(keras.Model, TFModelUtilsMixin, TFGenerationMixin, PushT
|
||||
Register this class with a given auto class. This should only be used for custom models as the ones in the
|
||||
library are already mapped with an auto class.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is experimental and may have some slight breaking changes in the next releases.
|
||||
|
||||
</Tip>
|
||||
|
||||
Args:
|
||||
auto_class (`str` or `type`, *optional*, defaults to `"TFAutoModel"`):
|
||||
|
@ -27,6 +27,7 @@ import shutil
|
||||
import tempfile
|
||||
import warnings
|
||||
from collections import defaultdict
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from contextlib import contextmanager
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum
|
||||
@ -57,9 +58,12 @@ from .generation import CompileConfig, GenerationConfig
|
||||
from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled
|
||||
from .integrations.accelerate import find_tied_parameters, init_empty_weights
|
||||
from .integrations.deepspeed import _load_state_dict_into_zero3_model
|
||||
from .integrations.eager_paged import eager_paged_attention_forward
|
||||
from .integrations.flash_attention import flash_attention_forward
|
||||
from .integrations.flash_paged import paged_attention_forward
|
||||
from .integrations.flex_attention import flex_attention_forward
|
||||
from .integrations.sdpa_attention import sdpa_attention_forward
|
||||
from .integrations.sdpa_paged import sdpa_attention_paged_forward
|
||||
from .integrations.tensor_parallel import (
|
||||
ALL_PARALLEL_STYLES,
|
||||
_get_parameter_tp_plan,
|
||||
@ -165,6 +169,7 @@ if is_safetensors_available():
|
||||
if is_kernels_available():
|
||||
from kernels import get_kernel
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@ -319,7 +324,8 @@ def get_torch_context_manager_or_global_device():
|
||||
is not "cpu". This is used to infer the correct device to load the model on, in case `device_map` is not provided.
|
||||
"""
|
||||
device_in_context = torch.tensor([]).device
|
||||
default_device = torch.get_default_device()
|
||||
# `get_default_device` was only introduced in torch>=2.3 - use cpu otherwise to align the behavior
|
||||
default_device = torch.get_default_device() if is_torch_greater_or_equal("2.3") else torch.device("cpu")
|
||||
# This case means no context manager was used -> we still check if the default that was potentially set is not cpu
|
||||
if device_in_context == default_device:
|
||||
if default_device != torch.device("cpu"):
|
||||
@ -866,6 +872,116 @@ def _load_state_dict_into_meta_model(
|
||||
return disk_offload_index, cpu_offload_index
|
||||
|
||||
|
||||
def load_shard_file(args):
|
||||
(
|
||||
shard_file,
|
||||
state_dict,
|
||||
disk_only_shard_files,
|
||||
is_hqq_or_bnb,
|
||||
is_quantized,
|
||||
device_map,
|
||||
hf_quantizer,
|
||||
key_renaming_mapping,
|
||||
weights_only,
|
||||
model_to_load,
|
||||
expected_keys,
|
||||
reverse_key_renaming_mapping,
|
||||
disk_offload_folder,
|
||||
disk_offload_index,
|
||||
cpu_offload_folder,
|
||||
cpu_offload_index,
|
||||
is_offloaded_safetensors,
|
||||
keep_in_fp32_regex,
|
||||
unexpected_keys,
|
||||
device_mesh,
|
||||
) = args
|
||||
|
||||
# Skip the load for shards that only contain disk-offloaded weights
|
||||
if shard_file in disk_only_shard_files:
|
||||
return [], disk_offload_index, cpu_offload_index
|
||||
|
||||
map_location = "cpu"
|
||||
if (
|
||||
shard_file.endswith(".safetensors")
|
||||
and not is_hqq_or_bnb
|
||||
and not (is_deepspeed_zero3_enabled() and not is_quantized)
|
||||
):
|
||||
map_location = "meta"
|
||||
elif (
|
||||
device_map is not None
|
||||
and hf_quantizer is not None
|
||||
and hf_quantizer.quantization_config.quant_method == QuantizationMethod.TORCHAO
|
||||
and (
|
||||
hf_quantizer.quantization_config.quant_type in ["int4_weight_only", "autoquant"]
|
||||
or isinstance(hf_quantizer.quantization_config.quant_type, Int4WeightOnlyConfig)
|
||||
)
|
||||
):
|
||||
map_location = torch.device([d for d in device_map.values() if d not in ["cpu", "disk"]][0])
|
||||
|
||||
# If shard_file is "", we use the existing state_dict instead of loading it
|
||||
if shard_file != "":
|
||||
state_dict = load_state_dict(
|
||||
shard_file, is_quantized=is_quantized, map_location=map_location, weights_only=weights_only
|
||||
)
|
||||
|
||||
# Fix the key names
|
||||
state_dict = {key_renaming_mapping[k]: v for k, v in state_dict.items() if k in key_renaming_mapping}
|
||||
|
||||
error_msgs = []
|
||||
|
||||
if is_deepspeed_zero3_enabled() and not is_quantized:
|
||||
error_msgs += _load_state_dict_into_zero3_model(model_to_load, state_dict)
|
||||
# Skip it with fsdp on ranks other than 0
|
||||
elif not (is_fsdp_enabled() and not is_local_dist_rank_0() and not is_quantized):
|
||||
disk_offload_index, cpu_offload_index = _load_state_dict_into_meta_model(
|
||||
model_to_load,
|
||||
state_dict,
|
||||
shard_file,
|
||||
expected_keys,
|
||||
reverse_key_renaming_mapping,
|
||||
device_map=device_map,
|
||||
disk_offload_folder=disk_offload_folder,
|
||||
disk_offload_index=disk_offload_index,
|
||||
cpu_offload_folder=cpu_offload_folder,
|
||||
cpu_offload_index=cpu_offload_index,
|
||||
hf_quantizer=hf_quantizer,
|
||||
is_safetensors=is_offloaded_safetensors,
|
||||
keep_in_fp32_regex=keep_in_fp32_regex,
|
||||
unexpected_keys=unexpected_keys,
|
||||
device_mesh=device_mesh,
|
||||
)
|
||||
|
||||
return error_msgs, disk_offload_index, cpu_offload_index
|
||||
|
||||
|
||||
def load_shard_files_with_threadpool(args_list):
|
||||
num_workers = int(os.environ.get("HF_PARALLEL_LOADING_WORKERS", "8"))
|
||||
|
||||
# Do not spawn anymore workers than you need
|
||||
num_workers = min(len(args_list), num_workers)
|
||||
|
||||
logger.info(f"Loading model weights in parallel with {num_workers} workers...")
