Merge branch 'main' into add-aimv2-model

This commit is contained in:
Yaswanth Gali 2025-05-28 21:24:02 +05:30 committed by GitHub
commit 6160836d51
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
466 changed files with 17633 additions and 15014 deletions

View File

@ -43,16 +43,6 @@ jobs:
parallelism: 1
steps:
- checkout
- run: python3 utils/extract_pr_number_from_circleci.py > pr_number.txt
- run: echo $(cat pr_number.txt)
- run: if [[ "$(cat pr_number.txt)" == "" && "$CIRCLE_BRANCH" != "main" && "$CIRCLE_BRANCH" != *-release ]]; then echo "Not a PR, not the main branch and not a release branch, skip test!"; circleci-agent step halt; fi
- run: 'curl -L -H "Accept: application/vnd.github+json" -H "X-GitHub-Api-Version: 2022-11-28" https://api.github.com/repos/$CIRCLE_PROJECT_USERNAME/$CIRCLE_PROJECT_REPONAME/pulls/$(cat pr_number.txt) >> github.txt'
- run: cat github.txt
- run: (python3 -c 'import json; from datetime import datetime; fp = open("github.txt"); data = json.load(fp); fp.close(); f = "%Y-%m-%dT%H:%M:%SZ"; created = datetime.strptime(data["created_at"], f); updated = datetime.strptime(data["updated_at"], f); s = (updated - created).total_seconds(); print(int(s))' || true) > elapsed.txt
- run: if [ "$(cat elapsed.txt)" == "" ]; then echo 60 > elapsed.txt; fi
- run: cat elapsed.txt
- run: if [ "$(cat elapsed.txt)" -lt "30" ]; then echo "PR is just opened, wait some actions from GitHub"; sleep 30; fi
- run: 'if grep -q "\"draft\": true," github.txt; then echo "draft mode, skip test!"; circleci-agent step halt; fi'
- run: uv pip install -U -e .
- run: echo 'export "GIT_COMMIT_MESSAGE=$(git show -s --format=%s)"' >> "$BASH_ENV" && source "$BASH_ENV"
- run: mkdir -p test_preparation
@ -122,8 +112,6 @@ jobs:
- run:
name: "Retrieve Artifact Paths"
env:
CIRCLE_TOKEN: ${{ secrets.CI_ARTIFACT_TOKEN }}
command: |
project_slug="gh/${CIRCLE_PROJECT_USERNAME}/${CIRCLE_PROJECT_REPONAME}"
job_number=${CIRCLE_BUILD_NUM}

View File

@ -2,6 +2,15 @@ name: Build PR Documentation
on:
pull_request:
workflow_call:
inputs:
pr_number:
type: string
required: true
commit_sha:
type: string
required: true
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
@ -9,9 +18,9 @@ concurrency:
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@6e2eb04a2604817c97be03786efa494fe3acae90
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
commit_sha: ${{ inputs.commit_sha || github.event.pull_request.head.sha }}
pr_number: ${{ inputs.pr_number || github.event.number }}
package: transformers
languages: en

View File

@ -9,6 +9,18 @@ on:
start_sha:
required: true
type: string
job:
required: true
type: string
slack_report_channel:
required: true
type: string
ci_event:
required: true
type: string
report_repo_id:
required: true
type: string
env:
@ -26,7 +38,7 @@ env:
jobs:
run_models_gpu:
check_new_failures:
name: " "
runs-on:
group: aws-g4dn-4xlarge-cache
@ -36,17 +48,17 @@ jobs:
steps:
- uses: actions/download-artifact@v4
with:
name: ci_results_run_models_gpu
path: /transformers/ci_results_run_models_gpu
name: ci_results_${{ inputs.job }}
path: /transformers/ci_results_${{ inputs.job }}
- name: Check file
working-directory: /transformers
run: |
if [ -f ci_results_run_models_gpu/new_model_failures.json ]; then
echo "`ci_results_run_models_gpu/new_model_failures.json` exists, continue ..."
if [ -f ci_results_${{ inputs.job }}/new_failures.json ]; then
echo "`ci_results_${{ inputs.job }}/new_failures.json` exists, continue ..."
echo "process=true" >> $GITHUB_ENV
else
echo "`ci_results_run_models_gpu/new_model_failures.json` doesn't exist, abort."
echo "`ci_results_${{ inputs.job }}/new_failures.json` doesn't exist, abort."
echo "process=false" >> $GITHUB_ENV
fi
@ -112,14 +124,14 @@ jobs:
- name: Check failed tests
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_run_models_gpu/new_model_failures.json --output_file new_model_failures_with_bad_commit.json
run: python3 utils/check_bad_commit.py --start_commit ${{ inputs.start_sha }} --end_commit ${{ env.END_SHA }} --file ci_results_${{ inputs.job }}/new_failures.json --output_file new_failures_with_bad_commit.json
- name: Show results
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
ls -l new_model_failures_with_bad_commit.json
cat new_model_failures_with_bad_commit.json
ls -l new_failures_with_bad_commit.json
cat new_failures_with_bad_commit.json
- name: Checkout back
working-directory: /transformers
@ -134,6 +146,8 @@ jobs:
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
JOB_NAME: ${{ inputs.job }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
run: |
python3 utils/process_bad_commit_report.py
@ -144,6 +158,8 @@ jobs:
env:
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
JOB_NAME: ${{ inputs.job }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
run: |
{
echo 'REPORT_TEXT<<EOF'
@ -151,17 +167,31 @@ jobs:
echo EOF
} >> "$GITHUB_ENV"
- name: Prepare Slack report title
working-directory: /transformers
if: ${{ env.process == 'true' }}
run: |
pip install slack_sdk
echo "title=$(python3 -c 'import sys; sys.path.append("utils"); from utils.notification_service import job_to_test_map; ci_event = "${{ inputs.ci_event }}"; job = "${{ inputs.job }}"; test_name = job_to_test_map[job]; title = f"New failed tests of {ci_event}" + ":" + f" {test_name}"; print(title)')" >> $GITHUB_ENV
- name: Send processed report
if: ${{ env.process == 'true' && !endsWith(env.REPORT_TEXT, '{}') }}
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
with:
# Slack channel id, channel name, or user id to post message.
# See also: https://api.slack.com/methods/chat.postMessage#channels
channel-id: '#transformers-ci-feedback-tests'
channel-id: '#${{ inputs.slack_report_channel }}'
# For posting a rich message using Block Kit
payload: |
{
"blocks": [
{
"type": "header",
"text": {
"type": "plain_text",
"text": "${{ env.title }}"
}
},
{
"type": "section",
"text": {

View File

@ -11,9 +11,24 @@ permissions:
jobs:
style:
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@main
uses: huggingface/huggingface_hub/.github/workflows/style-bot-action.yml@639ee721e149a281fe726a50a2cc1354b48bc463
with:
python_quality_dependencies: "[quality]"
style_command_type: "default"
secrets:
bot_token: ${{ secrets.GITHUB_TOKEN }}
check-outputs:
runs-on: ubuntu-latest
needs: style
steps:
- run: echo ${{ needs.style.outputs.pr_number }}
- run: echo ${{ needs.style.outputs.new_commit_sha }}
trigger:
needs: style
if: needs.style.outputs.new_commit_sha != ''
uses: "./.github/workflows/build_pr_documentation.yml"
with:
pr_number: ${{ needs.style.outputs.pr_number }}
commit_sha: ${{ needs.style.outputs.new_commit_sha }}

View File

@ -29,7 +29,7 @@ jobs:
runs-on: ubuntu-22.04
name: Get PR number
# For security: only allow team members to run
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
if: ${{ github.event.issue.state == 'open' && contains(fromJSON('["ydshieh", "ArthurZucker", "zucchini-nlp", "qubvel", "molbap", "gante", "LysandreJik", "Cyrilvallez", "Rocketknight1", "SunMarc", "muellerzr", "eustlb", "MekkCyber", "manueldeprada", "vasqu"]'), github.actor) && (startsWith(github.event.comment.body, 'run-slow') || startsWith(github.event.comment.body, 'run slow') || startsWith(github.event.comment.body, 'run_slow')) }}
outputs:
PR_NUMBER: ${{ steps.set_pr_number.outputs.PR_NUMBER }}
steps:

View File

@ -1,55 +0,0 @@
name: Self-hosted runner (AMD mi210 scheduled CI caller)
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
model-ci:
name: Model CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_models_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
example-ci:
name: Example CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_examples_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi210
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi210
secrets: inherit

View File

@ -15,10 +15,11 @@ jobs:
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_models_gpu
slack_report_channel: "#amd-hf-ci"
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
torch-pipeline:
@ -26,10 +27,11 @@ jobs:
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#amd-hf-ci"
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
example-ci:
@ -37,10 +39,11 @@ jobs:
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_examples_gpu
slack_report_channel: "#amd-hf-ci"
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
deepspeed-ci:
@ -48,8 +51,9 @@ jobs:
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled.yaml@main
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#amd-hf-ci"
slack_report_channel: "#transformers-ci-daily-amd"
runner: mi250
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi250
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit

View File

@ -0,0 +1,63 @@
name: Self-hosted runner scale set (AMD mi300 scheduled CI caller)
# Note: For every job in this workflow, the name of the runner scale set is finalized in the runner yaml i.e. huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml
# For example, 1gpu scale set: amd-mi300-ci-1gpu
# 2gpu scale set: amd-mi300-ci-2gpu
on:
workflow_run:
workflows: ["Self-hosted runner (AMD scheduled CI caller)"]
branches: ["main"]
types: [completed]
push:
branches:
- run_amd_scheduled_ci_caller*
jobs:
model-ci:
name: Model CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_models_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
torch-pipeline:
name: Torch pipeline CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_pipelines_torch_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
example-ci:
name: Example CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_examples_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit
deepspeed-ci:
name: DeepSpeed CI
uses: huggingface/hf-workflows/.github/workflows/transformers_amd_ci_scheduled_arc_scale_set.yaml@main
with:
job: run_torch_cuda_extensions_gpu
slack_report_channel: "#amd-hf-ci"
runner_scale_set: amd-mi300-ci
docker: huggingface/transformers-pytorch-deepspeed-amd-gpu
ci_event: Scheduled CI (AMD) - mi300
report_repo_id: optimum-amd/transformers_daily_ci
secrets: inherit

View File

@ -54,6 +54,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
torch-pipeline:
@ -65,6 +66,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-pytorch-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
tf-pipeline:
@ -76,6 +78,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-tensorflow-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
example-ci:
@ -87,6 +90,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
trainer-fsdp-ci:
@ -98,6 +102,7 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-all-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
deepspeed-ci:
@ -110,6 +115,7 @@ jobs:
docker: huggingface/transformers-pytorch-deepspeed-latest-gpu
ci_event: Daily CI
working-directory-prefix: /workspace
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit
quantization-ci:
@ -121,4 +127,5 @@ jobs:
runner: daily-ci
docker: huggingface/transformers-quantization-latest-gpu
ci_event: Daily CI
report_repo_id: hf-internal-testing/transformers_daily_ci
secrets: inherit

View File

@ -28,6 +28,10 @@ on:
default: ''
required: false
type: string
report_repo_id:
required: true
type: string
env:
HF_HOME: /mnt/cache
@ -584,15 +588,21 @@ jobs:
folder_slices: ${{ needs.setup.outputs.folder_slices }}
quantization_matrix: ${{ needs.setup.outputs.quantization_matrix }}
ci_event: ${{ inputs.ci_event }}
report_repo_id: ${{ inputs.report_repo_id }}
secrets: inherit
check_new_model_failures:
if: ${{ always() && inputs.ci_event == 'Daily CI' && inputs.job == 'run_models_gpu' && needs.send_results.result == 'success' }}
name: Check new model failures
check_new_failures:
if: ${{ always() && inputs.ci_event == 'Daily CI' && needs.send_results.result == 'success' }}
name: Check new failures
needs: send_results
uses: ./.github/workflows/check_failed_model_tests.yml
uses: ./.github/workflows/check_failed_tests.yml
with:
docker: ${{ inputs.docker }}
start_sha: ${{ github.sha }}
job: ${{ inputs.job }}
slack_report_channel: ${{ inputs.slack_report_channel }}
ci_event: ${{ inputs.ci_event }}
report_repo_id: ${{ inputs.report_repo_id }}
secrets: inherit

View File

@ -21,6 +21,9 @@ on:
ci_event:
required: true
type: string
report_repo_id:
required: true
type: string
env:
TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN: ${{ secrets.TRANSFORMERS_CI_RESULTS_UPLOAD_TOKEN }}
@ -55,7 +58,7 @@ jobs:
fi
- name: Send message to Slack
if: ${{ inputs.job != 'run_quantization_torch_gpu' }}
shell: bash
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
CI_SLACK_CHANNEL_ID: ${{ secrets.CI_SLACK_CHANNEL_ID }}
@ -67,6 +70,7 @@ jobs:
CI_SHA: ${{ github.sha }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
REPORT_REPO_ID: ${{ inputs.report_repo_id }}
# We pass `needs.setup.outputs.matrix` as the argument. A processing in `notification_service.py` to change
# `models/bert` to `models_bert` is required, as the artifact names use `_` instead of `/`.
# For a job that doesn't depend on (i.e. `needs`) `setup`, the value for `inputs.folder_slices` would be an
@ -75,7 +79,11 @@ jobs:
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service.py "${{ inputs.folder_slices }}"
if [ "${{ inputs.quantization_matrix }}" != "" ]; then
python utils/notification_service.py "${{ inputs.quantization_matrix }}"
else
python utils/notification_service.py "${{ inputs.folder_slices }}"
fi
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
@ -83,31 +91,3 @@ jobs:
with:
name: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}
- uses: actions/checkout@v4
- uses: actions/download-artifact@v4
- name: Send message to Slack for quantization workflow
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
env:
CI_SLACK_BOT_TOKEN: ${{ secrets.CI_SLACK_BOT_TOKEN }}
ACCESS_REPO_INFO_TOKEN: ${{ secrets.ACCESS_REPO_INFO_TOKEN }}
SLACK_REPORT_CHANNEL: ${{ inputs.slack_report_channel }}
CI_EVENT: ${{ inputs.ci_event }}
CI_SHA: ${{ github.sha }}
CI_TEST_JOB: ${{ inputs.job }}
SETUP_STATUS: ${{ inputs.setup_status }}
# We pass `needs.setup.outputs.quantization_matrix` as the argument. A processing in `notification_service_quantization.py` to change
# `quantization/bnb` to `quantization_bnb` is required, as the artifact names use `_` instead of `/`.
run: |
pip install huggingface_hub
pip install slack_sdk
pip show slack_sdk
python utils/notification_service_quantization.py "${{ inputs.quantization_matrix }}"
# Upload complete failure tables, as they might be big and only truncated versions could be sent to Slack.
- name: Failure table artifacts
if: ${{ inputs.job == 'run_quantization_torch_gpu' }}
uses: actions/upload-artifact@v4
with:
name: ci_results_${{ inputs.job }}
path: ci_results_${{ inputs.job }}

View File

@ -1,4 +1,4 @@
FROM rocm/dev-ubuntu-22.04:6.2.4
FROM rocm/pytorch:rocm6.4_ubuntu22.04_py3.10_pytorch_release_2.6.0
LABEL maintainer="Hugging Face"
ARG DEBIAN_FRONTEND=noninteractive
@ -11,9 +11,6 @@ RUN apt update && \
RUN git lfs install
RUN python3 -m pip install --no-cache-dir --upgrade pip numpy
RUN python3 -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4
RUN python3 -m pip install --no-cache-dir --upgrade importlib-metadata setuptools ninja git+https://github.com/facebookresearch/detectron2.git pytesseract "itsdangerous<2.1.0"
ARG REF=main
@ -33,3 +30,6 @@ RUN cd transformers && python3 setup.py develop
# Remove nvml and nvidia-ml-py as it is not compatible with ROCm. apex is not tested on NVIDIA either.
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
# `kernels` may causes many failing tests
RUN python3 -m pip uninstall -y kernels

View File

@ -48,3 +48,6 @@ RUN python3 -c "from deepspeed.launcher.runner import main"
# Remove nvml as it is not compatible with ROCm
RUN python3 -m pip uninstall py3nvml pynvml nvidia-ml-py apex -y
# `kernels` may causes many failing tests
RUN python3 -m pip uninstall -y kernels

View File

@ -76,12 +76,12 @@
title: Prompt engineering
- local: llm_optims
title: Optimizing inference
- local: cache_explanation
title: Caching
- local: kv_cache
title: KV cache strategies
- local: serving
title: Serving
- local: cache_explanation
title: Caching
- local: llm_tutorial_optimization
title: Getting the most out of LLMs
- local: perplexity
@ -388,7 +388,7 @@
- local: model_doc/bert-japanese
title: BertJapanese
- local: model_doc/bertweet
title: Bertweet
title: BERTweet
- local: model_doc/big_bird
title: BigBird
- local: model_doc/bigbird_pegasus
@ -544,7 +544,7 @@
- local: model_doc/mamba
title: Mamba
- local: model_doc/mamba2
title: mamba2
title: Mamba2
- local: model_doc/marian
title: MarianMT
- local: model_doc/markuplm
@ -1123,4 +1123,9 @@
- local: internal/time_series_utils
title: Utilities for Time Series
title: Internal helpers
- sections:
- local: reference/environment_variables
title: Environment Variables
title: Reference
title: API