|
||||
|
||||
error_msgs = []
|
||||
|
||||
with ThreadPoolExecutor(max_workers=num_workers) as executor:
|
||||
with logging.tqdm(total=len(args_list), desc="Loading checkpoint shards") as pbar:
|
||||
futures = [executor.submit(load_shard_file, arg) for arg in args_list]
|
||||
for future in as_completed(futures):
|
||||
result = future.result()
|
||||
(
|
||||
_error_msgs,
|
||||
disk_offload_index,
|
||||
cpu_offload_index,
|
||||
) = result
|
||||
|
||||
error_msgs += _error_msgs
|
||||
|
||||
pbar.update(1)
|
||||
|
||||
return error_msgs, disk_offload_index, cpu_offload_index
|
||||
|
||||
|
||||
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
|
||||
if variant is not None:
|
||||
path, name = weights_name.rsplit(".", 1)
|
||||
@ -889,6 +1005,7 @@ def _get_resolved_checkpoint_files(
|
||||
user_agent: dict,
|
||||
revision: str,
|
||||
commit_hash: Optional[str],
|
||||
is_remote_code: bool, # Because we can't determine this inside this function, we need it to be passed in
|
||||
transformers_explicit_filename: Optional[str] = None,
|
||||
) -> Tuple[Optional[List[str]], Optional[Dict]]:
|
||||
"""Get all the checkpoint filenames based on `pretrained_model_name_or_path`, and optional metadata if the
|
||||
@ -1085,7 +1202,10 @@ def _get_resolved_checkpoint_files(
|
||||
"_commit_hash": commit_hash,
|
||||
**has_file_kwargs,
|
||||
}
|
||||
if not has_file(pretrained_model_name_or_path, safe_weights_name, **has_file_kwargs):
|
||||
if (
|
||||
not has_file(pretrained_model_name_or_path, safe_weights_name, **has_file_kwargs)
|
||||
and not is_remote_code
|
||||
):
|
||||
Thread(
|
||||
target=auto_conversion,
|
||||
args=(pretrained_model_name_or_path,),
|
||||
@ -1457,7 +1577,8 @@ def _find_mismatched_keys(
|
||||
# This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size differences.
|
||||
# Without matching with module type or parameter type it seems like a practical way to detect valid 4bit weights.
|
||||
if not (
|
||||
new_state_dict[key].shape[-1] == 1
|
||||
is_quantized
|
||||
and new_state_dict[key].shape[-1] == 1
|
||||
and new_state_dict[key].numel() * 2 == model_state_dict[key].numel()
|
||||
):
|
||||
mismatched_keys.append(key)
|
||||
@ -1963,7 +2084,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
|
||||
if plan := getattr(module, "_tp_plan", None):
|
||||
self._tp_plan.update({f"{name}.{k}": v for k, v in plan.copy().items()})
|
||||
|
||||
if self._tp_plan is not None and is_torch_greater_or_equal("2.3"):
|
||||
if self._tp_plan is not None and is_torch_greater_or_equal("2.5"):
|
||||
for _, v in self._tp_plan.items():
|
||||
if v not in ALL_PARALLEL_STYLES:
|
||||
raise ValueError(
|
||||
@ -2542,7 +2663,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
|
||||
def smart_apply(self, fn):
|
||||
for module in self.children():