View File

@ -15,8 +15,7 @@ rendered properly in your Markdown viewer.
-->
# Caching
Imagine youre having a conversation with someone, and instead of remembering what they previously said, they have to start from scratch every time you respond. This would be slow and inefficient, right?
Imagine you're having a conversation with someone, and instead of remembering what they previously said, they have to start from scratch every time you respond. This would be slow and inefficient, right?
You can extend this analogy to transformer models. Autoregressive model generation can be slow because it makes a prediction one token at a time. Each new prediction is dependent on all the previous context.
@ -29,8 +28,50 @@ A key-value (KV) cache eliminates this inefficiency by storing kv pairs derived
> [!WARNING]
> Caching should only be used for **inference**. It may cause unexpected errors if it's enabled during training.
To better understand how and why caching works, let's take a closer look at the structure of the attention matrices.
## Attention matrices
The **scaled dot-product attention** is calculated as shown below for a batch of size `b`, number of attention heads `h`, sequence length so far `T`, and dimension per attention head `d_head`.
$$
\text{Attention}(Q, K, V) = \text{softmax}\left( \frac{Q K^\top}{\sqrt{d_{\text{head}}}} \times \text{mask} \right) V
$$
The query (`Q`), key (`K`), and value (`V`) matrices are projections from the input embeddings of shape `(b, h, T, d_head)`.
For causal attention, the mask prevents the model from attending to future tokens. Once a token is processed, its representation never changes with respect to future tokens, which means \\( K_{\text{past}} \\) and \\( V_{\text{past}} \\) can be cached and reused to compute the last token's representation.
$$
\text{Attention}(q_t, [\underbrace{k_1, k_2, \dots, k_{t-1}}_{\text{cached}}, k_{t}], [\underbrace{v_1, v_2, \dots, v_{t-1}}_{\text{cached}}, v_{t}])
$$
At inference time, you only need the last token's query to compute the representation \\( x_t \\) that predicts the next token \\( t+1 \\). At each step, the new key and value vectors are **stored** in the cache and **appended** to the past keys and values.
$$
K_{\text{cache}} \leftarrow \text{concat}(K_{\text{past}}, k_t), \quad V_{\text{cache}} \leftarrow \text{concat}(V_{\text{past}}, v_t)
$$
Attention is calculated independently in each layer of the model, and caching is done on a per-layer basis.
Refer to the table below to compare how caching improves efficiency.
| without caching | with caching | | | |
|---|---|---|---|---|
| for each step, recompute all previous `K` and `V` | for each step, only compute current `K` and `V` | | | |
| attention cost per step is **quadratic** with sequence length | attention cost per step is **linear** with sequence length (memory grows linearly, but compute/token remains low) | | | |
## Cache class
A basic KV cache interface takes a key and value tensor for the current token and returns the updated `K` and `V` tensors. This is internally managed by a model's `forward` method.
```py
new_K, new_V = cache.update(k_t, v_t, layer_idx)
attn_output = attn_layer_idx_fn(q_t, new_K, new_V)
```
When you use Transformers' [`Cache`] class, the self-attention module performs several critical steps to integrate past and present information.
1. The attention module concatenates current kv pairs with past kv pairs stored in the cache. This creates attentions weights with the shape `(new_tokens_length, past_kv_length + new_tokens_length)`. The current and past kv pairs are essentially combined to compute the attention scores, ensuring a model is aware of previous context and the current input.
@ -39,6 +80,27 @@ When you use Transformers' [`Cache`] class, the self-attention module performs s
3. It is also important to be aware of the `cache_position`. This is important if you want to reuse a prefilled [`Cache`] with the `forward` method because you have to pass a valid `cache_position` value. This indicates the input positions in a sequence. `cache_position` is unaffected by padding, and it always adds one more position for each token. For example, if a kv cache contains 10 tokens - regardless of pad tokens - the cache position for the next token should be `torch.tensor([10])`.
## Cache storage implementation
The actual storage of key-value pairs varies between cache implementations. As an example, consider the [`DynamicCache`].
In [`DynamicCache`], the key-value pairs are stored as two lists of tensors. Each tensor in the lists have the shape `[batch_size, num_heads, seq_len, head_dim]`.
- `key_cache`: A list of tensors, one for each layer.
- `value_cache`: A list of tensors, one for each layer.
When new tokens are processed:
1. For each layer, the new key and value states are concatenated with the existing cache.
```py
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=-2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=-2)
```
2. The cache grows dynamically as more tokens are processed. The sequence length dimension (`seq_len`) increases with each new token.
3. The cache maintains a count of seen tokens through `self._seen_tokens`. This is updated when the first layer processes a new token.
The example below demonstrates how to create a generation loop with [`DynamicCache`]. As discussed, the attention mask is a concatenation of past and current token values and `1` is added to the cache position for the next token.
```py
@ -72,10 +134,14 @@ for _ in range(max_new_tokens):
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
"[INST] Hello, what's your name. [/INST] Hello! My name is LLaMA,"
```
## Legacy cache format
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format has is dynamic because it grows as text is generated, similar to [`DynamicCache`].
Before the [`Cache`] class, the cache used to be stored as a tuple of tuples of tensors. This format is dynamic because it grows as text is generated, similar to [`DynamicCache`].
The legacy format is essentially the same data structure but organized differently.
- It's a tuple of tuples, where each inner tuple contains the key and value tensors for a layer.
- The tensors have the same shape `[batch_size, num_heads, seq_len, head_dim]`.
- The format is less flexible and doesn't support features like quantization or offloading.
If your project depends on this legacy format, you can convert between [`DynamicCache`] and a tuple of tuples as shown below with the [`~DynamicCache.from_legacy_cache`] and [`DynamicCache.to_legacy_cache`] functions. This is helpful if you have custom logic for manipulating a cache in a specific format.

View File

@ -327,7 +327,6 @@ We enable custom decoding methods through model repositories, assuming a specifi
If a model repository holds a custom decoding method, the easiest way to try it out is to load the model and generate with it:
<!-- TODO before merging: 1) better repo name (use a `generate-community` org?) 2) prettify the repo -->
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
@ -430,7 +429,7 @@ This is the core of your decoding method. It *must* contain a method named `gene
> [!WARNING]
> `generate.py` must be placed in a folder named `custom_generate`, and not at the root level of the repository. The file paths for this feature are hardcoded.
Under the hood, when the base [`~GenerationMixin.generate`] method is called with a `custom_generate` argument, it first checks its Python requirements (if any), then locates the custom `generate` method in `generate.py`, and finally calls the custom `generate`. All received arguments and `model` are forwarded to your custom `generate` method.
Under the hood, when the base [`~GenerationMixin.generate`] method is called with a `custom_generate` argument, it first checks its Python requirements (if any), then locates the custom `generate` method in `generate.py`, and finally calls the custom `generate`. All received arguments and `model` are forwarded to your custom `generate` method, with the exception of the arguments used to trigger the custom generation (`trust_remote_code` and `custom_generate`).
This means your `generate` can have a mix of original and custom arguments (as well as a different output type) as shown below.

View File

@ -16,7 +16,8 @@ rendered properly in your Markdown viewer.
# Model debugging toolboxes
This page lists all the debugging and model adding tools used by the library, as well as the utility functions it provides for it.
This page lists all the debugging and model adding tools used by the library, as well as the utility functions it
provides for it.
Most of those are only useful if you are adding new models in the library.
@ -26,13 +27,14 @@ Most of those are only useful if you are adding new models in the library.
### Model addition debugger - context manager for model adders
This context manager is a power user tool intended for model adders.
It tracks all forward calls within a model forward and logs a slice of each input and output on a nested Json.
To note, this context manager enforces `torch.no_grad()`.
This context manager is a power user tool intended for model adders. It tracks all forward calls within a model forward
and logs a slice of each input and output on a nested JSON. To note, this context manager enforces `torch.no_grad()`.
### Rationale
Because when porting models to transformers, even from python to python, model adders often have to do a lot of manual operations, involving saving and loading tensors, comparing dtypes, etc. This small tool can hopefully shave off some time.
When porting models to transformers, even from python to python, model adders often have to do a lot of manual
operations, involving saving and loading tensors, comparing dtypes, etc. This small tool can hopefully shave off some
time.
### Usage
@ -62,10 +64,10 @@ inputs = processor(text=prompt, images=random_image, return_tensors="pt")
# call forward method (not .generate!)
with model_addition_debugger_context(
model,
debug_path="optional_path_to_your_directory",
do_prune_layers=False # This will output ALL the layers of a model.
):
model,
debug_path="optional_path_to_your_directory",
do_prune_layers=False # This will output ALL the layers of a model.
):
output = model.forward(**inputs)
```
@ -73,8 +75,8 @@ with model_addition_debugger_context(
### Reading results
The debugger generates two files from the forward call, both with the same base name,
but ending either with `_SUMMARY.json` or with `_FULL_TENSORS.json`.
The debugger generates two files from the forward call, both with the same base name, but ending either with
`_SUMMARY.json` or with `_FULL_TENSORS.json`.
The first one will contain a summary of each module's _input_ and _output_ tensor values and shapes.
@ -142,8 +144,8 @@ The first one will contain a summary of each module's _input_ and _output_ tenso
{ ... and so on
```
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful
for comparing two files.
The `_FULL_TENSORS.json` file will display a full view of all tensors, which is useful for comparing two files.
```json
"pixel_values": {
"shape": "torch.Size([1, 5, 576, 588])",
@ -196,9 +198,38 @@ for comparing two files.
},
```
#### Saving tensors to disk
Some model adders may benefit from logging full tensor values to disk to support, for example, numerical analysis
across implementations.
Set `use_repr=False` to write tensors to disk using [SafeTensors](https://huggingface.co/docs/safetensors/en/index).
```python
with model_addition_debugger_context(
model,
debug_path="optional_path_to_your_directory",
do_prune_layers=False,
use_repr=False, # Defaults to True
):
output = model.forward(**inputs)
```
When using `use_repr=False`, tensors are written to the same disk location as the `_SUMMARY.json` and
`_FULL_TENSORS.json` files. The `value` property of entries in the `_FULL_TENSORS.json` file will contain a relative
path reference to the associated `.safetensors` file. Each tensor is written to its own file as the `data` property of
the state dictionary. File names are constructed using the `module_path` as a prefix with a few possible postfixes that
are built recursively.
* Module inputs are denoted with the `_inputs` and outputs by `_outputs`.
* `list` and `tuple` instances, such as `args` or function return values, will be postfixed with `_{index}`.
* `dict` instances will be postfixed with `_{key}`.
### Comparing between implementations
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
Once the forward passes of two models have been traced by the debugger, one can compare the `json` output files. See
below: we can see slight differences between these two implementations' key projection layer. Inputs are mostly
identical, but not quite. Looking through the file differences makes it easier to pinpoint which layer is wrong.
![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/files_difference_debugging.png)
@ -206,8 +237,13 @@ Once the forward passes of two models have been traced by the debugger, one can
### Limitations and scope
This feature will only work for torch-based models, and would require more work and case-by-case approach for say `jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be traced once instead of reran N times with breakpoints.
This feature will only work for torch-based models, and would require more work and case-by-case approach for say
`jax`-based models that are usually compiled. Models relying heavily on external kernel calls may work, but trace will
probably miss some things. Regardless, any python implementation that aims at mimicking another implementation can be
traced once instead of reran N times with breakpoints.
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N layers.
If you pass `do_prune_layers=False` to your model debugger, ALL the layers will be outputted to `json`. Else, only the
first and last layer will be shown. This is useful when some layers (typically cross-attention) appear only after N
layers.
[[autodoc]] model_addition_debugger_context

View File

@ -84,14 +84,17 @@ GenerationConfig {
}
```
You can customize [`~GenerationMixin.generate`] by overriding the parameters and values in [`GenerationConfig`]. Some of the most commonly adjusted parameters are [max_new_tokens](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.max_new_tokens), [num_beams](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.num_beams), [do_sample](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.do_sample), and [num_return_sequences](https://huggingface.co/docs/transformers/main_classes/text_generation#transformers.GenerationConfig.num_return_sequences).
You can customize [`~GenerationMixin.generate`] by overriding the parameters and values in [`GenerationConfig`]. See [this section below](#common-options) for commonly adjusted parameters.
```py
# enable beam search sampling strategy
model.generate(**inputs, num_beams=4, do_sample=True)
```
[`~GenerationMixin.generate`] can also be extended with external libraries or custom code. The `logits_processor` parameter accepts custom [`LogitsProcessor`] instances for manipulating the next token probability distribution. `stopping_criteria` supports custom [`StoppingCriteria`] to stop text generation. Check out the [logits-processor-zoo](https://github.com/NVIDIA/logits-processor-zoo) for more examples of external [`~GenerationMixin.generate`]-compatible extensions.
[`~GenerationMixin.generate`] can also be extended with external libraries or custom code:
1. the `logits_processor` parameter accepts custom [`LogitsProcessor`] instances for manipulating the next token probability distribution;
2. the `stopping_criteria` parameters supports custom [`StoppingCriteria`] to stop text generation;
3. other custom generation methods can be loaded through the `custom_generate` flag ([docs](generation_strategies.md/#custom-decoding-methods)).
Refer to the [Generation strategies](./generation_strategies) guide to learn more about search, sampling, and decoding strategies.

View File

@ -21,7 +21,7 @@ A **Video Processor** is a utility responsible for preparing input features for
The video processor extends the functionality of image processors by allowing Vision Large Language Models (VLMs) to handle videos with a distinct set of arguments compared to images. It serves as the bridge between raw video data and the model, ensuring that input features are optimized for the VLM.
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't upadted your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
When adding a new VLM or updating an existing one to enable distinct video preprocessing, saving and reloading the processor configuration will store the video related arguments in a dedicated file named `video_preprocessing_config.json`. Don't worry if you haven't updated your VLM, the processor will try to load video related configurations from a file named `preprocessing_config.json`.
### Usage Example

View File

@ -389,3 +389,9 @@ The following auto classes are available for the following multimodal tasks.
### AutoModelForImageTextToText
[[autodoc]] AutoModelForImageTextToText
## Time Series
### AutoModelForTimeSeriesPrediction
[[autodoc]] AutoModelForTimeSeriesPrediction

View File

@ -14,116 +14,87 @@ rendered properly in your Markdown viewer.
-->
# BART
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
# BART
[BART](https://huggingface.co/papers/1910.13461) is a sequence-to-sequence model that combines the pretraining objectives from BERT and GPT. Its pretrained by corrupting text in different ways like deleting words, shuffling sentences, or masking tokens and learning how to fix it. The encoder encodes the corrupted document and the corrupted text is fixed by the decoder. As it learns to recover the original text, BART gets really good at both understanding and generating language.
The Bart model was proposed in [BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension](https://arxiv.org/abs/1910.13461) by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer on 29 Oct, 2019.
You can find all the original BART checkpoints under the [AI at Meta](https://huggingface.co/facebook?search_models=bart) organization.
According to the abstract,
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
- Bart uses a standard seq2seq/machine translation architecture with a bidirectional encoder (like BERT) and a
left-to-right decoder (like GPT).
- The pretraining task involves randomly shuffling the order of the original sentences and a novel in-filling scheme,
where spans of text are replaced with a single mask token.
- BART is particularly effective when fine tuned for text generation but also works well for comprehension tasks. It
matches the performance of RoBERTa with comparable training resources on GLUE and SQuAD, achieves new
state-of-the-art results on a range of abstractive dialogue, question answering, and summarization tasks, with gains
of up to 6 ROUGE.
<hfoptions id="usage">
<hfoption id="Pipeline">
This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The authors' code can be found [here](https://github.com/pytorch/fairseq/tree/master/examples/bart).
```py
import torch
from transformers import pipeline
## Usage tips:
pipeline = pipeline(
task="fill-mask",
model="facebook/bart-large",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create <mask> through a process known as photosynthesis.")
- BART is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
- Sequence-to-sequence model with an encoder and a decoder. Encoder is fed a corrupted version of the tokens, decoder is fed the original tokens (but has a mask to hide the future words like a regular transformers decoder). A composition of the following transformations are applied on the pretraining tasks for the encoder:
```
</hfoption>
<hfoption id="AutoModel">
* mask random tokens (like in BERT)
* delete random tokens
* mask a span of k tokens with a single mask token (a span of 0 tokens is an insertion of a mask token)
* permute sentences
* rotate the document to make it start at a specific token
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
## Implementation Notes
tokenizer = AutoTokenizer.from_pretrained(
"facebook/bart-large",
)
model = AutoModelForMaskedLM.from_pretrained(
"facebook/bart-large",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
- Bart doesn't use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or
[`~BartTokenizer.encode`] to get the proper splitting.
- The forward pass of [`BartModel`] will create the `decoder_input_ids` if they are not passed.
This is different than some other modeling APIs. A typical use case of this feature is mask filling.
- Model predictions are intended to be identical to the original implementation when
`forced_bos_token_id=0`. This only works, however, if the string you pass to
[`fairseq.encode`] starts with a space.
- [`~generation.GenerationMixin.generate`] should be used for conditional generation tasks like
summarization, see the example in that docstrings.
- Models that load the *facebook/bart-large-cnn* weights will not have a `mask_token_id`, or be able to perform
mask-filling tasks.
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
## Mask Filling
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
The `facebook/bart-base` and `facebook/bart-large` checkpoints can be used to fill multi-token masks.
```python
from transformers import BartForConditionalGeneration, BartTokenizer
model = BartForConditionalGeneration.from_pretrained("facebook/bart-large", forced_bos_token_id=0)
tok = BartTokenizer.from_pretrained("facebook/bart-large")
example_english_phrase = "UN Chief Says There Is No <mask> in Syria"
batch = tok(example_english_phrase, return_tensors="pt")
generated_ids = model.generate(batch["input_ids"])
assert tok.batch_decode(generated_ids, skip_special_tokens=True) == [
"UN Chief Says There Is No Plan to Stop Chemical Weapons in Syria"
]
print(f"The predicted token is: {predicted_token}")
```
## Resources
</hfoption>
<hfoption id="transformers CLI">
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with BART. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
```bash
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model facebook/bart-large --device 0
```
<PipelineTag pipeline="summarization"/>
</hfoption>
</hfoptions>
- A blog post on [Distributed Training: Train BART/T5 for Summarization using 🤗 Transformers and Amazon SageMaker](https://huggingface.co/blog/sagemaker-distributed-training-seq2seq).
- A notebook on how to [finetune BART for summarization with fastai using blurr](https://colab.research.google.com/github/ohmeow/ohmeow_website/blob/master/posts/2021-05-25-mbart-sequence-classification-with-blurr.ipynb). 🌎
- A notebook on how to [finetune BART for summarization in two languages with Trainer class](https://colab.research.google.com/github/elsanns/xai-nlp-notebooks/blob/master/fine_tune_bart_summarization_two_langs.ipynb). 🌎
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization.ipynb).
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/summarization) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/summarization-tf.ipynb).
- [`FlaxBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/summarization).
- An example of how to train [`BartForConditionalGeneration`] with a Hugging Face `datasets` object can be found in this [forum discussion](https://discuss.huggingface.co/t/train-bart-for-conditional-generation-e-g-summarization/1904)
- [Summarization](https://huggingface.co/course/chapter7/5?fw=pt#summarization) chapter of the 🤗 Hugging Face course.
- [Summarization task guide](../tasks/summarization)
## Notes
<PipelineTag pipeline="fill-mask"/>
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb).
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb).
- [`FlaxBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb).
- [Masked language modeling](https://huggingface.co/course/chapter7/3?fw=pt) chapter of the 🤗 Hugging Face Course.
- [Masked language modeling task guide](../tasks/masked_language_modeling)
<PipelineTag pipeline="translation"/>
- A notebook on how to [finetune mBART using Seq2SeqTrainer for Hindi to English translation](https://colab.research.google.com/github/vasudevgupta7/huggingface-tutorials/blob/main/translation_training.ipynb). 🌎
- [`BartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb).
- [`TFBartForConditionalGeneration`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/translation) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb).
- [Translation task guide](../tasks/translation)
See also:
- [Text classification task guide](../tasks/sequence_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Distilled checkpoints](https://huggingface.co/models?search=distilbart) are described in this [paper](https://arxiv.org/abs/2010.13002).
- Inputs should be padded on the right because BERT uses absolute position embeddings.
- The [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) checkpoint doesn't include `mask_token_id` which means it can't perform mask-filling tasks.
- BART doesnt use `token_type_ids` for sequence classification. Use [`BartTokenizer`] or [`~PreTrainedTokenizerBase.encode`] to get the proper splitting.
- The forward pass of [`BartModel`] creates the `decoder_input_ids` if they're not passed. This can be different from other model APIs, but it is a useful feature for mask-filling tasks.
- Model predictions are intended to be identical to the original implementation when `forced_bos_token_id=0`. This only works if the text passed to `fairseq.encode` begins with a space.
- [`~GenerationMixin.generate`] should be used for conditional generation tasks like summarization.
## BartConfig

View File

@ -16,60 +16,82 @@ rendered properly in your Markdown viewer.
# BERTweet
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
## Overview
## BERTweet
The BERTweet model was proposed in [BERTweet: A pre-trained language model for English Tweets](https://www.aclweb.org/anthology/2020.emnlp-demos.2.pdf) by Dat Quoc Nguyen, Thanh Vu, Anh Tuan Nguyen.
[BERTweet](https://huggingface.co/papers/2005.10200) shares the same architecture as [BERT-base](./bert), but its pretrained like [RoBERTa](./roberta) on English Tweets. It performs really well on Tweet-related tasks like part-of-speech tagging, named entity recognition, and text classification.
The abstract from the paper is the following:
*We present BERTweet, the first public large-scale pre-trained language model for English Tweets. Our BERTweet, having
the same architecture as BERT-base (Devlin et al., 2019), is trained using the RoBERTa pre-training procedure (Liu et
al., 2019). Experiments show that BERTweet outperforms strong baselines RoBERTa-base and XLM-R-base (Conneau et al.,
2020), producing better performance results than the previous state-of-the-art models on three Tweet NLP tasks:
Part-of-speech tagging, Named-entity recognition and text classification.*
You can find all the original BERTweet checkpoints under the [VinAI Research](https://huggingface.co/vinai?search_models=BERTweet) organization.
This model was contributed by [dqnguyen](https://huggingface.co/dqnguyen). The original code can be found [here](https://github.com/VinAIResearch/BERTweet).
> [!TIP]
> Refer to the [BERT](./bert) docs for more examples of how to apply BERTweet to different language tasks.
## Usage example
The example below demonstrates how to predict the `<mask>` token with [`Pipeline`], [`AutoModel`], and from the command line.
```python
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
<hfoptions id="usage">
<hfoption id="Pipeline">
>>> bertweet = AutoModel.from_pretrained("vinai/bertweet-base")
```py
import torch
from transformers import pipeline
>>> # For transformers v4.x+:
>>> tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base", use_fast=False)
pipeline = pipeline(
task="fill-mask",
model="vinai/bertweet-base",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create <mask> through a process known as photosynthesis.")
```
</hfoption>
<hfoption id="AutoModel">
>>> # For transformers v3.x:
>>> # tokenizer = AutoTokenizer.from_pretrained("vinai/bertweet-base")
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
>>> # INPUT TWEET IS ALREADY NORMALIZED!
>>> line = "SC has first two presumptive cases of coronavirus , DHEC confirms HTTPURL via @USER :cry:"
tokenizer = AutoTokenizer.from_pretrained(
"vinai/bertweet-base",
)
model = AutoModelForMaskedLM.from_pretrained(
"vinai/bertweet-base",
torch_dtype=torch.float16,
device_map="auto"
)
inputs = tokenizer("Plants create <mask> through a process known as photosynthesis.", return_tensors="pt").to("cuda")
>>> input_ids = torch.tensor([tokenizer.encode(line)])
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
>>> with torch.no_grad():
... features = bertweet(input_ids) # Models outputs are now tuples
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
>>> # With TensorFlow 2.0+:
>>> # from transformers import TFAutoModel
>>> # bertweet = TFAutoModel.from_pretrained("vinai/bertweet-base")
print(f"The predicted token is: {predicted_token}")
```
<Tip>
</hfoption>
<hfoption id="transformers CLI">
This implementation is the same as BERT, except for tokenization method. Refer to [BERT documentation](bert) for
API reference information.
```bash
echo -e "Plants create <mask> through a process known as photosynthesis." | transformers-cli run --task fill-mask --model vinai/bertweet-base --device 0
```
</Tip>
</hfoption>
</hfoptions>
## Notes
- Use the [`AutoTokenizer`] or [`BertweetTokenizer`] because its preloaded with a custom vocabulary adapted to tweet-specific tokens like hashtags (#), mentions (@), emojis, and common abbreviations. Make sure to also install the [emoji](https://pypi.org/project/emoji/) library.
- Inputs should be padded on the right (`padding="max_length"`) because BERT uses absolute position embeddings.
## BertweetTokenizer

View File

@ -14,63 +14,87 @@ rendered properly in your Markdown viewer.
-->
# BigBird
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
<img alt= "Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
</div>
## Overview
# BigBird
The BigBird model was proposed in [Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) by
Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon,
Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others. BigBird, is a sparse-attention
based transformer which extends Transformer based models, such as BERT to much longer sequences. In addition to sparse
attention, BigBird also applies global attention as well as random attention to the input sequence. Theoretically, it
has been shown that applying sparse, global, and random attention approximates full attention, while being
computationally much more efficient for longer sequences. As a consequence of the capability to handle longer context,
BigBird has shown improved performance on various long document NLP tasks, such as question answering and
summarization, compared to BERT or RoBERTa.
[BigBird](https://huggingface.co/papers/2007.14062) is a transformer model built to handle sequence lengths up to 4096 compared to 512 for [BERT](./bert). Traditional transformers struggle with long inputs because attention gets really expensive as the sequence length grows. BigBird fixes this by using a sparse attention mechanism, which means it doesnt try to look at everything at once. Instead, it mixes in local attention, random attention, and a few global tokens to process the whole input. This combination gives it the best of both worlds. It keeps the computation efficient while still capturing enough of the sequence to understand it well. Because of this, BigBird is great at tasks involving long documents, like question answering, summarization, and genomic applications.
The abstract from the paper is the following:
*Transformers-based models, such as BERT, have been one of the most successful deep learning models for NLP.
Unfortunately, one of their core limitations is the quadratic dependency (mainly in terms of memory) on the sequence
length due to their full attention mechanism. To remedy this, we propose, BigBird, a sparse attention mechanism that
reduces this quadratic dependency to linear. We show that BigBird is a universal approximator of sequence functions and
is Turing complete, thereby preserving these properties of the quadratic, full attention model. Along the way, our
theoretical analysis reveals some of the benefits of having O(1) global tokens (such as CLS), that attend to the entire
sequence as part of the sparse attention mechanism. The proposed sparse attention can handle sequences of length up to
8x of what was previously possible using similar hardware. As a consequence of the capability to handle longer context,
BigBird drastically improves performance on various NLP tasks such as question answering and summarization. We also
propose novel applications to genomics data.*
You can find all the original BigBird checkpoints under the [Google](https://huggingface.co/google?search_models=bigbird) organization.
This model was contributed by [vasudevgupta](https://huggingface.co/vasudevgupta). The original code can be found
[here](https://github.com/google-research/bigbird).
> [!TIP]
> Click on the BigBird models in the right sidebar for more examples of how to apply BigBird to different language tasks.
## Usage tips
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
- For an in-detail explanation on how BigBird's attention works, see [this blog post](https://huggingface.co/blog/big-bird).
- BigBird comes with 2 implementations: **original_full** & **block_sparse**. For the sequence length < 1024, using
**original_full** is advised as there is no benefit in using **block_sparse** attention.
- The code currently uses window size of 3 blocks and 2 global blocks.
- Sequence length must be divisible by block size.
- Current implementation supports only **ITC**.
- Current implementation doesn't support **num_random_blocks = 0**
- BigBird is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipeline = pipeline(
task="fill-mask",
model="google/bigbird-roberta-base",
torch_dtype=torch.float16,
device=0
)
pipeline("Plants create [MASK] through a process known as photosynthesis.")
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"google/bigbird-roberta-base",
)
model = AutoModelForMaskedLM.from_pretrained(
"google/bigbird-roberta-base",
torch_dtype=torch.float16,
device_map="auto",
)
inputs = tokenizer("Plants create [MASK] through a process known as photosynthesis.", return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model(**inputs)
predictions = outputs.logits
masked_index = torch.where(inputs['input_ids'] == tokenizer.mask_token_id)[1]
predicted_token_id = predictions[0, masked_index].argmax(dim=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print(f"The predicted token is: {predicted_token}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
!echo -e "Plants create [MASK] through a process known as photosynthesis." | transformers-cli run --task fill-mask --model google/bigbird-roberta-base --device 0
```
</hfoption>
</hfoptions>
## Notes
- Inputs should be padded on the right because BigBird uses absolute position embeddings.
- BigBird supports `original_full` and `block_sparse` attention. If the input sequence length is less than 1024, it is recommended to use `original_full` since sparse patterns don't offer much benefit for smaller inputs.
- The current implementation uses window size of 3 blocks and 2 global blocks, only supports the ITC-implementation, and doesn't support `num_random_blocks=0`.
- The sequence length must be divisible by the block size.
## Resources
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
- Read the [BigBird](https://huggingface.co/blog/big-bird) blog post for more details about how its attention works.
## BigBirdConfig