|
||||
# We found a sub-model: recursively dispatch its own init function now!
|
||||
if hasattr(module, "_init_weights"):
|
||||
if isinstance(module, PreTrainedModel):
|
||||
module.smart_apply(module._initialize_weights)
|
||||
else:
|
||||
module.smart_apply(fn)
|
||||
@ -3532,7 +3653,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
|
||||
for key, value in state_dict.items():
|
||||
for pattern, replacement in reverse_key_mapping.items():
|
||||
replacement = replacement.lstrip("^") # strip off un-needed chars and patterns
|
||||
replacement = re.sub(r"\(.*?\)", "", pattern)
|
||||
replacement = re.sub(r"\(.*\)", "", replacement)
|
||||
key, n_replace = re.subn(pattern, replacement, key)
|
||||
# Early exit of the loop
|
||||
if n_replace > 0:
|
||||
@ -4434,6 +4555,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
|
||||
user_agent=user_agent,
|
||||
revision=revision,
|
||||
commit_hash=commit_hash,
|
||||
is_remote_code=cls._auto_class is not None,
|
||||
transformers_explicit_filename=transformers_explicit_filename,
|
||||
)
|
||||
|
||||
@ -4969,9 +5091,6 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
|
||||
cpu_offload_folder = tempfile.mkdtemp()
|
||||
cpu_offload_index = {}
|
||||
|
||||
# For nice tqdm bars
|
||||
if checkpoint_files is not None and len(checkpoint_files) > 1:
|
||||
checkpoint_files = logging.tqdm(checkpoint_files, desc="Loading checkpoint shards")
|
||||
# To be able to iterate, even if we don't use it if the state_dict is already provided
|
||||
elif state_dict is not None:
|
||||
checkpoint_files = [""]
|
||||
@ -4989,64 +5108,48 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
|
||||
expanded_device_map = expand_device_map(device_map, expected_keys)
|
||||
caching_allocator_warmup(model_to_load, expanded_device_map, hf_quantizer)
|
||||
|
||||
# Prepare and compatabilize arguments for serial and parallel shard loading
|
||||
args_list = [
|
||||
(
|
||||
shard_file,
|
||||
state_dict,
|
||||
disk_only_shard_files,
|
||||
is_hqq_or_bnb,
|
||||
is_quantized,
|
||||
device_map,
|
||||
hf_quantizer,
|
||||
key_renaming_mapping,
|
||||
weights_only,
|
||||
model_to_load,
|
||||
expected_keys,
|
||||
reverse_key_renaming_mapping,
|
||||
disk_offload_folder,
|
||||
disk_offload_index,
|
||||
cpu_offload_folder,
|
||||
cpu_offload_index,
|
||||
is_offloaded_safetensors,
|
||||
keep_in_fp32_regex,
|
||||
unexpected_keys,
|
||||
device_mesh,
|
||||
)
|
||||
for shard_file in checkpoint_files
|
||||
]
|
||||
|
||||
error_msgs = []
|
||||
# Iterate on all the shards to load the weights
|
||||
for shard_file in checkpoint_files:
|
||||
# Skip the load for shards that only contain disk-offloaded weights
|
||||
if shard_file in disk_only_shard_files:
|
||||
continue
|
||||
|
||||
map_location = "cpu"
|
||||
if (
|
||||
shard_file.endswith(".safetensors")
|
||||
and not is_hqq_or_bnb
|
||||
and not (is_deepspeed_zero3_enabled() and not is_quantized)
|
||||
):
|
||||
map_location = "meta"
|
||||
elif (
|
||||
device_map is not None
|
||||
and hf_quantizer is not None
|
||||
and hf_quantizer.quantization_config.quant_method == QuantizationMethod.TORCHAO
|
||||
and (
|
||||
hf_quantizer.quantization_config.quant_type in ["int4_weight_only", "autoquant"]
|
||||
or isinstance(hf_quantizer.quantization_config.quant_type, Int4WeightOnlyConfig)
|
||||
)
|
||||
):
|
||||
map_location = torch.device([d for d in device_map.values() if d not in ["cpu", "disk"]][0])
|
||||
if (
|
||||
os.environ.get("HF_ENABLE_PARALLEL_LOADING", "").upper() in ENV_VARS_TRUE_VALUES
|
||||
and not is_deepspeed_zero3_enabled()
|
||||
):
|
||||
_error_msgs, disk_offload_index, cpu_offload_index = load_shard_files_with_threadpool(args_list)
|
||||
error_msgs += _error_msgs
|
||||
else:
|
||||
if len(args_list) > 1:
|
||||
args_list = logging.tqdm(args_list, desc="Loading checkpoint shards")
|
||||
|
||||
# If shard_file is "", we use the existing state_dict instead of loading it
|
||||
if shard_file != "":
|
||||
state_dict = load_state_dict(
|
||||
shard_file, is_quantized=is_quantized, map_location=map_location, weights_only=weights_only
|
||||
)
|
||||
|
||||
# Fix the key names
|
||||
state_dict = {key_renaming_mapping[k]: v for k, v in state_dict.items() if k in key_renaming_mapping}
|
||||
|
||||
if is_deepspeed_zero3_enabled() and not is_quantized:
|
||||
error_msgs += _load_state_dict_into_zero3_model(model_to_load, state_dict)
|
||||
# Skip it with fsdp on ranks other than 0
|
||||
elif not (is_fsdp_enabled() and not is_local_dist_rank_0() and not is_quantized):
|
||||
disk_offload_index, cpu_offload_index = _load_state_dict_into_meta_model(
|
||||
model_to_load,
|
||||
state_dict,
|
||||
shard_file,
|
||||
expected_keys,
|
||||
reverse_key_renaming_mapping,
|
||||
device_map=device_map,
|
||||
disk_offload_folder=disk_offload_folder,
|
||||
disk_offload_index=disk_offload_index,
|
||||
cpu_offload_folder=cpu_offload_folder,
|
||||
cpu_offload_index=cpu_offload_index,
|
||||
hf_quantizer=hf_quantizer,
|
||||
is_safetensors=is_offloaded_safetensors,
|
||||
keep_in_fp32_regex=keep_in_fp32_regex,
|
||||
unexpected_keys=unexpected_keys,
|
||||
device_mesh=device_mesh,
|
||||
)
|
||||
|
||||
# force memory release if loading multiple shards, to avoid having 2 state dicts in memory in next loop
|
||||
del state_dict
|
||||
for args in args_list:
|
||||
_error_msgs, disk_offload_index, cpu_offload_index = load_shard_file(args)
|
||||
error_msgs += _error_msgs
|
||||
|
||||
# Adjust offloaded weights name and save if needed
|
||||
if disk_offload_index is not None and len(disk_offload_index) > 0:
|
||||
@ -5224,11 +5327,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
|
||||
Register this class with a given auto class. This should only be used for custom models as the ones in the
|
||||
library are already mapped with an auto class.
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
This API is experimental and may have some slight breaking changes in the next releases.
|
||||
|
||||
</Tip>
|
||||
|
||||
Args:
|
||||
auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
|
||||
@ -5478,8 +5577,8 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
|
||||
def get_parameter_or_buffer(self, target: str):
|
||||
"""
|
||||
Return the parameter or buffer given by `target` if it exists, otherwise throw an error. This combines
|
||||
`get_parameter()` and `get_buffer()` in a single handy function. Note that it only work if `target` is a
|
||||
leaf of the model.
|
||||
`get_parameter()` and `get_buffer()` in a single handy function. If the target is an `_extra_state` attribute,
|
||||
it will return the extra state provided by the module. Note that it only work if `target` is a leaf of the model.
|
||||
"""
|
||||
try:
|
||||
return self.get_parameter(target)
|
||||
@ -5489,7 +5588,15 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
|
||||
return self.get_buffer(target)
|
||||
except AttributeError:
|
||||
pass
|
||||
raise AttributeError(f"`{target}` is neither a parameter nor a buffer.")
|
||||
module, param_name = get_module_from_name(self, target)
|
||||
if (
|
||||
param_name == "_extra_state"
|
||||
and getattr(module.__class__, "get_extra_state", torch.nn.Module.get_extra_state)
|
||||
is not torch.nn.Module.get_extra_state
|
||||
):
|
||||
return module.get_extra_state()
|
||||
|
||||
raise AttributeError(f"`{target}` is neither a parameter, buffer, nor extra state.")
|
||||
|
||||
|
||||
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
|
||||
@ -6088,7 +6195,10 @@ class AttentionInterface(GeneralInterface):
|
||||
_global_mapping = {
|
||||
"flash_attention_2": flash_attention_forward,
|
||||
"flex_attention": flex_attention_forward,
|
||||
"paged_attention": paged_attention_forward,
|
||||
"sdpa": sdpa_attention_forward,
|
||||
"sdpa_paged": sdpa_attention_paged_forward,
|
||||
"eager_paged": eager_paged_attention_forward,
|
||||
}
|
||||
|
||||
|
||||
|
@ -130,10 +130,6 @@ class AlbertTokenizerFast(PreTrainedTokenizerFast):
|
||||
self.keep_accents = keep_accents
|
||||
self.vocab_file = vocab_file
|
||||
|
||||
@property
|
||||
def can_save_slow_tokenizer(self) -> bool:
|
||||
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
||||
|
||||
def build_inputs_with_special_tokens(
|
||||
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
||||
) -> List[int]:
|
||||
|
@ -500,5 +500,26 @@ class AriaImageProcessor(BaseImageProcessor):
|
||||
]
|
||||
return patches
|
||||
|
||||
def get_number_of_image_patches(self, height: int, width: int, images_kwargs=None):
|
||||
"""
|
||||
A utility that returns number of image patches for a given image size.
|
||||
|
||||
Args:
|
||||
height (`int`):
|
||||
Height of the input image.
|
||||
width (`int`):
|
||||
Width of the input image.
|
||||
images_kwargs (`dict`, *optional*)
|
||||
Any kwargs to override defaults of the image processor.
|
||||
Returns:
|
||||
`int`: Number of patches per image.
|
||||
"""
|
||||
split_image = images_kwargs.get("split_image", None) or self.split_image
|
||||
max_image_size = images_kwargs.get("max_image_size", None) or self.max_image_size
|
||||
|
||||
resized_height, resized_width = select_best_resolution((height, width), self.split_resolutions)
|
||||
num_patches = 1 if not split_image else resized_height // max_image_size * resized_width // max_image_size
|
||||
return num_patches
|
||||
|
||||
|
||||
__all__ = ["AriaImageProcessor"]
|
||||
|
@ -549,15 +549,8 @@ class AriaTextAttention(nn.Module):
|
||||
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
||||
|
||||
attention_interface: Callable = eager_attention_forward
|
||||
|
||||
if self.config._attn_implementation != "eager":
|
||||
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
|
||||
logger.warning_once(
|
||||
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
||||
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
||||
)
|
||||
else:
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
||||
|
||||
attn_output, attn_weights = attention_interface(
|
||||
self,
|
||||
@ -812,7 +805,6 @@ class AriaTextModel(AriaTextPreTrainedModel):
|
||||
attention_mask=attention_mask,
|
||||
cache_position=cache_position,
|
||||
past_key_values=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
@ -1227,6 +1219,12 @@ class AriaForConditionalGeneration(AriaPreTrainedModel, GenerationMixin):
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
# Make modules available throught conditional class for BC
|
||||
@property
|
||||
def language_model(self):
|
||||
|
@ -34,7 +34,7 @@ from ...image_utils import (
|
||||
)
|
||||
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
||||
from ...processing_utils import MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
|
||||
from ...tokenization_utils import PreTokenizedInput, TextInput
|
||||
from ...utils import LossKwargs, TensorType, auto_docstring, can_return_tuple, logging
|
||||
from ...utils.import_utils import is_torch_available
|
||||
@ -884,11 +884,33 @@ class AriaImageProcessor(BaseImageProcessor):
|
||||
]
|
||||
return patches
|
||||
|
||||
def get_number_of_image_patches(self, height: int, width: int, images_kwargs=None):
|
||||
"""
|
||||
A utility that returns number of image patches for a given image size.