View File

@ -14,78 +14,121 @@ rendered properly in your Markdown viewer.
-->
# BioGPT
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# BioGPT
The BioGPT model was proposed in [BioGPT: generative pre-trained transformer for biomedical text generation and mining](https://academic.oup.com/bib/advance-article/doi/10.1093/bib/bbac409/6713511?guestAccessKey=a66d9b5d-4f83-4017-bb52-405815c907b9) by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu. BioGPT is a domain-specific generative pre-trained Transformer language model for biomedical text generation and mining. BioGPT follows the Transformer language model backbone, and is pre-trained on 15M PubMed abstracts from scratch.
[BioGPT](https://huggingface.co/papers/2210.10341) is a generative Transformer model based on [GPT-2](./gpt2) and pretrained on 15 million PubMed abstracts. It is designed for biomedical language tasks.
The abstract from the paper is the following:
You can find all the original BioGPT checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=biogpt) organization.
*Pre-trained language models have attracted increasing attention in the biomedical domain, inspired by their great success in the general natural language domain. Among the two main branches of pre-trained language models in the general language domain, i.e. BERT (and its variants) and GPT (and its variants), the first one has been extensively studied in the biomedical domain, such as BioBERT and PubMedBERT. While they have achieved great success on a variety of discriminative downstream biomedical tasks, the lack of generation ability constrains their application scope. In this paper, we propose BioGPT, a domain-specific generative Transformer language model pre-trained on large-scale biomedical literature. We evaluate BioGPT on six biomedical natural language processing tasks and demonstrate that our model outperforms previous models on most tasks. Especially, we get 44.98%, 38.42% and 40.76% F1 score on BC5CDR, KD-DTI and DDI end-to-end relation extraction tasks, respectively, and 78.2% accuracy on PubMedQA, creating a new record. Our case study on text generation further demonstrates the advantage of BioGPT on biomedical literature to generate fluent descriptions for biomedical terms.*
> [!TIP]
> Click on the BioGPT models in the right sidebar for more examples of how to apply BioGPT to different language tasks.
This model was contributed by [kamalkraj](https://huggingface.co/kamalkraj). The original code can be found [here](https://github.com/microsoft/BioGPT).
The example below demonstrates how to generate biomedical text with [`Pipeline`], [`AutoModel`], and also from the command line.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- BioGPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left.
- BioGPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows BioGPT to generate syntactically coherent text as it can be observed in the run_generation.py example script.
- The model can take the `past_key_values` (for PyTorch) as input, which is the previously computed key/value attention pairs. Using this (past_key_values or past) value prevents the model from re-computing pre-computed values in the context of text generation. For PyTorch, see past_key_values argument of the BioGptForCausalLM.forward() method for more information on its usage.
- The `head_mask` argument is ignored when using all attention implementation other than "eager". If you have a `head_mask` and want it to have effect, load the model with `XXXModel.from_pretrained(model_id, attn_implementation="eager")`
```py
import torch
from transformers import pipeline
### Using Scaled Dot Product Attention (SDPA)
PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function
encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the
[official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html)
or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention)
page for more information.
SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set
`attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used.
```
from transformers import BioGptForCausalLM
model = BioGptForCausalLM.from_pretrained("microsoft/biogpt", attn_implementation="sdpa", torch_dtype=torch.float16)
generator = pipeline(
task="text-generation",
model="microsoft/biogpt",
torch_dtype=torch.float16,
device=0,
)
result = generator("Ibuprofen is best used for", truncation=True, max_length=50, do_sample=True)[0]["generated_text"]
print(result)
```
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and `microsoft/biogpt` model with a CausalLM head,
we saw the following speedups during training.
</hfoption>
<hfoption id="AutoModel">
For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`).
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
| num_training_steps | batch_size | seq_len | is cuda | Time per batch (eager - s) | Time per batch (sdpa - s) | Speedup (%) | Eager peak mem (MB) | sdpa peak mem (MB) | Mem saving (%) |
|--------------------|------------|---------|---------|----------------------------|---------------------------|-------------|---------------------|--------------------|----------------|
| 100 | 1 | 128 | False | 0.038 | 0.031 | 21.301 | 1601.862 | 1601.497 | 0.023 |
| 100 | 1 | 256 | False | 0.039 | 0.034 | 15.084 | 1624.944 | 1625.296 | -0.022 |
| 100 | 2 | 128 | False | 0.039 | 0.033 | 16.820 | 1624.567 | 1625.296 | -0.045 |
| 100 | 2 | 256 | False | 0.065 | 0.059 | 10.255 | 1672.164 | 1672.164 | 0.000 |
| 100 | 4 | 128 | False | 0.062 | 0.058 | 6.998 | 1671.435 | 1672.164 | -0.044 |
| 100 | 4 | 256 | False | 0.113 | 0.100 | 13.316 | 2350.179 | 1848.435 | 27.144 |
| 100 | 8 | 128 | False | 0.107 | 0.098 | 9.883 | 2098.521 | 1848.435 | 13.530 |
| 100 | 8 | 256 | False | 0.222 | 0.196 | 13.413 | 3989.980 | 2986.492 | 33.601 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/biogpt",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
On a local benchmark (NVIDIA GeForce RTX 2060-8GB, PyTorch 2.3.1, OS Ubuntu 20.04) with `float16` and `microsoft/biogpt` model with a simple AutoModel head,
we saw the following speedups during inference.
input_text = "Ibuprofen is best used for"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
| num_batches | batch_size | seq_len | is cuda | is half | use mask | Per token latency eager (ms) | Per token latency SDPA (ms) | Speedup (%) | Mem eager (MB) | Mem BT (MB) | Mem saved (%) |
|-------------|------------|---------|---------|---------|----------|------------------------------|-----------------------------|-------------|----------------|--------------|---------------|
| 50 | 1 | 64 | True | True | True | 0.115 | 0.098 | 17.392 | 716.998 | 716.998 | 0.000 |
| 50 | 1 | 128 | True | True | True | 0.115 | 0.093 | 24.640 | 730.916 | 730.916 | 0.000 |
| 50 | 2 | 64 | True | True | True | 0.114 | 0.096 | 19.204 | 730.900 | 730.900 | 0.000 |
| 50 | 2 | 128 | True | True | True | 0.117 | 0.095 | 23.529 | 759.262 | 759.262 | 0.000 |
| 50 | 4 | 64 | True | True | True | 0.113 | 0.096 | 18.325 | 759.229 | 759.229 | 0.000 |
| 50 | 4 | 128 | True | True | True | 0.186 | 0.178 | 4.289 | 816.478 | 816.478 | 0.000 |
with torch.no_grad():
generated_ids = model.generate(**inputs, max_length=50)
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(output)
```
</hfoption>
<hfoption id="transformers CLI">
## Resources
```bash
echo -e "Ibuprofen is best used for" | transformers-cli run --task text-generation --model microsoft/biogpt --device 0
```
- [Causal language modeling task guide](../tasks/language_modeling)
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to 4-bit precision.
```py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/BioGPT-Large")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/BioGPT-Large",
quantization_config=bnb_config,
torch_dtype=torch.bfloat16,
device_map="auto"
)
input_text = "Ibuprofen is best used for"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad():
generated_ids = model.generate(**inputs, max_length=50)
output = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
print(output)
```
## Notes
- Pad inputs on the right because BioGPT uses absolute position embeddings.
- BioGPT can reuse previously computed key-value attention pairs. Access this feature with the [past_key_values](https://huggingface.co/docs/transformers/main/en/model_doc/biogpt#transformers.BioGptModel.forward.past_key_values) parameter in [`BioGPTModel.forward`].
- The `head_mask` argument is ignored when using an attention implementation other than "eager". If you want to use `head_mask`, make sure `attn_implementation="eager"`).
```py
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained(
"microsoft/biogpt",
attn_implementation="eager"
)
## BioGptConfig
@ -109,7 +152,7 @@ we saw the following speedups during inference.
[[autodoc]] BioGptForCausalLM
- forward
## BioGptForTokenClassification
[[autodoc]] BioGptForTokenClassification

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
Note that [`BlenderbotSmallModel`] and
@ -52,7 +54,7 @@ found [here](https://github.com/facebookresearch/ParlAI).
## Usage tips
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
Blenderbot Small is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than
the left.

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
@ -45,7 +47,7 @@ This model was contributed by [sshleifer](https://huggingface.co/sshleifer). The
## Usage tips and example
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
Blenderbot is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
rather than the left.
An example:
@ -71,7 +73,7 @@ An example:
`facebook/blenderbot_small_90M`, have a different architecture and consequently should be used with
[BlenderbotSmall](blenderbot-small).
## Resources
- [Causal language modeling task guide](../tasks/language_modeling)

View File

@ -39,7 +39,7 @@ CSM can be used to simply generate speech from a text prompt:
import torch
from transformers import CsmForConditionalGeneration, AutoProcessor
model_id = "eustlb/csm-1b"
model_id = "sesame/csm-1b"
device = "cuda" if torch.cuda.is_available() else "cpu"
# load the model and the processor
@ -74,7 +74,7 @@ import torch
from transformers import CsmForConditionalGeneration, AutoProcessor
from datasets import load_dataset, Audio
model_id = "eustlb/csm-1b"
model_id = "sesame/csm-1b"
device = "cuda" if torch.cuda.is_available() else "cpu"
# load the model and the processor
@ -119,7 +119,7 @@ import torch
from transformers import CsmForConditionalGeneration, AutoProcessor
from datasets import load_dataset, Audio
model_id = "eustlb/csm-1b"
model_id = "sesame/csm-1b"
device = "cuda" if torch.cuda.is_available() else "cpu"
# load the model and the processor
@ -176,7 +176,7 @@ import copy
from transformers import CsmForConditionalGeneration, AutoProcessor
from datasets import load_dataset
model_id = "eustlb/csm-1b"
model_id = "sesame/csm-1b"
device = "cuda"
# set logs to ensure no recompilation and graph breaks
@ -308,13 +308,14 @@ CSM Transformers integration supports training!
from transformers import CsmForConditionalGeneration, AutoProcessor
from datasets import load_dataset, Audio
model_id = "eustlb/csm-1b"
model_id = "sesame/csm-1b"
device = "cuda"
# load the model and the processor
processor = AutoProcessor.from_pretrained(model_id)
model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device)
model.train()
model.codec_model.eval()
ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train")
# ensure the audio is 24kHz
@ -355,6 +356,10 @@ The original code can be found [here](https://github.com/SesameAILabs/csm).
## CsmProcessor
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/eustlb/documentation-images/resolve/main/fig1.jpg"/>
</div>
[[autodoc]] CsmProcessor
- __call__

View File

@ -28,8 +28,8 @@ We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 67
We are super happy to make this code community-powered, and would love to see how you can best optimize the following:
- current implementation uses the "naive" attention compution (so not really MLA)
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `intetrations/tensor_parallel`.
- current implementation uses the eleuther formula for ROPE, using the orginal one would be more efficient! (should still follow our API)
- current implementation loops through the experts. This should be replaced. Pointers to use `get_packed_weights` from `integrations/tensor_parallel`.
- current implementation uses the eleuther formula for ROPE, using the original one would be more efficient! (should still follow our API)
- static cache is not supported (this should be just a generation config issue / config shape issues)
### Usage tips

View File

@ -9,12 +9,11 @@ Unless required by applicable law or agreed to in writing, software distributed
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Granite
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
@ -22,49 +21,94 @@ rendered properly in your Markdown viewer.
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
# Granite
The Granite model was proposed in [Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler](https://arxiv.org/abs/2408.13359) by Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adriana Meza Soria, David D. Cox and Rameswar Panda.
[Granite](https://huggingface.co/papers/2408.13359) is a 3B parameter language model trained with the Power scheduler. Discovering a good learning rate for pretraining large language models is difficult because it depends on so many variables (batch size, number of training tokens, etc.) and it is expensive to perform a hyperparameter search. The Power scheduler is based on a power-law relationship between the variables and their transferability to larger models. Combining the Power scheduler with Maximum Update Parameterization (MUP) allows a model to be pretrained with one set of hyperparameters regardless of all the variables.
PowerLM-3B is a 3B state-of-the-art small language model trained with the Power learning rate scheduler. It is trained on a wide range of open-source and synthetic datasets with permissive licenses. PowerLM-3B has shown promising results compared to other models in the size categories across various benchmarks, including natural language multi-choices, code generation, and math reasoning.
You can find all the original Granite checkpoints under the [IBM-Granite](https://huggingface.co/ibm-granite) organization.
The abstract from the paper is the following:
> [!TIP]
> Click on the Granite models in the right sidebar for more examples of how to apply Granite to different language tasks.
*Finding the optimal learning rate for language model pretraining is a challenging task.
This is not only because there is a complicated correlation between learning rate, batch size, number of training tokens, model size, and other hyperparameters but also because it is prohibitively expensive to perform a hyperparameter search for large language models with Billions or Trillions of parameters. Recent studies propose using small proxy models and small corpus to perform hyperparameter searches and transposing the optimal parameters to large models and large corpus. While the zero-shot transferability is theoretically and empirically proven for model size related hyperparameters, like depth and width, the zero-shot transfer from small corpus to large corpus is underexplored.
In this paper, we study the correlation between optimal learning rate, batch size, and number of training tokens for the recently proposed WSD scheduler. After thousands of small experiments, we found a power-law relationship between variables and demonstrated its transferability across model sizes. Based on the observation, we propose a new learning rate scheduler, Power scheduler, that is agnostic about the number of training tokens and batch size. The experiment shows that combining the Power scheduler with Maximum Update Parameterization (\mup) can consistently achieve impressive performance with one set of hyperparameters regardless of the number of training tokens, batch size, model size, and even model architecture. Our 3B dense and MoE models trained with the Power scheduler achieve comparable performance as state-of-the-art small language models.
We [open source](https://huggingface.co/collections/ibm/power-lm-66be64ae647ddf11b9808000) these pretrained models.*
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`, and from the command line.
Tips:
<hfoptions id="usage">
<hfoption id="Pipeline">
```python
import torch
from transformers import pipeline
pipe = pipeline(
task="text-generation",
model="ibm-granite/granite-3.3-2b-base",
torch_dtype=torch.bfloat16,
device=0
)
pipe("Explain quantum computing in simple terms ", max_new_tokens=50)
```
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "ibm/PowerLM-3b"
tokenizer = AutoTokenizer.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.3-2b-base")
model = AutoModelForCausalLM.from_pretrained(
"ibm-granite/granite-3.3-2b-base",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto")
model.eval()
inputs = tokenizer("Explain quantum computing in simple terms", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
# change input text as desired
prompt = "Write a code to find the maximum value in a list of numbers."
```python
echo -e "Explain quantum computing simply." | transformers-cli run --task text-generation --model ibm-granite/granite-3.3-8b-instruct --device 0
```
</hfoption>
</hfoptions>
# tokenize the text
input_tokens = tokenizer(prompt, return_tensors="pt")
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=100)
# decode output tokens into text
output = tokenizer.batch_decode(output)
# loop over the batch to print, in this example the batch size is 1
for i in output:
print(i)
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes](../quantization/bitsandbytes) to only quantize the weights to int4.
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.3-8b-base")