|
||||
|
||||
Args:
|
||||
height (`int`):
|
||||
Height of the input image.
|
||||
width (`int`):
|
||||
Width of the input image.
|
||||
images_kwargs (`dict`, *optional*)
|
||||
Any kwargs to override defaults of the image processor.
|
||||
Returns:
|
||||
`int`: Number of patches per image.
|
||||
"""
|
||||
split_image = images_kwargs.get("split_image", None) or self.split_image
|
||||
max_image_size = images_kwargs.get("max_image_size", None) or self.max_image_size
|
||||
|
||||
resized_height, resized_width = select_best_resolution((height, width), self.split_resolutions)
|
||||
num_patches = 1 if not split_image else resized_height // max_image_size * resized_width // max_image_size
|
||||
return num_patches
|
||||
|
||||
|
||||
class AriaProcessorKwargs(ProcessingKwargs, total=False):
|
||||
_defaults = {
|
||||
"text_kwargs": {
|
||||
"padding": False,
|
||||
"return_mm_token_type_ids": False,
|
||||
},
|
||||
"images_kwargs": {
|
||||
"max_image_size": 980,
|
||||
@ -914,7 +936,6 @@ class AriaProcessor(ProcessorMixin):
|
||||
"""
|
||||
|
||||
attributes = ["image_processor", "tokenizer"]
|
||||
valid_kwargs = ["chat_template", "size_conversion"]
|
||||
image_processor_class = "AriaImageProcessor"
|
||||
tokenizer_class = "AutoTokenizer"
|
||||
|
||||
@ -978,10 +999,7 @@ class AriaProcessor(ProcessorMixin):
|
||||
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
||||
|
||||
if images is not None:
|
||||
image_inputs = self.image_processor(
|
||||
images,
|
||||
**output_kwargs["images_kwargs"],
|
||||
)
|
||||
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
|
||||
# expand the image_token according to the num_crops and tokens per image
|
||||
tokens_per_image = self.size_conversion[image_inputs.pixel_values.shape[2]]
|
||||
prompt_strings = []
|
||||
@ -995,11 +1013,44 @@ class AriaProcessor(ProcessorMixin):
|
||||
prompt_strings = text
|
||||
|
||||
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
||||
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
|
||||
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", False)
|
||||
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None)
|
||||
self._check_special_mm_tokens(prompt_strings, text_inputs, modalities=["image"])
|
||||
|
||||
if return_mm_token_type_ids:
|
||||
array_ids = np.array(text_inputs["input_ids"])
|
||||
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
|
||||
mm_token_type_ids[array_ids == self.image_token_id] = 1
|
||||
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
|
||||
|
||||
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
|
||||
|
||||
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
|
||||
"""
|
||||
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
|
||||
Args:
|
||||
image_sizes (`List[List[int]]`, *optional*):
|
||||
The input sizes formatted as (height, width) per each image.
|
||||
Returns:
|
||||
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
|
||||
input modalities, along with other useful data.
|
||||
"""
|
||||
|
||||
vision_data = {}
|
||||
if image_sizes is not None:
|
||||
images_kwargs = AriaProcessorKwargs._defaults.get("images_kwargs", {})
|
||||
images_kwargs.update(kwargs)
|
||||
|
||||
max_size = images_kwargs.get("max_image_size", None) or self.image_processor.max_image_size
|
||||
num_image_patches = [
|
||||
self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
|
||||
for image_size in image_sizes
|
||||
]
|
||||
num_image_tokens = [self.size_conversion[max_size] * num_patches for num_patches in num_image_patches]
|
||||
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
|
||||
|
||||
return MultiModalData(**vision_data)
|
||||
|
||||
def batch_decode(self, *args, **kwargs):
|
||||
"""
|
||||
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
||||
|
@ -20,9 +20,11 @@
|
||||
# limitations under the License.
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ...image_processing_utils import BatchFeature
|
||||
from ...image_utils import ImageInput
|
||||
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
|
||||
from ...processing_utils import MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
|
||||
from ...tokenization_utils import PreTokenizedInput, TextInput
|
||||
from ...utils import TensorType
|
||||
from ..auto import AutoTokenizer
|
||||
@ -32,6 +34,7 @@ class AriaProcessorKwargs(ProcessingKwargs, total=False):
|
||||
_defaults = {
|
||||
"text_kwargs": {
|
||||
"padding": False,
|
||||
"return_mm_token_type_ids": False,
|
||||
},
|
||||
"images_kwargs": {
|
||||
"max_image_size": 980,
|
||||
@ -57,7 +60,6 @@ class AriaProcessor(ProcessorMixin):
|
||||
"""
|
||||
|
||||
attributes = ["image_processor", "tokenizer"]
|
||||
valid_kwargs = ["chat_template", "size_conversion"]
|
||||
image_processor_class = "AriaImageProcessor"
|
||||
tokenizer_class = "AutoTokenizer"
|
||||
|
||||
@ -121,10 +123,7 @@ class AriaProcessor(ProcessorMixin):
|
||||
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
|
||||
|
||||
if images is not None:
|
||||
image_inputs = self.image_processor(
|
||||
images,
|
||||
**output_kwargs["images_kwargs"],
|
||||
)
|
||||
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
|
||||
# expand the image_token according to the num_crops and tokens per image
|
||||
tokens_per_image = self.size_conversion[image_inputs.pixel_values.shape[2]]
|
||||
prompt_strings = []
|
||||
@ -138,11 +137,44 @@ class AriaProcessor(ProcessorMixin):
|
||||
prompt_strings = text
|
||||
|
||||
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
|
||||
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
|
||||
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", False)
|
||||
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None)
|
||||
self._check_special_mm_tokens(prompt_strings, text_inputs, modalities=["image"])
|
||||
|
||||
if return_mm_token_type_ids:
|
||||
array_ids = np.array(text_inputs["input_ids"])
|
||||
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
|
||||
mm_token_type_ids[array_ids == self.image_token_id] = 1
|
||||
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
|
||||
|
||||
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
|
||||
|
||||
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
|
||||
"""
|
||||
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
|
||||
Args:
|
||||
image_sizes (`List[List[int]]`, *optional*):
|
||||
The input sizes formatted as (height, width) per each image.