model = AutoModelForCausalLM.from_pretrained("ibm-granite/granite-3.3-8b-base", torch_dtype=torch.bfloat16, device_map="auto", attn_implementation="sdpa", quantization_config=quantization_config)
inputs = tokenizer("Explain quantum computing in simple terms", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(""ibm-granite/granite-3.3-2b-base"")
model = AutoModelForCausalLM.from_pretrained(
"ibm-granite/granite-3.3-2b-base",
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa",
quantization_config=quantization_config,
)
input_ids = tokenizer("Explain artificial intelligence to a 10 year old", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_length=50, cache_implementation="static")
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
This model was contributed by [mayank-mishra](https://huggingface.co/mayank-mishra).
## GraniteConfig
[[autodoc]] GraniteConfig

View File

@ -99,7 +99,7 @@ quantization_config = BitsAndBytesConfig(load_in_8bit=True,
device_map = {'model.embed_tokens': 0, 'model.layers.0': 0, 'model.layers.1': 0, 'model.layers.2': 0, 'model.layers.3': 0, 'model.layers.4': 0, 'model.layers.5': 0, 'model.layers.6': 0, 'model.layers.7': 0, 'model.layers.8': 0, 'model.layers.9': 1, 'model.layers.10': 1, 'model.layers.11': 1, 'model.layers.12': 1, 'model.layers.13': 1, 'model.layers.14': 1, 'model.layers.15': 1, 'model.layers.16': 1, 'model.layers.17': 1, 'model.layers.18': 2, 'model.layers.19': 2, 'model.layers.20': 2, 'model.layers.21': 2, 'model.layers.22': 2, 'model.layers.23': 2, 'model.layers.24': 2, 'model.layers.25': 2, 'model.layers.26': 2, 'model.layers.27': 3, 'model.layers.28': 3, 'model.layers.29': 3, 'model.layers.30': 3, 'model.layers.31': 3, 'model.layers.32': 3, 'model.layers.33': 3, 'model.layers.34': 3, 'model.layers.35': 3, 'model.layers.36': 4, 'model.layers.37': 4, 'model.layers.38': 4, 'model.layers.39': 4, 'model.layers.40': 4, 'model.layers.41': 4, 'model.layers.42': 4, 'model.layers.43': 4, 'model.layers.44': 4, 'model.layers.45': 5, 'model.layers.46': 5, 'model.layers.47': 5, 'model.layers.48': 5, 'model.layers.49': 5, 'model.layers.50': 5, 'model.layers.51': 5, 'model.layers.52': 5, 'model.layers.53': 5, 'model.layers.54': 6, 'model.layers.55': 6, 'model.layers.56': 6, 'model.layers.57': 6, 'model.layers.58': 6, 'model.layers.59': 6, 'model.layers.60': 6, 'model.layers.61': 6, 'model.layers.62': 6, 'model.layers.63': 7, 'model.layers.64': 7, 'model.layers.65': 7, 'model.layers.66': 7, 'model.layers.67': 7, 'model.layers.68': 7, 'model.layers.69': 7, 'model.layers.70': 7, 'model.layers.71': 7, 'model.final_layernorm': 7, 'lm_head': 7}
model = AutoModelForCausalLM.from_pretrained("ai21labs/AI21-Jamba-Large-1.6",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
attn_implementation="flash_attention_2",
quantization_config=quantization_config,
device_map=device_map)

View File

@ -14,47 +14,94 @@ rendered properly in your Markdown viewer.
-->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
# Mamba 2
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
[Mamba 2](https://huggingface.co/papers/2405.21060) is based on the state space duality (SSD) framework which connects structured state space models (SSMs) and attention variants. It uses a more efficient SSD algorithm that is 2-8x faster than Mamba and modifies the architecture to enable tensor parallelism and a grouped-value attention (GVA) head structure.
## Overview
You can find all the original Mamba 2 checkpoints under the [State Space Models](https://huggingface.co/state-spaces) organization, but the examples shown below use [mistralai/Mamba-Codestral-7B-v0.1](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) because a Hugging Face implementation isn't supported yet for the original checkpoints.
The Mamba2 model was proposed in [Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality](https://arxiv.org/abs/2405.21060) by Tri Dao and Albert Gu. It is a State Space Model similar to Mamba 1, with better performances in a simplified architecture.
> [!TIP]
> Click on the Mamba models in the right sidebar for more examples of how to apply Mamba to different language tasks.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`], and from the command line.
The abstract from the paper is the following:
hfoptions id="usage">
<hfoption id="Pipeline">
*While Transformers have been the main architecture behind deep learning's success in language modeling, state-space models (SSMs) such as Mamba have recently been shown to match or outperform Transformers at small to medium scale. We show that these families of models are actually quite closely related, and develop a rich framework of theoretical connections between SSMs and variants of attention, connected through various decompositions of a well-studied class of structured semiseparable matrices. Our state space duality (SSD) framework allows us to design a new architecture (Mamba-2) whose core layer is an a refinement of Mamba's selective SSM that is 2-8X faster, while continuing to be competitive with Transformers on language modeling.*
Tips:
This version should support all implementations of Mamba 2, and in particular [Mamba-2 codestral](https://huggingface.co/mistralai/Mamba-Codestral-7B-v0.1) from Mistral AI. In particular, mamba 2 codestral was released with a number of `groups` equal to 8, which can be thought intuitively as similar to the number of kv heads in an attention-based model.
This model has two different forward passes, `torch_forward` or `cuda_kernels_forward`. The latter uses the original cuda kernels if they are found in your environment, and is slower on the prefill i.e. requires a "warmup run" due to high cpu overhead, see [here](https://github.com/state-spaces/mamba/issues/389#issuecomment-2171755306) and [also here](https://github.com/state-spaces/mamba/issues/355#issuecomment-2147597457). Without compilation, the `torch_forward` implementation is faster by a factor 3 to 4. Further, there are no positional embeddings in this model, but there is an `attention_mask` and a specific logic to mask out hidden states in two places in the case of batched generation, see [here](https://github.com/state-spaces/mamba/issues/66#issuecomment-1863563829) as well. Due to this, in addition to the reimplementation of mamba2 kernels, batched generation and cached generation are expected to have slight discrepancies. Further, the results given by the cuda kernels or the torch forward are expected to be slightly different. The SSM algorithm heavily relies on tensor contractions, which have matmul equivalents but the order of operations is slightly different, making the difference greater at smaller precisions.
Another note, shutdown of hidden states corresponding to padding tokens is done in 2 places and mostly has been tested with left-padding. Right-padding will propagate noise down the line and is not guaranteed to yield satisfactory results. `tokenizer.padding_side = "left"` ensures you are using the correct padding side.
This model was contributed by [Molbap](https://huggingface.co/Molbap), with tremendous help from [Anton Vlasjuk](https://github.com/vasqu).
The original code can be found [here](https://github.com/state-spaces/mamba).
# Usage
### A simple generation example:
```python
from transformers import Mamba2Config, Mamba2ForCausalLM, AutoTokenizer
```python
import torch
model_id = 'mistralai/Mamba-Codestral-7B-v0.1'
tokenizer = AutoTokenizer.from_pretrained(model_id, revision='refs/pr/9', from_slow=True, legacy=False)
model = Mamba2ForCausalLM.from_pretrained(model_id, revision='refs/pr/9')
input_ids = tokenizer("Hey how are you doing?", return_tensors= "pt")["input_ids"]
from transformers import pipeline
out = model.generate(input_ids, max_new_tokens=10)
print(tokenizer.batch_decode(out))
pipeline = pipeline(
task="text-generation",
model="mistralai/Mamba-Codestral-7B-v0.1",
torch_dtype=torch.bfloat16,
device=0
)
pipeline("Plants create energy through a process known as")
```
Here's a draft script for finetuning:
</hfoption>
<hfoption id="AutoModel">
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1", torch_dtype=torch.bfloat16, device_map="auto")
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model mistralai/Mamba-Codestral-7B-v0.1 --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bit integers.
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
quantization_config = TorchAoConfig("int4_weight_only", group_size=128)
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mamba-Codestral-7B-v0.1", torch_dtype=torch.bfloat16, quantization_config=quantization_config, device_map="auto")
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to("cuda")
output = model.generate(**input_ids)
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- Codestral Mamba has `groups=8` which are similar to the number of kv heads in an attention-based model.
- Codestral Mamba has two different forward passes, `torch_forward` or `cuda_kernels_forward`, and their results are expected to be slightly different.
- `torch_forward` without compilation is 3-4x faster than `cuda_kernels_forward`.
- `cuda_kernels_forward` uses the original CUDA kernels if they're available in your environment. It is slower during prefill because it requires a "warmup run" due to the higher CPU overhead (see [these](https://github.com/state-spaces/mamba/issues/389#issuecomment-2171755306) [comments](https://github.com/state-spaces/mamba/issues/355#issuecomment-2147597457) for more details).
- There are no positional embeddings in this model, but there is an `attention_mask` and a specific logic to mask out hidden states in two places in the case of batched generation (see this [comment](https://github.com/state-spaces/mamba/issues/66#issuecomment-1863563829) for more details). This (and the addition of the reimplemented Mamba 2 kernels) results in a slight discrepancy between batched and cached generation.
- The SSM algorithm heavily relies on tensor contractions, which have matmul equivalents but the order of operations is slightly different. This makes the difference greater at smaller precisions.
- Hidden states that correspond to padding tokens is shutdown in 2 places and is mostly tested with left-padding. Right-padding propagates noise down the line and is not guaranteed to yield satisfactory results. `tokenizer.padding_side = "left"` ensures you are using the correct padding side.
- The example below demonstrates how to fine-tune Mamba 2 with [PEFT](https://huggingface.co/docs/peft).
```python
from trl import SFTTrainer
from peft import LoraConfig

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
@ -155,7 +157,7 @@ Example of translating english to many romance languages, using old-style 2 char
>>> model = MarianMTModel.from_pretrained(model_name)
>>> translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))
>>> tgt_text = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
["c'est une phrase en anglais que nous voulons traduire en français",
["c'est une phrase en anglais que nous voulons traduire en français",
'Isto deve ir para o português.',
'Y esto al español']
```

View File

@ -51,10 +51,10 @@ The original code can be found [here](https://github.com/facebookresearch/fairse
## Implementation differences with SwitchTransformers
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that for each input, only the top two experts are selected based on the
highest predicted probabilities from the gating network, and the remaining experts are ignored. In `SwitchTransformers`, only the top-1 probabilities are computed,
which means that tokens have less probability of being forwarded. Moreover, if a token is not routed to any expert, `SwitchTransformers` still adds its unmodified hidden
states (kind of like a residual connection) while they are masked in `NLLB`'s top-2 routing mechanism.
The biggest difference is the way the tokens are routed. NLLB-MoE uses a `top-2-gate` which means that for each input, only the top two experts are selected based on the
highest predicted probabilities from the gating network, and the remaining experts are ignored. In `SwitchTransformers`, only the top-1 probabilities are computed,
which means that tokens have less probability of being forwarded. Moreover, if a token is not routed to any expert, `SwitchTransformers` still adds its unmodified hidden
states (kind of like a residual connection) while they are masked in `NLLB`'s top-2 routing mechanism.
## Generating with NLLB-MoE

View File

@ -14,27 +14,119 @@ rendered properly in your Markdown viewer.
-->
# OLMo2
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# OLMo2
[OLMo2](https://huggingface.co/papers/2501.00656) improves on [OLMo](./olmo) by changing the architecture and training recipes of the original models. This includes excluding all biases to improve training stability, non-parametric layer norm, SwiGLU activation function, rotary positional embeddings, and a modified BPE-based tokenizer that masks personal identifiable information. It is pretrained on [Dolma](https://huggingface.co/datasets/allenai/dolma), a dataset of 3T tokens.
The OLMo2 model is the successor of the OLMo model, which was proposed in
[OLMo: Accelerating the Science of Language Models](https://arxiv.org/abs/2402.00838).
You can find all the original OLMo2 checkpoints under the [OLMo2](https://huggingface.co/collections/allenai/olmo-2-674117b93ab84e98afc72edc) collection.
The architectural changes from the original OLMo model to this model are:
> [!TIP]
> Click on the OLMo2 models in the right sidebar for more examples of how to apply OLMo2 to different language tasks.
- RMSNorm is used instead of standard layer norm.
- Norm is applied to attention queries and keys.
- Norm is applied after attention/feedforward layers rather than before.
The example below demonstrates how to generate text with [`Pipeline`], [`AutoModel`] and from the command line.
This model was contributed by [shanearora](https://huggingface.co/shanearora).
The original code can be found [here](https://github.com/allenai/OLMo/tree/main/olmo).
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipe = pipeline(
task="text-generation",
model="allenai/OLMo-2-0425-1B",
torch_dtype=torch.float16,
device=0,
)
result = pipe("Plants create energy through a process known as")
print(result)
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(
"allenai/OLMo-2-0425-1B"
)
model = AutoModelForCausalLM.from_pretrained(
"allenai/OLMo-2-0425-1B",
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="sdpa"
)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
output = model.generate(**input_ids, max_length=50, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "Plants create energy through a process known as" | transformers-cli run --task text-generation --model allenai/OLMo-2-0425-1B --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [torchao](../quantization/torchao) to only quantize the weights to 4-bits.
```py
#pip install torchao
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
torchao_config = TorchAoConfig(
"int4_weight_only",
group_size=128
)
tokenizer = AutoTokenizer.from_pretrained(
"allenai/OLMo-2-0425-1B"
)
model = AutoModelForCausalLM.from_pretrained(
"allenai/OLMo-2-0425-1B",
quantization_config=torchao_config,
torch_dtype=torch.bfloat16,
device_map="auto",
attn_implementation="sdpa"
)
input_ids = tokenizer("Plants create energy through a process known as", return_tensors="pt").to(model.device)
output = model.generate(**input_ids, max_length=50, cache_implementation="static")
print(tokenizer.decode(output[0], skip_special_tokens=True))
```
## Notes
- OLMo2 uses RMSNorm instead of standard layer norm. The RMSNorm is applied to attention queries and keys, and it is applied after the attention and feedforward layers rather than before.
- OLMo2 requires Transformers v4.48 or higher.
- Load specific intermediate checkpoints by adding the `revision` parameter to [`~PreTrainedModel.from_pretrained`].
```py
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("allenai/OLMo-2-0425-1B", revision="stage1-step140000-tokens294B")
```
## Olmo2Config

View File

@ -21,6 +21,8 @@ rendered properly in your Markdown viewer.
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview

View File

@ -18,6 +18,7 @@ rendered properly in your Markdown viewer.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
</div>
## Overview

View File

@ -18,6 +18,8 @@ rendered properly in your Markdown viewer.
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="FlashAttention" src="https://img.shields.io/badge/%E2%9A%A1%EF%B8%8E%20FlashAttention-eae0c8?style=flat">
<img alt="SDPA" src="https://img.shields.io/badge/SDPA-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
## Overview
@ -29,7 +31,7 @@ on Java, Python and English.
According to the abstract
*Code summarization and generation empower conversion between programming language (PL) and natural language (NL),
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
while code translation avails the migration of legacy code from one PL to another. This paper introduces PLBART,
a sequence-to-sequence model capable of performing a broad spectrum of program and language understanding and generation tasks.
PLBART is pre-trained on an extensive collection of Java and Python functions and associated NL text via denoising autoencoding.
Experiments on code summarization in the English language, code generation, and code translation in seven programming languages
@ -50,7 +52,7 @@ target text format is `[tgt_lang_code] X [eos]`. `bos` is never used.
However, for fine-tuning, in some cases no language token is provided in cases where a single language is used. Please refer to [the paper](https://arxiv.org/abs/2103.06333) to learn more about this.
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
In cases where the language code is needed, the regular [`~PLBartTokenizer.__call__`] will encode source text format
when you pass texts as the first argument or with the keyword argument `text`, and will encode target text format if
it's passed with the `text_target` keyword argument.