|
||||
Returns:
|
||||
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
|
||||
input modalities, along with other useful data.
|
||||
"""
|
||||
|
||||
vision_data = {}
|
||||
if image_sizes is not None:
|
||||
images_kwargs = AriaProcessorKwargs._defaults.get("images_kwargs", {})
|
||||
images_kwargs.update(kwargs)
|
||||
|
||||
max_size = images_kwargs.get("max_image_size", None) or self.image_processor.max_image_size
|
||||
num_image_patches = [
|
||||
self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
|
||||
for image_size in image_sizes
|
||||
]
|
||||
num_image_tokens = [self.size_conversion[max_size] * num_patches for num_patches in num_image_patches]
|
||||
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
|
||||
|
||||
return MultiModalData(**vision_data)
|
||||
|
||||
def batch_decode(self, *args, **kwargs):
|
||||
"""
|
||||
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
||||
|
@ -420,17 +420,23 @@ class _BaseAutoModelClass:
|
||||
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
||||
has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map
|
||||
has_local_code = type(config) in cls._model_mapping.keys()
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, config._name_or_path, has_local_code, has_remote_code
|
||||
)
|
||||
if has_remote_code:
|
||||
class_ref = config.auto_map[cls.__name__]
|
||||
if "--" in class_ref:
|
||||
upstream_repo = class_ref.split("--")[0]
|
||||
else:
|
||||
upstream_repo = None
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, config._name_or_path, has_local_code, has_remote_code, upstream_repo=upstream_repo
|
||||
)
|
||||
|
||||
if has_remote_code and trust_remote_code:
|
||||
class_ref = config.auto_map[cls.__name__]
|
||||
if "--" in class_ref:
|
||||
repo_id, class_ref = class_ref.split("--")
|
||||
else:
|
||||
repo_id = config.name_or_path
|
||||
model_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs)
|
||||
model_class.register_for_auto_class(auto_class=cls)
|
||||
cls.register(config.__class__, model_class, exist_ok=True)
|
||||
_ = kwargs.pop("code_revision", None)
|
||||
model_class = add_generation_mixin_to_remote_model(model_class)
|
||||
@ -545,8 +551,17 @@ class _BaseAutoModelClass:
|
||||
|
||||
has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map
|
||||
has_local_code = type(config) in cls._model_mapping.keys()
|
||||
upstream_repo = None
|
||||
if has_remote_code:
|
||||
class_ref = config.auto_map[cls.__name__]
|
||||
if "--" in class_ref:
|
||||
upstream_repo = class_ref.split("--")[0]
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
|
||||
trust_remote_code,
|
||||
pretrained_model_name_or_path,
|
||||
has_local_code,
|
||||
has_remote_code,
|
||||
upstream_repo=upstream_repo,
|
||||
)
|
||||
kwargs["trust_remote_code"] = trust_remote_code
|
||||
|
||||
@ -554,12 +569,12 @@ class _BaseAutoModelClass:
|
||||
kwargs["adapter_kwargs"] = adapter_kwargs
|
||||
|
||||
if has_remote_code and trust_remote_code:
|
||||
class_ref = config.auto_map[cls.__name__]
|
||||
model_class = get_class_from_dynamic_module(
|
||||
class_ref, pretrained_model_name_or_path, code_revision=code_revision, **hub_kwargs, **kwargs
|
||||
)
|
||||
_ = hub_kwargs.pop("code_revision", None)
|
||||
cls.register(config.__class__, model_class, exist_ok=True)
|
||||
model_class.register_for_auto_class(auto_class=cls)
|
||||
model_class = add_generation_mixin_to_remote_model(model_class)
|
||||
return model_class.from_pretrained(
|
||||
pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs
|
||||
|
@ -15,7 +15,6 @@
|
||||
"""Auto Config class."""
|
||||
|
||||
import importlib
|
||||
import os
|
||||
import re
|
||||
import warnings
|
||||
from collections import OrderedDict
|
||||
@ -1160,17 +1159,21 @@ class AutoConfig:
|
||||
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||||
has_remote_code = "auto_map" in config_dict and "AutoConfig" in config_dict["auto_map"]
|
||||
has_local_code = "model_type" in config_dict and config_dict["model_type"] in CONFIG_MAPPING
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
|
||||
)
|
||||
if has_remote_code:
|
||||
class_ref = config_dict["auto_map"]["AutoConfig"]
|
||||
if "--" in class_ref:
|
||||
upstream_repo = class_ref.split("--")[0]
|
||||
else:
|
||||
upstream_repo = None
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code, upstream_repo
|
||||
)
|
||||
|
||||
if has_remote_code and trust_remote_code:
|
||||
class_ref = config_dict["auto_map"]["AutoConfig"]
|
||||
config_class = get_class_from_dynamic_module(
|
||||
class_ref, pretrained_model_name_or_path, code_revision=code_revision, **kwargs
|
||||
)
|
||||
if os.path.isdir(pretrained_model_name_or_path):
|
||||
config_class.register_for_auto_class()
|
||||
config_class.register_for_auto_class()
|
||||
return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
||||
elif "model_type" in config_dict:
|
||||
try:
|
||||
|
@ -371,17 +371,21 @@ class AutoFeatureExtractor:
|
||||
|
||||
has_remote_code = feature_extractor_auto_map is not None
|
||||
has_local_code = feature_extractor_class is not None or type(config) in FEATURE_EXTRACTOR_MAPPING
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
|
||||
)
|
||||
if has_remote_code:
|
||||
if "--" in feature_extractor_auto_map:
|
||||
upstream_repo = feature_extractor_auto_map.split("--")[0]
|
||||
else:
|
||||
upstream_repo = None
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code, upstream_repo
|
||||
)
|
||||
|
||||
if has_remote_code and trust_remote_code:
|
||||
feature_extractor_class = get_class_from_dynamic_module(
|
||||
feature_extractor_auto_map, pretrained_model_name_or_path, **kwargs
|
||||
)
|
||||
_ = kwargs.pop("code_revision", None)
|
||||
if os.path.isdir(pretrained_model_name_or_path):
|
||||
feature_extractor_class.register_for_auto_class()
|
||||
feature_extractor_class.register_for_auto_class()
|
||||
return feature_extractor_class.from_dict(config_dict, **kwargs)
|
||||
elif feature_extractor_class is not None:
|
||||
return feature_extractor_class.from_dict(config_dict, **kwargs)
|
||||
|
@ -541,26 +541,29 @@ class AutoImageProcessor:
|
||||
|
||||
has_remote_code = image_processor_auto_map is not None
|
||||
has_local_code = image_processor_class is not None or type(config) in IMAGE_PROCESSOR_MAPPING
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
|
||||
)
|
||||
|
||||
if image_processor_auto_map is not None and not isinstance(image_processor_auto_map, tuple):
|
||||
# In some configs, only the slow image processor class is stored
|
||||
image_processor_auto_map = (image_processor_auto_map, None)
|
||||
if has_remote_code:
|
||||
if image_processor_auto_map is not None and not isinstance(image_processor_auto_map, tuple):
|
||||
# In some configs, only the slow image processor class is stored
|
||||
image_processor_auto_map = (image_processor_auto_map, None)
|
||||
if use_fast and image_processor_auto_map[1] is not None:
|
||||
class_ref = image_processor_auto_map[1]
|
||||
else:
|
||||
class_ref = image_processor_auto_map[0]
|
||||
if "--" in class_ref:
|
||||
upstream_repo = class_ref.split("--")[0]
|
||||
else:
|
||||
upstream_repo = None
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code, upstream_repo
|
||||
)
|
||||
|
||||
if has_remote_code and trust_remote_code:
|
||||
if not use_fast and image_processor_auto_map[1] is not None:
|
||||
_warning_fast_image_processor_available(image_processor_auto_map[1])
|
||||
|
||||
if use_fast and image_processor_auto_map[1] is not None:
|
||||
class_ref = image_processor_auto_map[1]
|
||||
else:
|
||||
class_ref = image_processor_auto_map[0]
|
||||
image_processor_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
|
||||
_ = kwargs.pop("code_revision", None)
|
||||
if os.path.isdir(pretrained_model_name_or_path):
|
||||
image_processor_class.register_for_auto_class()
|
||||
image_processor_class.register_for_auto_class()
|
||||
return image_processor_class.from_dict(config_dict, **kwargs)
|
||||
elif image_processor_class is not None:
|
||||
return image_processor_class.from_dict(config_dict, **kwargs)
|
||||
|
@ -2106,6 +2106,7 @@ __all__ = [
|
||||
"AutoModelForTableQuestionAnswering",
|
||||
"AutoModelForTextToSpectrogram",
|
||||
"AutoModelForTextToWaveform",
|
||||
"AutoModelForTimeSeriesPrediction",
|
||||
"AutoModelForTokenClassification",
|
||||
"AutoModelForUniversalSegmentation",
|
||||
"AutoModelForVideoClassification",
|
||||
|
@ -17,7 +17,6 @@
|
||||
import importlib
|
||||
import inspect
|
||||
import json
|
||||
import os
|
||||
import warnings
|
||||
from collections import OrderedDict
|
||||
|
||||
@ -359,17 +358,21 @@ class AutoProcessor:
|
||||
|
||||
has_remote_code = processor_auto_map is not None
|
||||
has_local_code = processor_class is not None or type(config) in PROCESSOR_MAPPING
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
|
||||
)
|
||||
if has_remote_code:
|
||||
if "--" in processor_auto_map:
|
||||
upstream_repo = processor_auto_map.split("--")[0]
|
||||
else:
|
||||
upstream_repo = None
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code, upstream_repo