View File

@ -14,46 +14,78 @@ rendered properly in your Markdown viewer.
-->
# RoFormer
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<img alt="TensorFlow" src="https://img.shields.io/badge/TensorFlow-FF6F00?style=flat&logo=tensorflow&logoColor=white">
<img alt="Flax" src="https://img.shields.io/badge/Flax-29a79b.svg?style=flat&logo=
">
</div>
</div>
## Overview
# RoFormer
The RoFormer model was proposed in [RoFormer: Enhanced Transformer with Rotary Position Embedding](https://arxiv.org/pdf/2104.09864v1.pdf) by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
[RoFormer](https://huggingface.co/papers/2104.09864) introduces Rotary Position Embedding (RoPE) to encode token positions by rotating the inputs in 2D space. This allows a model to track absolute positions and model relative relationships. RoPE can scale to longer sequences, account for the natural decay of token dependencies, and works with the more efficient linear self-attention.
The abstract from the paper is the following:
You can find all the RoFormer checkpoints on the [Hub](https://huggingface.co/models?search=roformer).
*Position encoding in transformer architecture provides supervision for dependency modeling between elements at
different positions in the sequence. We investigate various methods to encode positional information in
transformer-based language models and propose a novel implementation named Rotary Position Embedding(RoPE). The
proposed RoPE encodes absolute positional information with rotation matrix and naturally incorporates explicit relative
position dependency in self-attention formulation. Notably, RoPE comes with valuable properties such as flexibility of
being expand to any sequence lengths, decaying inter-token dependency with increasing relative distances, and
capability of equipping the linear self-attention with relative position encoding. As a result, the enhanced
transformer with rotary position embedding, or RoFormer, achieves superior performance in tasks with long texts. We
release the theoretical analysis along with some preliminary experiment results on Chinese data. The undergoing
experiment for English benchmark will soon be updated.*
> [!TIP]
> Click on the RoFormer models in the right sidebar for more examples of how to apply RoFormer to different language tasks.
This model was contributed by [junnyu](https://huggingface.co/junnyu). The original code can be found [here](https://github.com/ZhuiyiTechnology/roformer).
The example below demonstrates how to predict the `[MASK]` token with [`Pipeline`], [`AutoModel`], and from the command line.
## Usage tips
RoFormer is a BERT-like autoencoding model with rotary position embeddings. Rotary position embeddings have shown
improved performance on classification tasks with long texts.
<hfoptions id="usage">
<hfoption id="Pipeline">
## Resources
```py
# uncomment to install rjieba which is needed for the tokenizer
# !pip install rjieba
import torch
from transformers import pipeline
- [Text classification task guide](../tasks/sequence_classification)
- [Token classification task guide](../tasks/token_classification)
- [Question answering task guide](../tasks/question_answering)
- [Causal language modeling task guide](../tasks/language_modeling)
- [Masked language modeling task guide](../tasks/masked_language_modeling)
- [Multiple choice task guide](../tasks/multiple_choice)
pipe = pipeline(
task="fill-mask",
model="junnyu/roformer_chinese_base",
torch_dtype=torch.float16,
device=0
)
output = pipe("水在零度时会[MASK]")
print(output)
```
</hfoption>
<hfoption id="AutoModel">
```py
# uncomment to install rjieba which is needed for the tokenizer
# !pip install rjieba
import torch
from transformers import AutoModelForMaskedLM, AutoTokenizer
model = AutoModelForMaskedLM.from_pretrained(
"junnyu/roformer_chinese_base", torch_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained("junnyu/roformer_chinese_base")
input_ids = tokenizer("水在零度时会[MASK]", return_tensors="pt").to(model.device)
outputs = model(**input_ids)
decoded = tokenizer.batch_decode(outputs.logits.argmax(-1), skip_special_tokens=True)
print(decoded)
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "水在零度时会[MASK]" | transformers-cli run --task fill-mask --model junnyu/roformer_chinese_base --device 0
```
</hfoption>
</hfoptions>
## Notes
- The current RoFormer implementation is an encoder-only model. The original code can be found in the [ZhuiyiTechnology/roformer](https://github.com/ZhuiyiTechnology/roformer) repository.
## RoFormerConfig

View File

@ -14,37 +14,74 @@ rendered properly in your Markdown viewer.
-->
# Swin Transformer V2
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# Swin Transformer V2
The Swin Transformer V2 model was proposed in [Swin Transformer V2: Scaling Up Capacity and Resolution](https://arxiv.org/abs/2111.09883) by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
[Swin Transformer V2](https://huggingface.co/papers/2111.09883) is a 3B parameter model that focuses on how to scale a vision model to billions of parameters. It introduces techniques like residual-post-norm combined with cosine attention for improved training stability, log-spaced continuous position bias to better handle varying image resolutions between pre-training and fine-tuning, and a new pre-training method (SimMIM) to reduce the need for large amounts of labeled data. These improvements enable efficiently training very large models (up to 3 billion parameters) capable of processing high-resolution images.
The abstract from the paper is the following:
You can find official Swin Transformer V2 checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=swinv2) organization.
*Large-scale NLP models have been shown to significantly improve the performance on language tasks with no signs of saturation. They also demonstrate amazing few-shot capabilities like that of human beings. This paper aims to explore large-scale models in computer vision. We tackle three major issues in training and application of large vision models, including training instability, resolution gaps between pre-training and fine-tuning, and hunger on labelled data. Three main techniques are proposed: 1) a residual-post-norm method combined with cosine attention to improve training stability; 2) A log-spaced continuous position bias method to effectively transfer models pre-trained using low-resolution images to downstream tasks with high-resolution inputs; 3) A self-supervised pre-training method, SimMIM, to reduce the needs of vast labeled images. Through these techniques, this paper successfully trained a 3 billion-parameter Swin Transformer V2 model, which is the largest dense vision model to date, and makes it capable of training with images of up to 1,536×1,536 resolution. It set new performance records on 4 representative vision tasks, including ImageNet-V2 image classification, COCO object detection, ADE20K semantic segmentation, and Kinetics-400 video action classification. Also note our training is much more efficient than that in Google's billion-level visual models, which consumes 40 times less labelled data and 40 times less training time.*
> [!TIP]
> Click on the Swin Transformer V2 models in the right sidebar for more examples of how to apply Swin Transformer V2 to vision tasks.
This model was contributed by [nandwalritik](https://huggingface.co/nandwalritik).
The original code can be found [here](https://github.com/microsoft/Swin-Transformer).
<hfoptions id="usage">
<hfoption id="Pipeline">
## Resources
```py
import torch
from transformers import pipeline
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Swin Transformer v2.
pipeline = pipeline(
task="image-classification",
model="microsoft/swinv2-tiny-patch4-window8-256",
torch_dtype=torch.float16,
device=0
)
pipeline(images="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg")
```
<PipelineTag pipeline="image-classification"/>
</hfoption>
- [`Swinv2ForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb).
- See also: [Image classification task guide](../tasks/image_classification)
<hfoption id="AutoModel">
Besides that:
```py
import torch
import requests
from PIL import Image
from transformers import AutoModelForImageClassification, AutoImageProcessor
- [`Swinv2ForMaskedImageModeling`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-pretraining).
image_processor = AutoImageProcessor.from_pretrained(
"microsoft/swinv2-tiny-patch4-window8-256",
)
model = AutoModelForImageClassification.from_pretrained(
"microsoft/swinv2-tiny-patch4-window8-256",
device_map="auto"
)
If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource.
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt").to(model.device)
with torch.no_grad():
logits = model(**inputs).logits
predicted_class_id = logits.argmax(dim=-1).item()
predicted_class_label = model.config.id2label[predicted_class_id]
print(f"The predicted class label is: {predicted_class_label}")
```
</hfoption>
</hfoptions>
## Notes
- Swin Transformer V2 can pad the inputs for any input height and width divisible by `32`.
- Swin Transformer V2 can be used as a [backbone](../backbones). When `output_hidden_states = True`, it outputs both `hidden_states` and `reshaped_hidden_states`. The `reshaped_hidden_states` have a shape of `(batch, num_channels, height, width)` rather than `(batch_size, sequence_length, num_channels)`.
## Swinv2Config

View File

@ -14,100 +14,101 @@ rendered properly in your Markdown viewer.
-->
# ZoeDepth
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white">
</div>
</div>
## Overview
# ZoeDepth
The ZoeDepth model was proposed in [ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth](https://arxiv.org/abs/2302.12288) by Shariq Farooq Bhat, Reiner Birkl, Diana Wofk, Peter Wonka, Matthias Müller. ZoeDepth extends the [DPT](dpt) framework for metric (also called absolute) depth estimation. ZoeDepth is pre-trained on 12 datasets using relative depth and fine-tuned on two domains (NYU and KITTI) using metric depth. A lightweight head is used with a novel bin adjustment design called metric bins module for each domain. During inference, each input image is automatically routed to the appropriate head using a latent classifier.
The abstract from the paper is the following:
*This paper tackles the problem of depth estimation from a single image. Existing work either focuses on generalization performance disregarding metric scale, i.e. relative depth estimation, or state-of-the-art results on specific datasets, i.e. metric depth estimation. We propose the first approach that combines both worlds, leading to a model with excellent generalization performance while maintaining metric scale. Our flagship model, ZoeD-M12-NK, is pre-trained on 12 datasets using relative depth and fine-tuned on two datasets using metric depth. We use a lightweight head with a novel bin adjustment design called metric bins module for each domain. During inference, each input image is automatically routed to the appropriate head using a latent classifier. Our framework admits multiple configurations depending on the datasets used for relative depth pre-training and metric fine-tuning. Without pre-training, we can already significantly improve the state of the art (SOTA) on the NYU Depth v2 indoor dataset. Pre-training on twelve datasets and fine-tuning on the NYU Depth v2 indoor dataset, we can further improve SOTA for a total of 21% in terms of relative absolute error (REL). Finally, ZoeD-M12-NK is the first model that can jointly train on multiple datasets (NYU Depth v2 and KITTI) without a significant drop in performance and achieve unprecedented zero-shot generalization performance to eight unseen datasets from both indoor and outdoor domains.*
[ZoeDepth](https://huggingface.co/papers/2302.12288) is a depth estimation model that combines the generalization performance of relative depth estimation (how far objects are from each other) and metric depth estimation (precise depth measurement on metric scale) from a single image. It is pre-trained on 12 datasets using relative depth and 2 datasets (NYU Depth v2 and KITTI) for metric accuracy. A lightweight head with a metric bin module for each domain is used, and during inference, it automatically selects the appropriate head for each input image with a latent classifier.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/zoedepth_architecture_bis.png"
alt="drawing" width="600"/>
<small> ZoeDepth architecture. Taken from the <a href="https://arxiv.org/abs/2302.12288">original paper.</a> </small>
You can find all the original ZoeDepth checkpoints under the [Intel](https://huggingface.co/Intel?search=zoedepth) organization.
This model was contributed by [nielsr](https://huggingface.co/nielsr).
The original code can be found [here](https://github.com/isl-org/ZoeDepth).
The example below demonstrates how to estimate depth with [`Pipeline`] or the [`AutoModel`] class.
## Usage tips
<hfoptions id="usage">
<hfoption id="Pipeline">
- ZoeDepth is an absolute (also called metric) depth estimation model, unlike DPT which is a relative depth estimation model. This means that ZoeDepth is able to estimate depth in metric units like meters.
```py
import requests
import torch
from transformers import pipeline
from PIL import Image
The easiest to perform inference with ZoeDepth is by leveraging the [pipeline API](../main_classes/pipelines.md):
```python
>>> from transformers import pipeline
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> pipe = pipeline(task="depth-estimation", model="Intel/zoedepth-nyu-kitti")
>>> result = pipe(image)
>>> depth = result["depth"]
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
pipeline = pipeline(
task="depth-estimation",
model="Intel/zoedepth-nyu-kitti",
torch_dtype=torch.float16,
device=0
)
results = pipeline(image)
results["depth"]
```
Alternatively, one can also perform inference using the classes:
</hfoption>
<hfoption id="AutoModel">
```python
>>> from transformers import AutoImageProcessor, ZoeDepthForDepthEstimation
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> import requests
```py
import torch
import requests
from PIL import Image
from transformers import AutoModelForDepthEstimation, AutoImageProcessor
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
image_processor = AutoImageProcessor.from_pretrained(
"Intel/zoedepth-nyu-kitti"
)
model = AutoModelForDepthEstimation.from_pretrained(
"Intel/zoedepth-nyu-kitti",
device_map="auto"
)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = image_processor(image, return_tensors="pt").to("cuda")
>>> image_processor = AutoImageProcessor.from_pretrained("Intel/zoedepth-nyu-kitti")
>>> model = ZoeDepthForDepthEstimation.from_pretrained("Intel/zoedepth-nyu-kitti")
with torch.no_grad():
outputs = model(inputs)
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
# interpolate to original size and visualize the prediction
## ZoeDepth dynamically pads the input image, so pass the original image size as argument
## to `post_process_depth_estimation` to remove the padding and resize to original dimensions.
post_processed_output = image_processor.post_process_depth_estimation(
outputs,
source_sizes=[(image.height, image.width)],
)
>>> with torch.no_grad():
... outputs = model(inputs)
>>> # interpolate to original size and visualize the prediction
>>> ## ZoeDepth dynamically pads the input image. Thus we pass the original image size as argument
>>> ## to `post_process_depth_estimation` to remove the padding and resize to original dimensions.
>>> post_processed_output = image_processor.post_process_depth_estimation(
... outputs,
... source_sizes=[(image.height, image.width)],
... )
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
>>> depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
>>> depth = depth.detach().cpu().numpy() * 255
>>> depth = Image.fromarray(depth.astype("uint8"))
predicted_depth = post_processed_output[0]["predicted_depth"]
depth = (predicted_depth - predicted_depth.min()) / (predicted_depth.max() - predicted_depth.min())
depth = depth.detach().cpu().numpy() * 255
Image.fromarray(depth.astype("uint8"))
```
<Tip>
<p>In the <a href="https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L131">original implementation</a> ZoeDepth model performs inference on both the original and flipped images and averages out the results. The <code>post_process_depth_estimation</code> function can handle this for us by passing the flipped outputs to the optional <code>outputs_flipped</code> argument:</p>
<pre><code class="language-Python">&gt;&gt;&gt; with torch.no_grad():
... outputs = model(pixel_values)
... outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
&gt;&gt;&gt; post_processed_output = image_processor.post_process_depth_estimation(
... outputs,
... source_sizes=[(image.height, image.width)],
... outputs_flipped=outputs_flipped,
... )
</code></pre>
</Tip>
</hfoption>
</hfoptions>
## Notes
- In the [original implementation](https://github.com/isl-org/ZoeDepth/blob/edb6daf45458569e24f50250ef1ed08c015f17a7/zoedepth/models/depth_model.py#L131) ZoeDepth performs inference on both the original and flipped images and averages the results. The `post_process_depth_estimation` function handles this by passing the flipped outputs to the optional `outputs_flipped` argument as shown below.
```py
with torch.no_grad():
outputs = model(pixel_values)
outputs_flipped = model(pixel_values=torch.flip(inputs.pixel_values, dims=[3]))
post_processed_output = image_processor.post_process_depth_estimation(
outputs,
source_sizes=[(image.height, image.width)],
outputs_flipped=outputs_flipped,
)
```
## Resources
A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ZoeDepth.
- A demo notebook regarding inference with ZoeDepth models can be found [here](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ZoeDepth). 🌎
- Refer to this [notebook](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/ZoeDepth) for an inference example.
## ZoeDepthConfig

View File

@ -243,13 +243,7 @@ class Olmo2Attention(OlmoAttention):
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,

View File

@ -0,0 +1,58 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Environment Variables
## HF_ENABLE_PARALLEL_LOADING
By default this is disabled. Enables the loading of torch and safetensor based weights to be loaded in parallel. Can decrease the time to load large models significantly, often times producing speed ups around ~50%.
Can be set to a string equal to `"false"` or `"true"`. e.g. `os.environ["HF_ENABLE_PARALLEL_LOADING"] = "true"`.
e.g. `facebook/opt-30b` on an AWS EC2 g4dn.metal instance can be made to load in ~30s with this enabled vs ~55s without it.
Profile before committing to using this environment variable, this will not produce speed ups for smaller models.
```py
import os
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "true"
from transformers import pipeline
model = pipeline(task="text-generation", model="facebook/opt-30b", device_map="auto")
```
## HF_PARALLEL_LOADING_WORKERS
Determines how many threads should be used when parallel loading is enabled. Default is `8`.
If the number of files that are being loaded is less than the number of threads specified, the number that is actually spawned will be equal to the number of files.
e.g. If you specify 8 workers, and there are only 2 files, only 2 workers will be spawned.
Tune as you see fit.
```py
import os
os.environ["HF_ENABLE_PARALLEL_LOADING"] = "true"
os.environ["HF_PARALLEL_LOADING_WORKERS"] = "4"
from transformers import pipeline
model = pipeline(task="text-generation", model="facebook/opt-30b", device_map="auto")
```

View File

@ -372,3 +372,10 @@ AutoModel.register(NewModelConfig, NewModel)
### AutoModelForImageTextToText
[[autodoc]] AutoModelForImageTextToText
## Time Series
### AutoModelForTimeSeriesPrediction
[[autodoc]] AutoModelForTimeSeriesPrediction

View File

@ -373,3 +373,10 @@ AutoModel.register(NewModelConfig, NewModel)
### FlaxAutoModelForVision2Seq[[transformers.FlaxAutoModelForVision2Seq]]
[[autodoc]] FlaxAutoModelForVision2Seq
## Time Series
### AutoModelForTimeSeriesPrediction[[transformers.AutoModelForTimeSeriesPrediction]]
[[autodoc]] AutoModelForTimeSeriesPrediction

View File

@ -0,0 +1,4 @@
# Metrics Monitoring
## Continuous Batching Metrics in Transformers