|
||||
)
|
||||
|
||||
if has_remote_code and trust_remote_code:
|
||||
processor_class = get_class_from_dynamic_module(
|
||||
processor_auto_map, pretrained_model_name_or_path, **kwargs
|
||||
)
|
||||
_ = kwargs.pop("code_revision", None)
|
||||
if os.path.isdir(pretrained_model_name_or_path):
|
||||
processor_class.register_for_auto_class()
|
||||
processor_class.register_for_auto_class()
|
||||
return processor_class.from_pretrained(
|
||||
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
|
||||
)
|
||||
|
@ -989,19 +989,23 @@ class AutoTokenizer:
|
||||
or tokenizer_class_from_name(config_tokenizer_class + "Fast") is not None
|
||||
)
|
||||
)
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
|
||||
)
|
||||
|
||||
if has_remote_code and trust_remote_code:
|
||||
if has_remote_code:
|
||||
if use_fast and tokenizer_auto_map[1] is not None:
|
||||
class_ref = tokenizer_auto_map[1]
|
||||
else:
|
||||
class_ref = tokenizer_auto_map[0]
|
||||
if "--" in class_ref:
|
||||
upstream_repo = class_ref.split("--")[0]
|
||||
else:
|
||||
upstream_repo = None
|
||||
trust_remote_code = resolve_trust_remote_code(
|
||||
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code, upstream_repo
|
||||
)
|
||||
|
||||
if has_remote_code and trust_remote_code:
|
||||
tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
|
||||
_ = kwargs.pop("code_revision", None)
|
||||
if os.path.isdir(pretrained_model_name_or_path):
|
||||
tokenizer_class.register_for_auto_class()
|
||||
tokenizer_class.register_for_auto_class()
|
||||
return tokenizer_class.from_pretrained(
|
||||
pretrained_model_name_or_path, *inputs, trust_remote_code=trust_remote_code, **kwargs
|
||||
)
|
||||
|
@ -339,8 +339,7 @@ class AutoVideoProcessor:
|
||||
class_ref = video_processor_auto_map
|
||||
video_processor_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
|
||||
_ = kwargs.pop("code_revision", None)
|
||||
if os.path.isdir(pretrained_model_name_or_path):
|
||||
video_processor_class.register_for_auto_class()
|
||||
video_processor_class.register_for_auto_class()
|
||||
return video_processor_class.from_dict(config_dict, **kwargs)
|
||||
elif video_processor_class is not None:
|
||||
return video_processor_class.from_dict(config_dict, **kwargs)
|
||||
|
@ -26,14 +26,21 @@ import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
|
||||
from ...activations import ACT2FN
|
||||
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
|
||||
from ...modeling_attn_mask_utils import (
|
||||
_prepare_4d_attention_mask,
|
||||
_prepare_4d_attention_mask_for_sdpa,
|
||||
)
|
||||
from ...modeling_outputs import BaseModelOutput, ModelOutput, SampleTSPredictionOutput, Seq2SeqTSPredictionOutput
|
||||
from ...modeling_utils import PreTrainedModel
|
||||
from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput
|
||||
from ...utils import auto_docstring, logging
|
||||
from ...utils import auto_docstring, is_torch_flex_attn_available, logging
|
||||
from .configuration_autoformer import AutoformerConfig
|
||||
|
||||
|
||||
if is_torch_flex_attn_available():
|
||||
from ...integrations.flex_attention import make_flex_block_causal_mask
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
@ -904,6 +911,29 @@ class AutoformerPreTrainedModel(PreTrainedModel):
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
# Copied from transformers.models.bart.modeling_bart.BartPreTrainedModel._update_full_mask
|
||||
def _update_full_mask(
|
||||
self,
|
||||
attention_mask: Union[torch.Tensor, None],
|
||||
inputs_embeds: torch.Tensor,
|
||||
):
|
||||
if attention_mask is not None:
|
||||
if self.config._attn_implementation == "flash_attention_2":
|
||||
attention_mask = attention_mask if 0 in attention_mask else None
|
||||
elif self.config._attn_implementation == "sdpa":
|
||||
# output_attentions=True & head_mask can not be supported when using SDPA, fall back to
|
||||
# the manual implementation that requires a 4D causal mask in all cases.
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
|
||||
elif self.config._attn_implementation == "flex_attention":
|
||||
if isinstance(attention_mask, torch.Tensor):
|
||||
attention_mask = make_flex_block_causal_mask(attention_mask, is_causal=False)
|
||||
else:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
|
||||
|
||||
return attention_mask
|
||||
|
||||
|
||||
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerEncoder with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
|
||||
class AutoformerEncoder(AutoformerPreTrainedModel):
|
||||
@ -983,10 +1013,10 @@ class AutoformerEncoder(AutoformerPreTrainedModel):
|
||||
hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
|
||||
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
||||
|
||||
# expand attention_mask
|
||||
if attention_mask is not None:
|
||||
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
||||
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
|
||||
attention_mask = self._update_full_mask(
|
||||
attention_mask,
|
||||
inputs_embeds,
|
||||
)
|
||||
|
||||
encoder_states = () if output_hidden_states else None
|
||||
all_attentions = () if output_attentions else None
|
||||
|
@ -389,6 +389,12 @@ class AyaVisionForConditionalGeneration(AyaVisionPreTrainedModel, GenerationMixi
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
# Make modules available throught conditional class for BC
|
||||
@property
|
||||
def language_model(self):
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user