View File

@ -0,0 +1,974 @@
{
"annotations": {
"list": [
{
"builtIn": 1,
"datasource": {
"type": "grafana",
"uid": "-- Grafana --"
},
"enable": true,
"hide": true,
"iconColor": "rgba(0, 211, 255, 1)",
"name": "Annotations & Alerts",
"target": {
"limit": 100,
"matchAny": false,
"tags": [],
"type": "dashboard"
},
"type": "dashboard"
}
]
},
"editable": true,
"fiscalYearStartMonth": 0,
"graphTooltip": 0,
"id": 2,
"links": [],
"panels": [
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"description": "Memory usage of the PagedAttentionCache",
"fieldConfig": {
"defaults": {
"color": {
"mode": "thresholds"
},
"mappings": [],
"max": 10737418240,
"min": 0,
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "yellow",
"value": 5368709120
},
{
"color": "red",
"value": 8589934592
}
]
},
"unit": "bytes"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 6,
"x": 0,
"y": 0
},
"id": 2,
"options": {
"minVizHeight": 75,
"minVizWidth": 75,
"orientation": "auto",
"reduceOptions": {
"calcs": [
"lastNotNull"
],
"fields": "",
"values": false
},
"showThresholdLabels": false,
"showThresholdMarkers": true,
"sizing": "auto"
},
"pluginVersion": "12.0.0",
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "kv_cache_memory_bytes",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "__auto",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "KV Cache Memory Usage",
"transparent": true,
"type": "gauge"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "thresholds"
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "dark-blue"
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 6,
"x": 6,
"y": 0
},
"id": 13,
"options": {
"colorMode": "value",
"graphMode": "area",
"justifyMode": "auto",
"orientation": "auto",
"percentChangeColorMode": "standard",
"reduceOptions": {
"calcs": [
"lastNotNull"
],
"fields": "",
"values": false
},
"showPercentChange": false,
"textMode": "auto",
"wideLayout": true
},
"pluginVersion": "12.0.0",
"targets": [
{
"disableTextWrap": false,
"editorMode": "builder",
"expr": "active_requests_count",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "__auto",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "Active Requests",
"transparent": true,
"type": "stat"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "thresholds"
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "dark-orange"
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 6,
"x": 12,
"y": 0
},
"id": 14,
"options": {
"colorMode": "value",
"graphMode": "area",
"justifyMode": "auto",
"orientation": "auto",
"percentChangeColorMode": "standard",
"reduceOptions": {
"calcs": [
"lastNotNull"
],
"fields": "",
"values": false
},
"showPercentChange": false,
"textMode": "auto",
"wideLayout": true
},
"pluginVersion": "12.0.0",
"targets": [
{
"disableTextWrap": false,
"editorMode": "builder",
"expr": "waiting_requests_count",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "__auto",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "Waiting Requests",
"transparent": true,
"type": "stat"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"description": "Ratio of decode tokens to prefill tokens in a batch",
"fieldConfig": {
"defaults": {
"color": {
"mode": "thresholds"
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "blue"
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 6,
"x": 18,
"y": 0
},
"id": 6,
"options": {
"colorMode": "value",
"graphMode": "none",
"justifyMode": "auto",
"orientation": "auto",
"percentChangeColorMode": "standard",
"reduceOptions": {
"calcs": [
"lastNotNull"
],
"fields": "",
"values": false
},
"showPercentChange": false,
"textMode": "auto",
"wideLayout": true
},
"pluginVersion": "12.0.0",
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "decode_prefill_ratio",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "__auto",
"range": true,
"refId": "A",
"useBackend": false
}
],
"title": "Decode/Prefill Ratio",
"transparent": true,
"type": "stat"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"barWidthFactor": 0.6,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "red",
"value": 80
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 8
},
"id": 10,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"hideZeros": false,
"mode": "single",
"sort": "none"
}
},
"pluginVersion": "12.0.0",
"targets": [
{
"editorMode": "code",
"expr": "rate(decode_tokens_processed_total[$__rate_interval])",
"legendFormat": "__auto",
"range": true,
"refId": "A"
}
],
"title": "Decode tokens throupught tok/s",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"barWidthFactor": 0.6,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "red",
"value": 80
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 8
},
"id": 11,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"hideZeros": false,
"mode": "single",
"sort": "none"
}
},
"pluginVersion": "12.0.0",
"targets": [
{
"editorMode": "code",
"expr": "rate(prefill_tokens_processed_total[$__rate_interval])",
"legendFormat": "__auto",
"range": true,
"refId": "A"
}
],
"title": "Prefill rate tok/s",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"barWidthFactor": 0.6,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "red",
"value": 80
}
]
}
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 16
},
"id": 9,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"hideZeros": false,
"mode": "single",
"sort": "none"
}
},
"pluginVersion": "12.0.0",
"targets": [
{
"editorMode": "code",
"expr": "histogram_quantile(0.95, sum by(le) (rate(batch_fill_percentage_percent_bucket[$__rate_interval])))",
"legendFormat": "p95",
"range": true,
"refId": "A"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"editorMode": "code",
"expr": "histogram_quantile(0.99, sum by(le) (rate(batch_fill_percentage_percent_bucket[$__rate_interval])))",
"hide": false,
"instant": false,
"legendFormat": "p99",
"range": true,
"refId": "B"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"editorMode": "code",
"expr": "histogram_quantile(0.5, sum by(le) (rate(batch_fill_percentage_percent_bucket[$__rate_interval])))",
"hide": false,
"instant": false,
"legendFormat": "p50",
"range": true,
"refId": "C"
}
],
"title": "Batch fill percentage percentiles",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"description": "KV Cache Memory Usage Over Time",
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"barWidthFactor": 0.6,
"drawStyle": "line",
"fillOpacity": 20,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 2,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "red",
"value": 80
}
]
},
"unit": "bytes"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 16
},
"id": 4,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"hideZeros": false,
"mode": "single",
"sort": "none"
}
},
"pluginVersion": "12.0.0",
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "kv_cache_memory_bytes",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "Used memory",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "kv_cache_free_memory_bytes",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": true,
"instant": false,
"legendFormat": "free memory",
"range": true,
"refId": "B",
"useBackend": false
}
],
"title": "KV Cache Memory Usage Over Time",
"type": "timeseries"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "thresholds"
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "red",
"value": 80
}
]
},
"unit": "ms"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 0,
"y": 24
},
"id": 8,
"options": {
"displayMode": "gradient",
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": false
},
"maxVizHeight": 300,
"minVizHeight": 10,
"minVizWidth": 0,
"namePlacement": "auto",
"orientation": "auto",
"reduceOptions": {
"calcs": [
"lastNotNull"
],
"fields": "",
"values": false
},
"showUnfilled": true,
"sizing": "auto",
"valueMode": "color"
},
"pluginVersion": "12.0.0",
"targets": [
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.95, sum by(le) (rate(ttft_milliseconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"includeNullMetadata": true,
"legendFormat": "p95",
"range": true,
"refId": "A",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.5, sum by(le) (rate(ttft_milliseconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": true,
"legendFormat": "p50",
"range": true,
"refId": "B",
"useBackend": false
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"disableTextWrap": false,
"editorMode": "builder",
"expr": "histogram_quantile(0.99, sum by(le) (rate(ttft_milliseconds_bucket[$__rate_interval])))",
"fullMetaSearch": false,
"hide": false,
"includeNullMetadata": false,
"instant": false,
"legendFormat": "p99",
"range": true,
"refId": "C",
"useBackend": false
}
],
"title": "Time to First Token (TTFT)",
"type": "bargauge"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"fieldConfig": {
"defaults": {
"color": {
"mode": "palette-classic"
},
"custom": {
"axisBorderShow": false,
"axisCenteredZero": false,
"axisColorMode": "text",
"axisLabel": "",
"axisPlacement": "auto",
"barAlignment": 0,
"barWidthFactor": 0.6,
"drawStyle": "line",
"fillOpacity": 0,
"gradientMode": "none",
"hideFrom": {
"legend": false,
"tooltip": false,
"viz": false
},
"insertNulls": false,
"lineInterpolation": "linear",
"lineWidth": 1,
"pointSize": 5,
"scaleDistribution": {
"type": "linear"
},
"showPoints": "auto",
"spanNulls": false,
"stacking": {
"group": "A",
"mode": "none"
},
"thresholdsStyle": {
"mode": "off"
}
},
"mappings": [],
"thresholds": {
"mode": "absolute",
"steps": [
{
"color": "green"
},
{
"color": "red",
"value": 80
}
]
},
"unit": "ms"
},
"overrides": []
},
"gridPos": {
"h": 8,
"w": 12,
"x": 12,
"y": 24
},
"id": 12,
"options": {
"legend": {
"calcs": [],
"displayMode": "list",
"placement": "bottom",
"showLegend": true
},
"tooltip": {
"hideZeros": false,
"mode": "single",
"sort": "none"
}
},
"pluginVersion": "12.0.0",
"targets": [
{
"editorMode": "code",
"expr": "histogram_quantile(0.5, sum by(le) (rate(request_latency_milliseconds_bucket[$__rate_interval])))",
"legendFormat": "p50",
"range": true,
"refId": "A"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"editorMode": "code",
"expr": "histogram_quantile(0.95, sum by(le) (rate(request_latency_milliseconds_bucket[$__rate_interval])))",
"hide": false,
"instant": false,
"legendFormat": "p95",
"range": true,
"refId": "B"
},
{
"datasource": {
"type": "prometheus",
"uid": "PBFA97CFB590B2093"
},
"editorMode": "code",
"expr": "histogram_quantile(0.99, sum by(le) (rate(request_latency_milliseconds_bucket[$__rate_interval])))",
"hide": false,
"instant": false,
"legendFormat": "p99",
"range": true,
"refId": "C"
}
],
"title": "Request latency percentiles",
"type": "timeseries"
}
],
"preload": false,
"refresh": "5s",
"schemaVersion": 41,
"tags": [],
"templating": {
"list": []
},
"time": {
"from": "now-15m",
"to": "now"
},
"timepicker": {},
"timezone": "",
"title": "Transformers Continuous Batching Metrics",
"uid": "Lw6CTvVSz",
"version": 5
}

View File

@ -0,0 +1,55 @@
services:
memcached:
image: memcached:1.6.29
container_name: memcached
ports:
- "11211:11211"
environment:
- MEMCACHED_MAX_MEMORY=64m # Set the maximum memory usage
- MEMCACHED_THREADS=4 # Number of threads to use
prometheus:
image: prom/prometheus:latest
command:
- "--config.file=/etc/prometheus/prometheus.yml"
- --web.enable-otlp-receiver # Enable OTLP receiver
- --web.enable-remote-write-receiver
- --enable-feature=exemplar-storage
- --enable-feature=native-histograms
volumes:
- ./prometheus.yml:/etc/prometheus/prometheus.yml
ports:
- "9090:9090"
tempo:
image: grafana/tempo:latest
command: [ "-config.file=/etc/tempo.yaml" ]
volumes:
- ./tempo.yaml:/etc/tempo.yaml
ports:
- "14268:14268" # jaeger ingest
- "3200:3200" # tempo
- "9095:9095" # tempo grpc
- "4317:4317" # otlp grpc
- "4318:4318" # otlp http
- "9411:9411" # zipkin
depends_on:
- memcached
grafana:
image: grafana/grafana:latest
volumes:
- ./continuous-batching-dashboard.json:/etc/grafana/provisioning/dashboards/continuous-batching-dashboard.json
- ./grafana-dashboard.yaml:/etc/grafana/provisioning/dashboards/grafana-dashboard.yaml
- ./grafana-datasources.yaml:/etc/grafana/provisioning/datasources/datasources.yaml
environment:
- GF_AUTH_ANONYMOUS_ENABLED=true
- GF_AUTH_ANONYMOUS_ORG_ROLE=Admin
- GF_AUTH_DISABLE_LOGIN_FORM=true
- GF_FEATURE_TOGGLES_ENABLE=traceqlEditor metricsSummary
- GF_INSTALL_PLUGINS=https://storage.googleapis.com/integration-artifacts/grafana-exploretraces-app/grafana-exploretraces-app-latest.zip;grafana-traces-app
ports:
- "3000:3000"
depends_on:
- prometheus
- tempo

View File

@ -0,0 +1,11 @@
apiVersion: 1
providers:
- name: 'Transformers Dashboards'
orgId: 1
folder: 'Transformers'
type: file
disableDeletion: false
editable: true
options:
path: /etc/grafana/provisioning/dashboards

View File

@ -0,0 +1,14 @@
apiVersion: 1
datasources:
- name: Prometheus
type: prometheus
access: proxy
url: http://prometheus:9090
isDefault: true
- name: Tempo
type: tempo
access: proxy
url: http://tempo:3200
uid: tempo

View File

@ -0,0 +1,48 @@
# Example usage of the trace and attach_tracer decorators
from transformers.utils.metrics import attach_tracer, traced
@attach_tracer()
class ExampleClass:
def __init__(self, name):
# The attach_tracer decorator has already created self.tracer for us
self.name = name
@traced # This method will use the tracer from the class instance
def process_data(self, data):
# This method is traced and can use self.tracer
return f"Processed {data} with {self.name}"
@traced(span_name="custom_operation") # With custom span name
def special_operation(self, value):
# Also traced, with a custom span name
return value * 2
@traced(
additional_attributes=[
("name", "object.name", lambda x: x.upper()), # Using a transform function
("name", "object.fixed_value", "static_value"), # Using a fixed value
]
)
def operation_with_attributes(self):
# This will add the specified attributes to the span
return "Operation completed"
# For functions without a class, the traced decorator still works
@traced
def standalone_function(arg1, arg2):
# For functions, a tracer is created based on the module name
return arg1 + arg2
# Usage:
if __name__ == "__main__":
# With OpenTelemetry configured, these will produce traces
example = ExampleClass("test_object")
example.process_data("sample")
example.special_operation(42)
example.operation_with_attributes()
result = standalone_function(1, 2)

View File

@ -0,0 +1,3 @@
global:
scrape_interval: 15s

View File

@ -0,0 +1,90 @@
stream_over_http_enabled: true
server:
http_listen_port: 3200
log_level: info
cache:
background:
writeback_goroutines: 5
caches:
- roles:
- frontend-search
memcached:
addresses: dns+memcached:11211
query_frontend:
search:
duration_slo: 5s
throughput_bytes_slo: 1.073741824e+09
metadata_slo:
duration_slo: 5s
throughput_bytes_slo: 1.073741824e+09
trace_by_id:
duration_slo: 100ms
metrics:
max_duration: 200h # maximum duration of a metrics query, increase for local setups
query_backend_after: 5m
duration_slo: 5s
throughput_bytes_slo: 1.073741824e+09
distributor:
receivers: # this configuration will listen on all ports and protocols that tempo is capable of.
jaeger: # the receives all come from the OpenTelemetry collector. more configuration information can
protocols: # be found there: https://github.com/open-telemetry/opentelemetry-collector/tree/main/receiver
thrift_http: #
endpoint: "tempo:14268" # for a production deployment you should only enable the receivers you need!
grpc:
endpoint: "tempo:14250"
thrift_binary:
endpoint: "tempo:6832"
thrift_compact:
endpoint: "tempo:6831"
zipkin:
endpoint: "tempo:9411"
otlp:
protocols:
grpc:
endpoint: "tempo:4317"
http:
endpoint: "tempo:4318"
opencensus:
endpoint: "tempo:55678"
ingester:
max_block_duration: 5m # cut the headblock when this much time passes. this is being set for demo purposes and should probably be left alone normally
compactor:
compaction:
block_retention: 720h # overall Tempo trace retention. set for demo purposes
metrics_generator:
registry:
external_labels:
source: tempo
cluster: docker-compose
storage:
path: /var/tempo/generator/wal
remote_write:
- url: http://prometheus:9090/api/v1/write
send_exemplars: true
traces_storage:
path: /var/tempo/generator/traces
processor:
local_blocks:
filter_server_spans: false
flush_to_storage: true
storage:
trace:
backend: local # backend configuration to use
wal:
path: /var/tempo/wal # where to store the wal locally
local:
path: /var/tempo/blocks
overrides:
defaults:
metrics_generator:
processors: [service-graphs, span-metrics, local-blocks] # enables metrics generator
generate_native_histograms: both

View File

@ -0,0 +1,109 @@
import time
import datasets
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation import GenerationConfig
torch.set_float32_matmul_precision("high")
model_id = "meta-llama/Llama-3.2-3b-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id, attn_implementation="sdpa_paged", torch_dtype=torch.bfloat16, device_map="auto"
).eval()
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="left")
generation_config = GenerationConfig(
max_new_tokens=512,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
use_cache=False,
num_blocks=2048,
block_size=128,
do_sample=True,
max_batch_tokens=1024, # Maximum number of tokens to process in a single batch
scheduler="prefill_first",
)
train_dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test")
# --- Example 1: Simple Version using generate_batch ---
print("--- Running CB Generation Example ---")
def tokenize_function(examples):
return tokenizer(examples["question"])
tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
start_time_simple = time.time()
# model.forward = torch.compile(model.forward, mode="max-autotune-no-cudagraphs", fullgraph=True)
batch_outputs = model.generate_batch(
inputs=simple_batch_inputs,
generation_config=generation_config,
)
end_time_simple = time.time()
for request in batch_outputs:
input_text = tokenizer.decode(batch_outputs[request].prompt_ids, skip_special_tokens=False)
try:
output_text = tokenizer.decode(batch_outputs[request].generated_tokens, skip_special_tokens=False)
except Exception as e:
print(f"Decoding failed for request {request}: {e}")
output_text = tokenizer.decode(batch_outputs[request].generated_tokens[1:], skip_special_tokens=False)
if len(output_text) > 0:
print("-" * 20)
print(f"{request} Input: {input_text}")
print(f"{request} Output: {output_text}")
else:
print("", end="\r\r\r\r")
print("-" * 20)
print("--- Finished CB Generation Example ---\n\n")
print(f"CB generation took: {end_time_simple - start_time_simple:.2f} seconds")
# train_dataset = train_dataset.select(range(5)) # Use only 5 examples for the simple version
# tokenized_test_prompts = tokenizer(_TEST_PROMPTS, padding=True, padding_side="left", truncation=True, max_length=512)
# simple_batch_inputs = list(tokenized_test_prompts["input_ids"])
# def tokenize_function(examples):
# # Truncate to avoid overly long prompts exceeding max context length
# return tokenizer(examples["question"], padding=True, truncation=True, max_length=512)
# tokenized_datasets = train_dataset.map(tokenize_function, batched=True)
# simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets]
# model.config.attn_implementation = "sdpa"
# start_time_simple = time.time()
# batch_size = 64
# full_outputs = []
# from tqdm import tqdm
# for i in tqdm(range(0, len(simple_batch_inputs)-batch_size, batch_size)):
# outputs = model.generate(
# torch.tensor(simple_batch_inputs[i:i+batch_size], device=model.device),
# generation_config=GenerationConfig(
# max_new_tokens=16, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id
# ),
# )
# full_outputs.extend(outputs.tolist())
# end_time_simple = time.time()
# print(f"\nSimple batch generation took: {end_time_simple - start_time_simple:.2f} seconds")
# print("\nResults from simple generate_batch:")
# for i, request in enumerate(full_outputs):
# output_text = tokenizer.decode(request, skip_special_tokens=False)
# print("-" * 20)
# print(f" Output: {output_text}")
# print("-" * 20)
# print("--- Finished Simple Batch Generation Example ---\n\n")

View File

@ -201,6 +201,9 @@ _deps = [
"pytest-rich",
"libcst",
"rich",
"opentelemetry-api",
"opentelemetry-exporter-otlp",
"opentelemetry-sdk",
]
@ -435,6 +438,9 @@ extras["torchhub"] = deps_list(
extras["benchmark"] = deps_list("optimum-benchmark")
# OpenTelemetry dependencies for metrics collection in continuous batching
extras["open-telemetry"] = deps_list("opentelemetry-api", "opentelemetry-exporter-otlp", "opentelemetry-sdk")
# when modifying the following list, make sure to update src/transformers/dependency_versions_check.py
install_requires = [
deps["filelock"], # filesystem locks, e.g., to prevent parallel downloads

View File

@ -1716,6 +1716,19 @@ class EncoderDecoderCache(Cache):
self.self_attention_cache.batch_select_indices(indices)
self.cross_attention_cache.batch_select_indices(indices)
def get_max_cache_shape(self) -> Optional[int]:
"""Returns the maximum sequence length (i.e. max capacity) of the cache object"""
return self.self_attention_cache.get_max_cache_shape()
def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
"""
Return a tuple (kv_length, kv_offset) corresponding to the length and offset that will be returned for
the given layer at `layer_idx`.
The masks are then prepared according to the given lengths (kv_length, kv_offset) and patterns (i.e. sliding_window, chunk_size),
for each layer.
"""
return self.self_attention_cache.get_mask_sizes(cache_position, layer_idx)
class HybridCache(Cache):
"""
@ -1967,7 +1980,8 @@ class HybridChunkedCache(Cache):
else:
self.sliding_window = config.sliding_window
self.max_cache_len = max_cache_len
self._sliding_window_max_len = min(self.sliding_window, max_cache_len)
# Sliding layers can't be larger than the overall max cache len
self.sliding_window = min(self.sliding_window, self.max_cache_len)
self.max_batch_size = max_batch_size
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self._dtype = dtype
@ -1989,7 +2003,7 @@ class HybridChunkedCache(Cache):
num_key_value_heads = key_states.shape[1]
device = key_states.device
global_cache_shape = (self.max_batch_size, num_key_value_heads, self.max_cache_len, self.head_dim)
sliding_cache_shape = (self.max_batch_size, num_key_value_heads, self._sliding_window_max_len, self.head_dim)
sliding_cache_shape = (self.max_batch_size, num_key_value_heads, self.sliding_window, self.head_dim)
# Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
# breaks when updating the cache.
cache_shape = sliding_cache_shape if self.is_sliding[layer_idx] else global_cache_shape
@ -2163,7 +2177,7 @@ class OffloadedHybridCache(HybridChunkedCache):
device = key_states.device if self.is_sliding[layer_idx] else self.offload_device
pin_memory = not self.is_sliding[layer_idx]
global_cache_shape = (self.max_batch_size, num_key_value_heads, self.max_cache_len, self.head_dim)
sliding_cache_shape = (self.max_batch_size, num_key_value_heads, self._sliding_window_max_len, self.head_dim)
sliding_cache_shape = (self.max_batch_size, num_key_value_heads, self.sliding_window, self.head_dim)
# Note: `mark_static_address` is used to tag the cache as an fixed data pointer, preventing cuda graph
# breaks when updating the cache.
cache_shape = sliding_cache_shape if self.is_sliding[layer_idx] else global_cache_shape
@ -2231,7 +2245,7 @@ class OffloadedHybridCache(HybridChunkedCache):
def _prefetch_layer_in_context(self, layer_idx: int) -> None:
"""Performs the actual copy of the layer to device cache."""
if len(self.key_cache) >= layer_idx:
if len(self.key_cache) > layer_idx:
self.device_key_cache[self.active_device_layer].copy_(self.key_cache[layer_idx], non_blocking=True)
self.device_value_cache[self.active_device_layer].copy_(self.value_cache[layer_idx], non_blocking=True)
# The layer was not yet initialized

View File

@ -13,9 +13,11 @@
# limitations under the License.
import copy
import json
import os
import platform
import re
import string
import time
import warnings
@ -25,7 +27,15 @@ from threading import Thread
from typing import Optional
import yaml
from huggingface_hub.utils import disable_progress_bars
from transformers import (
AutoTokenizer,
GenerationConfig,
PreTrainedTokenizer,
TextIteratorStreamer,
logging,
)
from transformers.utils import is_rich_available, is_torch_available
from . import BaseTransformersCLICommand
@ -42,13 +52,7 @@ if is_rich_available():
if is_torch_available():
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
GenerationConfig,
TextIteratorStreamer,
)
from transformers import AutoModelForCausalLM, BitsAndBytesConfig, PreTrainedModel
ALLOWED_KEY_CHARS = set(string.ascii_letters + string.whitespace)
@ -68,6 +72,7 @@ DEFAULT_EXAMPLES = {
"numbers": {"text": "Count to 10 but skip every number ending with an 'e'"},
"birds": {"text": "Why aren't birds real?"},
"socks": {"text": "Why is it important to eat socks after meditating?"},
"numbers2": {"text": "Which number is larger, 9.9 or 9.11?"},
}
# Printed at the start of a chat session
@ -76,7 +81,7 @@ HELP_STRING_MINIMAL = """
**TRANSFORMERS CHAT INTERFACE**
Chat interface to try out a model. Besides chatting with the model, here are some basic commands:
- **!help**: shows all available commands
- **!help**: shows all available commands (set generation settings, save chat, etc.)
- **!status**: shows the current status of the model and generation settings
- **!clear**: clears the current conversation and starts a new one
- **!exit**: closes the interface
@ -140,6 +145,9 @@ class RichInterface:
for i, outputs in enumerate(output_stream):
if not outputs or i == 0:
continue
# Escapes single words encased in <>, e.g. <think> -> \<think\>, for proper rendering in Markdown.
# It only escapes single words that may have `_`, optionally following a `/` (e.g. </think>)
outputs = re.sub(r"<(/*)(\w*)>", r"\<\1\2\>", outputs)
text += outputs
# Render the accumulated text as Markdown
# NOTE: this is a workaround for the rendering "unstandard markdown"
@ -224,6 +232,7 @@ class ChatArguments:
system_prompt: Optional[str] = field(default=None, metadata={"help": "System prompt."})
save_folder: str = field(default="./chat_history/", metadata={"help": "Folder to save chat history."})
examples_path: Optional[str] = field(default=None, metadata={"help": "Path to a yaml file with examples."})
verbose: bool = field(default=False, metadata={"help": "Whether to show runtime warnings in the chat interface."})
# Generation settings
generation_config: Optional[str] = field(
@ -246,7 +255,9 @@ class ChatArguments:
repetition_penalty: float = field(default=1.0, metadata={"help": "Repetition penalty."})
eos_tokens: Optional[str] = field(
default=None,
metadata={"help": "EOS tokens to stop the generation. If multiple they should be comma separated."},
metadata={
"help": "EOS tokens (text format) to stop the generation. If multiple they should be comma separated."
},
)
eos_token_ids: Optional[str] = field(
default=None,
@ -431,6 +442,9 @@ class ChatCommand(BaseTransformersCLICommand):
# 2. b. strings should be quoted
def is_number(s: str) -> bool:
# handle negative numbers
if s.startswith("-"):
s = s[1:]
return s.replace(".", "", 1).isdigit()
generate_flags_as_dict = {k: f'"{v}"' if not is_number(v) else v for k, v in generate_flags_as_dict.items()}
@ -464,16 +478,19 @@ class ChatCommand(BaseTransformersCLICommand):
return processed_generate_flags
def get_generation_parameterization(
self, args: ChatArguments, tokenizer: AutoTokenizer
self, args: ChatArguments, tokenizer: AutoTokenizer, model: PreTrainedModel
) -> tuple[GenerationConfig, dict]:
"""
Returns a GenerationConfig object holding the generation parameters for the CLI command.
"""
# No generation config arg provided -> use base generation config, apply CLI defaults
# No generation config arg provided -> use default generation config, apply CLI defaults
if args.generation_config is None:
generation_config = GenerationConfig()
# We start off from the checkpoint's generation config
generation_config = copy.deepcopy(model.generation_config)
# Apply deprecated CLI args on top of the default generation config
pad_token_id, eos_token_ids = self.parse_eos_tokens(tokenizer, args.eos_tokens, args.eos_token_ids)
pad_token_id, eos_token_ids = self.parse_eos_tokens(
tokenizer, generation_config, args.eos_tokens, args.eos_token_ids
)
deprecated_kwargs = {
"max_new_tokens": args.max_new_tokens,
"do_sample": args.do_sample,
@ -504,13 +521,16 @@ class ChatCommand(BaseTransformersCLICommand):
@staticmethod
def parse_eos_tokens(
tokenizer: AutoTokenizer, eos_tokens: Optional[str], eos_token_ids: Optional[str]
tokenizer: PreTrainedTokenizer,
generation_config: GenerationConfig,
eos_tokens: Optional[str],
eos_token_ids: Optional[str],
) -> tuple[int, list[int]]:
"""Retrieves the pad token ID and all possible EOS token IDs."""
if tokenizer.pad_token_id is None:
pad_token_id = tokenizer.eos_token_id
if generation_config.pad_token_id is None:
pad_token_id = generation_config.eos_token_id
else:
pad_token_id = tokenizer.pad_token_id
pad_token_id = generation_config.pad_token_id
all_eos_token_ids = []
@ -521,7 +541,7 @@ class ChatCommand(BaseTransformersCLICommand):
all_eos_token_ids.extend([int(token_id) for token_id in eos_token_ids.split(",")])
if len(all_eos_token_ids) == 0:
all_eos_token_ids.append(tokenizer.eos_token_id)
all_eos_token_ids.append(generation_config.eos_token_id)
return pad_token_id, all_eos_token_ids
@ -547,7 +567,7 @@ class ChatCommand(BaseTransformersCLICommand):
return quantization_config
def load_model_and_tokenizer(self, args: ChatArguments) -> tuple[AutoModelForCausalLM, AutoTokenizer]:
def load_model_and_tokenizer(self, args: ChatArguments) -> tuple["AutoModelForCausalLM", AutoTokenizer]:
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path_positional,
revision=args.model_revision,
@ -588,6 +608,7 @@ class ChatCommand(BaseTransformersCLICommand):
Handles all user commands except for `!exit`. May update the chat history (e.g. reset it) or the
generation config (e.g. set a new flag).
"""
valid_command = True
if user_input == "!clear":
chat = self.clear_chat_history(args.system_prompt)
@ -649,10 +670,11 @@ class ChatCommand(BaseTransformersCLICommand):
)
else:
valid_command = False
interface.print_color(text=f"'{user_input}' is not a valid command. Showing help message.", color="red")
interface.print_help()
return chat, generation_config, model_kwargs
return chat, valid_command, generation_config, model_kwargs
# -----------------------------------------------------------------------------------------------------------------
# Main logic
@ -676,7 +698,12 @@ class ChatCommand(BaseTransformersCLICommand):
model, tokenizer = self.load_model_and_tokenizer(args)
generation_streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True)
generation_config, model_kwargs = self.get_generation_parameterization(args, tokenizer)
generation_config, model_kwargs = self.get_generation_parameterization(args, tokenizer, model)
# if not verbose -> disable warnings, progress bars, etc in the chat interface
if not args.verbose:
logging.set_verbosity_error()
disable_progress_bars()
interface = RichInterface(model_name=args.model_name_or_path_positional, user_name=user)
interface.clear()
@ -694,7 +721,7 @@ class ChatCommand(BaseTransformersCLICommand):
if user_input == "!exit":
break
else:
chat, generation_config, model_kwargs = self.handle_non_exit_user_commands(
chat, valid_command, generation_config, model_kwargs = self.handle_non_exit_user_commands(
user_input=user_input,
args=args,
interface=interface,
@ -704,7 +731,7 @@ class ChatCommand(BaseTransformersCLICommand):
chat=chat,
)
# `!example` sends a user message to the model
if not user_input.startswith("!example"):
if not valid_command or not user_input.startswith("!example"):
continue
else:
chat.append({"role": "user", "content": user_input})

View File

@ -32,6 +32,7 @@ from ..utils import (
is_torch_available,
is_torch_hpu_available,
is_torch_npu_available,
is_torch_xpu_available,
)
from . import BaseTransformersCLICommand
@ -89,15 +90,25 @@ class EnvironmentCommand(BaseTransformersCLICommand):
pt_version = "not installed"
pt_cuda_available = "NA"
pt_accelerator = "NA"
if is_torch_available():
import torch
pt_version = torch.__version__
pt_cuda_available = torch.cuda.is_available()
pt_xpu_available = torch.xpu.is_available()
pt_xpu_available = is_torch_xpu_available()
pt_npu_available = is_torch_npu_available()
pt_hpu_available = is_torch_hpu_available()
if pt_cuda_available:
pt_accelerator = "CUDA"
elif pt_xpu_available:
pt_accelerator = "XPU"
elif pt_npu_available:
pt_accelerator = "NPU"
elif pt_hpu_available:
pt_accelerator = "HPU"
tf_version = "not installed"
tf_cuda_available = "NA"
if is_tf_available():
@ -141,7 +152,7 @@ class EnvironmentCommand(BaseTransformersCLICommand):
"Accelerate version": f"{accelerate_version}",
"Accelerate config": f"{accelerate_config_str}",
"DeepSpeed version": f"{deepspeed_version}",
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
"PyTorch version (accelerator?)": f"{pt_version} ({pt_accelerator})",
"Tensorflow version (GPU?)": f"{tf_version} ({tf_cuda_available})",
"Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})",
"Jax version": f"{jax_version}",

View File

@ -28,8 +28,6 @@ from .modeling_gguf_pytorch_utils import load_gguf_checkpoint
from .utils import (
CONFIG_NAME,
PushToHubMixin,
add_model_info_to_auto_map,
add_model_info_to_custom_pipelines,
cached_file,
copy_func,
download_url,
@ -214,7 +212,7 @@ class PretrainedConfig(PushToHubMixin):
# Attributes with defaults
self.return_dict = kwargs.pop("return_dict", True)
self.output_hidden_states = kwargs.pop("output_hidden_states", False)
self.output_attentions = kwargs.pop("output_attentions", False)
self._output_attentions = kwargs.pop("output_attentions", False)
self.torchscript = kwargs.pop("torchscript", False) # Only used by PyTorch models
self.torch_dtype = kwargs.pop("torch_dtype", None) # Only used by PyTorch models
self.use_bfloat16 = kwargs.pop("use_bfloat16", False)
@ -331,6 +329,22 @@ class PretrainedConfig(PushToHubMixin):
def name_or_path(self, value):
self._name_or_path = str(value) # Make sure that name_or_path is a string (for JSON encoding)
@property
def output_attentions(self):
"""
`bool`: Whether or not the model should returns all attentions.
"""
return self._output_attentions
@output_attentions.setter
def output_attentions(self, value):
if self._attn_implementation != "eager":
raise ValueError(
"The `output_attentions` attribute is not supported when using the `attn_implementation` set to "
f"{self._attn_implementation}. Please set it to 'eager' instead."
)
self._output_attentions = value
@property
def use_return_dict(self) -> bool:
"""
@ -697,15 +711,6 @@ class PretrainedConfig(PushToHubMixin):
else:
logger.info(f"loading configuration file {configuration_file} from cache at {resolved_config_file}")
if "auto_map" in config_dict and not is_local:
config_dict["auto_map"] = add_model_info_to_auto_map(
config_dict["auto_map"], pretrained_model_name_or_path
)
if "custom_pipelines" in config_dict and not is_local:
config_dict["custom_pipelines"] = add_model_info_to_custom_pipelines(
config_dict["custom_pipelines"], pretrained_model_name_or_path
)
# timm models are not saved with the model_type in the config file
if "model_type" not in config_dict and is_timm_config_dict(config_dict):
config_dict["model_type"] = "timm_wrapper"
@ -1004,6 +1009,8 @@ class PretrainedConfig(PushToHubMixin):
if "_auto_class" in d:
del d["_auto_class"]
if "_output_attentions" in d:
d["output_attentions"] = d.pop("_output_attentions")
if "_commit_hash" in d:
del d["_commit_hash"]
if "_attn_implementation_internal" in d:
@ -1026,11 +1033,7 @@ class PretrainedConfig(PushToHubMixin):
Register this class with a given auto class. This should only be used for custom configurations as the ones in
the library are already mapped with `AutoConfig`.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"AutoConfig"`):

View File

@ -103,4 +103,7 @@ deps = {
"pytest-rich": "pytest-rich",
"libcst": "libcst",
"rich": "rich",
"opentelemetry-api": "opentelemetry-api",
"opentelemetry-exporter-otlp": "opentelemetry-exporter-otlp",
"opentelemetry-sdk": "opentelemetry-sdk",
}

View File

@ -667,7 +667,9 @@ def _raise_timeout_error(signum, frame):
TIME_OUT_REMOTE_CODE = 15
def resolve_trust_remote_code(trust_remote_code, model_name, has_local_code, has_remote_code, error_message=None):
def resolve_trust_remote_code(
trust_remote_code, model_name, has_local_code, has_remote_code, error_message=None, upstream_repo=None
):
"""
Resolves the `trust_remote_code` argument. If there is remote code to be loaded, the user must opt-in to loading
it.
@ -688,11 +690,25 @@ def resolve_trust_remote_code(trust_remote_code, model_name, has_local_code, has
Returns:
The resolved `trust_remote_code` value.
"""
# Originally, `trust_remote_code` was used to load models with custom code.
error_message = (
error_message
or f"The repository `{model_name}` contains custom code which must be executed to correctly load the model."
)
if error_message is None:
if upstream_repo is not None:
error_message = (
f"The repository {model_name} references custom code contained in {upstream_repo} which "
f"must be executed to correctly load the model. You can inspect the repository "
f"content at https://hf.co/{upstream_repo} .\n"
)
elif os.path.isdir(model_name):
error_message = (
f"The repository {model_name} contains custom code which must be executed "
f"to correctly load the model. You can inspect the repository "
f"content at {os.path.abspath(model_name)} .\n"
)
else:
error_message = (
f"The repository {model_name} contains custom code which must be executed "
f"to correctly load the model. You can inspect the repository "
f"content at https://hf.co/{model_name} .\n"
)
if trust_remote_code is None:
if has_local_code:

View File

@ -29,8 +29,6 @@ from .utils import (
FEATURE_EXTRACTOR_NAME,
PushToHubMixin,
TensorType,
add_model_info_to_auto_map,
add_model_info_to_custom_pipelines,
cached_file,
copy_func,
download_url,
@ -551,16 +549,6 @@ class FeatureExtractionMixin(PushToHubMixin):
f"loading configuration file {feature_extractor_file} from cache at {resolved_feature_extractor_file}"
)
if not is_local:
if "auto_map" in feature_extractor_dict:
feature_extractor_dict["auto_map"] = add_model_info_to_auto_map(
feature_extractor_dict["auto_map"], pretrained_model_name_or_path
)
if "custom_pipelines" in feature_extractor_dict:
feature_extractor_dict["custom_pipelines"] = add_model_info_to_custom_pipelines(
feature_extractor_dict["custom_pipelines"], pretrained_model_name_or_path
)
return feature_extractor_dict, kwargs
@classmethod
@ -673,11 +661,7 @@ class FeatureExtractionMixin(PushToHubMixin):
Register this class with a given auto class. This should only be used for custom feature extractors as the ones
in the library are already mapped with `AutoFeatureExtractor`.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"AutoFeatureExtractor"`):

View File

@ -97,6 +97,9 @@ else:
"validate_stopping_criteria",
"StopStringCriteria",
]
_import_structure["continuous_batching"] = [
"ContinuousMixin",
]
_import_structure["utils"] = [
"GenerationMixin",
"GreedySearchEncoderDecoderOutput",
@ -213,6 +216,7 @@ if TYPE_CHECKING:
EarlyExitCandidateGenerator,
PromptLookupCandidateGenerator,
)
from .continuous_batching import ContinuousMixin
from .logits_process import (
AlternatingCodebooksLogitsProcessor,
ClassifierFreeGuidanceLogitsProcessor,

View File

@ -821,7 +821,7 @@ class GenerationConfig(PushToHubMixin):
warning_message = (
f"The following generation flags are not valid and may be ignored: {attributes_with_issues}."
)
if logger.getEffectiveLevel() >= logging.WARNING:
if logging.get_verbosity() >= logging.WARNING:
warning_message += " Set `TRANSFORMERS_VERBOSITY=info` for more details."
logger.warning(warning_message)
logger.info(info_message)

File diff suppressed because it is too large Load Diff

View File

@ -531,13 +531,16 @@ class FlaxGenerationMixin:
if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
else begin_index + 1
)
if generation_config.forced_decoder_ids is not None and len(generation_config.forced_decoder_ids) > 0:
if (
getattr(generation_config, "forced_decoder_ids", None) is not None
and len(generation_config.forced_decoder_ids) > 0
):
# generation starts after the last token that is forced
begin_index += generation_config.forced_decoder_ids[-1][0]
processors.append(
FlaxSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
)
if generation_config.forced_decoder_ids is not None:
if getattr(generation_config, "forced_decoder_ids", None) is not None:
forced_decoder_ids = [
[input_ids_seq_length + i[0] - 1, i[1]] for i in generation_config.forced_decoder_ids
]

View File

@ -2051,6 +2051,10 @@ class WhisperNoSpeechDetection(LogitsProcessor):
self.inputs = {**self.model.prepare_inputs_for_generation(**inputs), **inputs}
self.inputs["input_features"] = self.inputs.pop("inputs")
# Whisper encoder-decoder does not accept the input_ids as input
if "input_ids" not in inspect.signature(self.model.forward).parameters:
self.inputs.pop("input_ids", None)
@property
def no_speech_prob(self):
return self._no_speech_prob

View File

@ -1490,14 +1490,14 @@ class TFGenerationMixin:
if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
else begin_index + 1
)
if generation_config.forced_decoder_ids is not None:
if getattr(generation_config, "forced_decoder_ids", None) is not None:
begin_index += generation_config.forced_decoder_ids[-1][
0
] # generation starts after the last token that is forced
processors.append(
TFSuppressTokensAtBeginLogitsProcessor(generation_config.begin_suppress_tokens, begin_index)
)
if generation_config.forced_decoder_ids is not None:
if getattr(generation_config, "forced_decoder_ids", None) is not None:
processors.append(TFForceTokensLogitsProcessor(generation_config.forced_decoder_ids))
processors = self._merge_criteria_processor_list(processors, logits_processor)

View File

@ -79,6 +79,7 @@ from .configuration_utils import (
GenerationConfig,
GenerationMode,
)
from .continuous_batching import ContinuousMixin
from .logits_process import (
EncoderNoRepeatNGramLogitsProcessor,
EncoderRepetitionPenaltyLogitsProcessor,
@ -352,7 +353,7 @@ GenerateBeamOutput = Union[GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDec
GenerateOutput = Union[GenerateNonBeamOutput, GenerateBeamOutput]
class GenerationMixin:
class GenerationMixin(ContinuousMixin):
"""
A class containing all functions for auto-regressive text generation, to be used as a mixin in model classes.
Inheriting from this class causes the model to have special generation-related behavior, such as loading a
@ -635,7 +636,7 @@ class GenerationMixin:
and attention_mask is not None
and attention_mask.ndim == 2
):
if model_inputs["inputs_embeds"] is not None:
if not self.config.is_encoder_decoder and model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
else:
batch_size, sequence_length = model_inputs[input_ids_key].shape[:2]
@ -654,7 +655,6 @@ class GenerationMixin:
# If it's not defined, it means the model uses the new general mask API
if causal_mask_creation_function is None: # can't be found
output_attentions = kwargs.get("output_attentions", False)
token_type_ids = getattr(model_input, "token_type_ids", None)
# Some models may overwrite the general one
causal_mask_creation_function = getattr(self, "create_masks_for_generate", create_masks_for_generate)
@ -665,7 +665,6 @@ class GenerationMixin:
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
output_attentions=output_attentions,
token_type_ids=token_type_ids,
)
else:
@ -1099,10 +1098,10 @@ class GenerationMixin:
def _get_logits_processor(
self,
generation_config: GenerationConfig,
input_ids_seq_length: int,
encoder_input_ids: torch.LongTensor,
prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
logits_processor: Optional[LogitsProcessorList],
input_ids_seq_length: Optional[int] = None,
encoder_input_ids: torch.LongTensor = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
logits_processor: Optional[LogitsProcessorList] = None,
device: Optional[str] = None,
model_kwargs: Optional[Dict[str, Any]] = None,
negative_prompt_ids: Optional[torch.Tensor] = None,
@ -1114,6 +1113,8 @@ class GenerationMixin:
"""
# instantiate processors list
processors = LogitsProcessorList()
if logits_processor is None:
logits_processor = []
if generation_config.guidance_scale is not None and generation_config.guidance_scale != 1:
processors.append(
@ -1183,7 +1184,7 @@ class GenerationMixin:
)
if (
generation_config.min_length is not None
and generation_config._eos_token_tensor is not None
and getattr(generation_config, "_eos_token_tensor", None) is not None
and generation_config.min_length > 0
):
processors.append(
@ -1195,7 +1196,7 @@ class GenerationMixin:
)
if (
generation_config.min_new_tokens is not None
and generation_config._eos_token_tensor is not None
and getattr(generation_config, "_eos_token_tensor", None) is not None
and generation_config.min_new_tokens > 0
):
processors.append(
@ -2344,9 +2345,15 @@ class GenerationMixin:
if custom_generate is not None:
trust_remote_code = kwargs.pop("trust_remote_code", None)
# Get all `generate` arguments in a single variable. Custom functions are responsible for handling them:
# they receive the same inputs as `generate`, only with `model` instead of `self`. They can access to
# methods from `GenerationMixin` through `model`.
global_keys_to_exclude = {"self", "kwargs"}
# they receive the same inputs as `generate`, with `model` instead of `self` and excluding the arguments to
# trigger the custom generation. They can access to methods from `GenerationMixin` through `model`.
global_keys_to_exclude = {
"self",
"kwargs",
"global_keys_to_exclude",
"trust_remote_code",
"custom_generate",
}
generate_arguments = {key: value for key, value in locals().items() if key not in global_keys_to_exclude}
generate_arguments.update(kwargs)

View File

@ -28,8 +28,6 @@ from .feature_extraction_utils import BatchFeature as BaseBatchFeature
from .utils import (
IMAGE_PROCESSOR_NAME,
PushToHubMixin,
add_model_info_to_auto_map,
add_model_info_to_custom_pipelines,
cached_file,
copy_func,
download_url,
@ -380,14 +378,6 @@ class ImageProcessingMixin(PushToHubMixin):
logger.info(
f"loading configuration file {image_processor_file} from cache at {resolved_image_processor_file}"
)
if "auto_map" in image_processor_dict:
image_processor_dict["auto_map"] = add_model_info_to_auto_map(
image_processor_dict["auto_map"], pretrained_model_name_or_path
)
if "custom_pipelines" in image_processor_dict:
image_processor_dict["custom_pipelines"] = add_model_info_to_custom_pipelines(
image_processor_dict["custom_pipelines"], pretrained_model_name_or_path
)
return image_processor_dict, kwargs
@ -508,11 +498,7 @@ class ImageProcessingMixin(PushToHubMixin):
Register this class with a given auto class. This should only be used for custom image processors as the ones
in the library are already mapped with `AutoImageProcessor `.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"AutoImageProcessor "`):

View File

@ -0,0 +1,45 @@
from typing import Optional
import torch
from torch import nn
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_paged_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
cache = kwargs.pop("cache", None)
if cache is not None:
key, value = cache.update(key, value, module.layer_idx, **kwargs)
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights

View File

@ -11,7 +11,6 @@
# specific language governing permissions and limitations under the License.
import logging
from contextlib import contextmanager
from typing import Callable, Optional
import torch
@ -110,14 +109,13 @@ class TorchExportableModuleForDecoderOnlyLM(torch.nn.Module):
example_input_ids = input_ids if input_ids is not None else torch.tensor([[1]], dtype=torch.long)
example_cache_position = cache_position if cache_position is not None else torch.tensor([0], dtype=torch.long)
with patch_mask_interface():
exported_program = torch.export.export(
self.model,
args=(example_input_ids, example_cache_position),
kwargs={},
dynamic_shapes=dynamic_shapes,
strict=strict if strict is not None else True,
)
exported_program = torch.export.export(
self.model,
args=(example_input_ids, example_cache_position),
kwargs={},
dynamic_shapes=dynamic_shapes,
strict=strict if strict is not None else True,
)
return exported_program
@staticmethod
@ -456,24 +454,6 @@ class TorchExportableModuleWithHybridCache(torch.nn.Module):
return outputs.logits
@contextmanager
def patch_mask_interface():
"""
Context manager to locally use a simple dict instead of `AttentionMaskInterface`, as otherwise export will fail
with `strict=True` due to dynamo skip rules, i.e. `torch._dynamo.exc.Unsupported: 'inline in skipfiles:
Mapping.__contains__ | __contains__, skipped according trace_rules.lookup SKIP_DIRS'`.
Note that this seem to be an issue only for python<3.11.
"""
import transformers
original = transformers.masking_utils.ALL_MASK_ATTENTION_FUNCTIONS
transformers.masking_utils.ALL_MASK_ATTENTION_FUNCTIONS = ALL_MASK_ATTENTION_FUNCTIONS._global_mapping
try:
yield
finally:
transformers.masking_utils.ALL_MASK_ATTENTION_FUNCTIONS = original
def convert_and_export_with_cache(
model: PreTrainedModel,
example_input_ids: Optional[torch.Tensor] = None,
@ -515,14 +495,13 @@ def convert_and_export_with_cache(
)
if is_torch_greater_or_equal("2.6.0"):
with patch_mask_interface():
exported_program = torch.export.export(
TorchExportableModuleWithStaticCache(model),
args=(example_input_ids, example_cache_position),
kwargs={},
dynamic_shapes=dynamic_shapes,
strict=strict if strict is not None else True,
)
exported_program = torch.export.export(
TorchExportableModuleWithStaticCache(model),
args=(example_input_ids, example_cache_position),
kwargs={},
dynamic_shapes=dynamic_shapes,
strict=strict if strict is not None else True,
)
else:
if dynamic_shapes is not None:
logging.warning(
@ -534,14 +513,13 @@ def convert_and_export_with_cache(
#
# Due to issue https://github.com/pytorch/pytorch/issues/128394, we need to switch to use an internal
# export API and pre_dispatch=False. Switch to use the public API once the issue is included in 2.5 release.
with patch_mask_interface():
exported_program = torch.export._trace._export(
TorchExportableModuleWithStaticCache(model),
args=(example_input_ids,),
kwargs={"cache_position": example_cache_position},
pre_dispatch=False,
strict=True,
)
exported_program = torch.export._trace._export(
TorchExportableModuleWithStaticCache(model),
args=(example_input_ids,),
kwargs={"cache_position": example_cache_position},
pre_dispatch=False,
strict=True,
)
return exported_program
@ -634,10 +612,9 @@ class Seq2SeqLMExportableModule(torch.nn.Module):
# Export the encoder
with torch.no_grad():
with patch_mask_interface():
exported_encoder = torch.export.export(
wrapped_encoder, (encoder_input_ids,), dynamic_shapes={"input_ids": {1: seq_len_dim}}, strict=True
)
exported_encoder = torch.export.export(
wrapped_encoder, (encoder_input_ids,), dynamic_shapes={"input_ids": {1: seq_len_dim}}, strict=True
)
return exported_encoder
@ -657,17 +634,16 @@ class Seq2SeqLMExportableModule(torch.nn.Module):
# Export the decoder
with torch.no_grad():
with patch_mask_interface():
exported_decoder = torch.export.export(
wrapped_decoder,
(decoder_input_ids, encoder_hidden_states, cache_position),
dynamic_shapes={
"decoder_input_ids": None,
"encoder_hidden_states": {1: encoder_seq_len_dim},
"cache_position": None,
},
strict=True,
)
exported_decoder = torch.export.export(
wrapped_decoder,
(decoder_input_ids, encoder_hidden_states, cache_position),
dynamic_shapes={
"decoder_input_ids": None,
"encoder_hidden_states": {1: encoder_seq_len_dim},
"cache_position": None,
},
strict=True,
)
return exported_decoder

View File

@ -3,8 +3,11 @@ from typing import Optional, Tuple
import torch
from ..modeling_flash_attention_utils import _flash_attention_forward, flash_attn_supports_top_left_mask
from ..utils import logging
logger = logging.get_logger(__name__)
_use_top_left_mask = flash_attn_supports_top_left_mask()
@ -20,6 +23,12 @@ def flash_attention_forward(
softcap: Optional[float] = None,
**kwargs,
) -> Tuple[torch.Tensor, None]:
if kwargs.get("output_attentions", False) or kwargs.get("head_mask", None) is not None:
logger.warning_once(
"`flash_attention_2` does not support `output_attentions=True` or `head_mask`."
" Please set your attention to `eager` if you want any of these features."
)
# This is before the transpose
seq_len = query.shape[2]

View File

@ -0,0 +1,64 @@
import torch
from ..generation.continuous_batching import PagedAttentionCache
from ..utils import is_flash_attn_2_available
if is_flash_attn_2_available():
from flash_attn import flash_attn_varlen_func
def paged_attention_forward(
module: torch.nn.Module,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
attention_mask: torch.Tensor = None,
cache: PagedAttentionCache = None,
cumulative_seqlens_q=None,
cumulative_seqlens_k=None,
max_seqlen_q=None,
max_seqlen_k=None,
block_tables=None,
**kwargs,
) -> torch.Tensor:
r"""Perform the forward pass of attention with paged key-value cache.
This function handles the cache updates and performs the attention computation
using the flash_attn_varlen_func for efficient processing.
Args:
q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch. but if there is a block table it can be the full k
v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch. but if there is a block table it can be the full v
cumulative_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into q.
cumulative_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
of the sequences in the batch, used to index into kv.
max_seqlen_q: int. Maximum query sequence length in the batch.
max_seqlen_k: int. Maximum key sequence length in the batch.
dropout_p: float. Dropout probability.
softmax_scale: float. The scaling of QK^T before applying softmax.
Default to 1 / sqrt(headdim).
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
softcap: float. Anything > 0 activates softcapping attention.
"""
k, v = cache.update(k, v, module.layer_idx, cumulative_seqlens_k=cumulative_seqlens_k, **kwargs)
attn_output = flash_attn_varlen_func(
q.transpose(1, 2).squeeze(0),
k.transpose(1, 2).squeeze(0),
v.transpose(1, 2).squeeze(0),
cumulative_seqlens_q.to(torch.int32),
cumulative_seqlens_k.to(torch.int32),
max_seqlen_q,
max_seqlen_k,
softmax_scale=module.scaling,
causal=True, # kind of a must, it automatically aligns the mask for q < k
window_size=(-1, -1), # -1 means infinite context window
# block_table=block_tables, -> torch.Tensor
# **kwargs,
)
return attn_output, None

View File

@ -31,13 +31,15 @@ from typing import Optional, Tuple, Union
import torch
from packaging import version
from ..utils import is_torch_flex_attn_available
from ..utils import is_torch_flex_attn_available, logging
from ..utils.import_utils import _torch_version, is_torchdynamo_compiling
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask, flex_attention
from torch.nn.attention.flex_attention import create_block_mask as create_block_causal_mask_flex
from torch.nn.attention.flex_attention import BlockMask, create_block_mask, flex_attention
logger = logging.get_logger(__name__)
class WrappedFlexAttention:
@ -98,21 +100,23 @@ def compile_friendly_flex_attention(
Offset = Union[torch.Tensor, int]
# TODO: deprecate / rename to make_flex_block_mask for clarity as it's not only causal anymore
def make_flex_block_causal_mask(
attention_mask_2d: torch.Tensor,
attention_chunk_size: Optional[int] = None,
query_length=None,
key_length=None,
offsets: Optional[Tuple[Offset, Offset]] = None,
is_causal: Optional[bool] = True,
) -> "BlockMask":
"""
IMPORTANT NOTICE: This function is deprecated in favor of using the mask primitives in `masking_utils.py`,
and will be removed in a future version without warnings. New code should not use it. It is only kept here
for BC for now, while models using it are being patched accordingly.
Create a block causal document mask for a batch of sequences, both packed and unpacked.
Create Block causal logic and passing it into :func:`torch.nn.attention.flex_attention.create_block_mask`.
The resultant BlockMask is a compressed representation of the full block causal
Create a block (causal) document mask for a batch of sequences, both packed and unpacked.
Create Block (causal) logic and passing it into :func:`torch.nn.attention.flex_attention.create_block_mask`.
The resultant BlockMask is a compressed representation of the full (causal) block
mask. BlockMask is essential for performant computation of flex attention.
See: https://pytorch.org/blog/flexattention/
@ -170,7 +174,21 @@ def make_flex_block_causal_mask(
causal_doc_mask = causal_mask_mod(batch_idx, head_idx, q_idx, kv_idx)
return chunk_mask & causal_doc_mask
mask_mod_maybe_combined = causal_mask_mod if attention_chunk_size is None else chunk_causal_mask_mod
def default_mask_mod(batch_idx, head_idx, q_idx, kv_idx):
"""
Utilizes default attention mask to enable encoder and encoder-decoder
attention masks.
"""
document_mask = document_ids[batch_idx, q_idx] == document_ids[batch_idx, kv_idx]
# kv indexing is crucial in order to work correctly
padding_mask = attention_mask_2d[batch_idx, kv_idx] > 0
final_mask = padding_mask & document_mask
return final_mask
if not is_causal:
mask_mod_maybe_combined = default_mask_mod
else:
mask_mod_maybe_combined = causal_mask_mod if attention_chunk_size is None else chunk_causal_mask_mod
if offsets is not None:
q_offset = offsets[0]
@ -182,7 +200,8 @@ def make_flex_block_causal_mask(
return mask_mod_maybe_combined(batch_idx, head_idx, offset_q, offset_kv)
else:
mask_mod = mask_mod_maybe_combined
return create_block_causal_mask_flex(
return create_block_mask(
mask_mod=mask_mod,
B=batch_size,
H=None, # attention head
@ -216,21 +235,32 @@ def flex_attention_forward(
head_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
if head_mask is not None:
logger.warning_once(
"`flex_attention` does not support `head_mask`. Please set your attention to `eager` if you want this feature."
)
if kwargs.get("dropout", 0.0) > 0:
raise ValueError(
"`flex_attention` does not support `dropout`. Please use it with inference"
" only (`model.eval()`) or turn off the attention dropout in the respective config."
)
block_mask = None
causal_mask = None
score_mask = None
if isinstance(attention_mask, BlockMask):
block_mask = attention_mask
else:
causal_mask = attention_mask
score_mask = attention_mask
if causal_mask is not None:
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
if score_mask is not None:
score_mask = score_mask[:, :, :, : key.shape[-2]]
def score_mod(score, batch_idx, head_idx, q_idx, kv_idx):
if softcap is not None:
score = softcap * torch.tanh(score / softcap)
if causal_mask is not None:
score = score + causal_mask[batch_idx][0][q_idx][kv_idx]
if score_mask is not None:
score = score + score_mask[batch_idx][0][q_idx][kv_idx]
if head_mask is not None:
score = score + head_mask[batch_idx][head_idx][0][0]
return score

View File

@ -37,6 +37,8 @@ if SPARSE_MODE not in [TOP_LEFT_ALIGNED_CAUSAL_MASK_MODE, DOWN_RIGHT_ALIGNED_CAU
"or 3 (down-right aligned causal mask)."
)
ATTN_MASK_NPU = None
def is_npu_fa2_top_left_aligned_causal_mask():
return SPARSE_MODE == TOP_LEFT_ALIGNED_CAUSAL_MASK_MODE if is_torch_npu_available() else False
@ -171,7 +173,9 @@ def npu_flash_attn_func(
head_num = q.shape[2]
output = torch_npu.npu_fusion_attention(q, k, v, head_num, "BSND", keep_prob=keep_prob, scale=softmax_scale)[0]
else:
attn_mask_npu = torch.triu(torch.ones([2048, 2048], device=q.device), diagonal=1).bool()
global ATTN_MASK_NPU
if ATTN_MASK_NPU is None:
ATTN_MASK_NPU = torch.triu(torch.ones([2048, 2048], device=q.device), diagonal=1).bool()
head_num = q.shape[2]
output = torch_npu.npu_fusion_attention(
q,
@ -181,7 +185,7 @@ def npu_flash_attn_func(
"BSND",
keep_prob=keep_prob,
scale=softmax_scale,
atten_mask=attn_mask_npu,
atten_mask=ATTN_MASK_NPU,
sparse_mode=SPARSE_MODE,
)[0]
@ -222,7 +226,9 @@ def npu_flash_attn_varlen_func(
actual_seq_kvlen=tuple(cu_seqlens_k[1:].cpu().numpy().tolist()),
)[0]
else:
attn_mask_npu = torch.triu(torch.ones([2048, 2048], device=q.device), diagonal=1).bool()
global ATTN_MASK_NPU
if ATTN_MASK_NPU is None:
ATTN_MASK_NPU = torch.triu(torch.ones([2048, 2048], device=q.device), diagonal=1).bool()
head_num = q.shape[1]
output = torch_npu.npu_fusion_attention(
q,
@ -231,7 +237,7 @@ def npu_flash_attn_varlen_func(
head_num,
pse=None,
padding_mask=None,
atten_mask=attn_mask_npu,
atten_mask=ATTN_MASK_NPU,
scale=softmax_scale,
keep_prob=keep_prob,
input_layout="TND",

View File

@ -2,6 +2,11 @@ from typing import Optional, Tuple
import torch
from ..utils import logging
logger = logging.get_logger(__name__)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
@ -26,13 +31,18 @@ def sdpa_attention_forward(
is_causal: Optional[bool] = None,
**kwargs,
) -> Tuple[torch.Tensor, None]:
if kwargs.get("output_attentions", False) or kwargs.get("head_mask", None) is not None:
logger.warning_once(
"`sdpa` attention does not support `output_attentions=True` or `head_mask`."
" Please set your attention to `eager` if you want any of these features."
)
if hasattr(module, "num_key_value_groups"):
key = repeat_kv(key, module.num_key_value_groups)
value = repeat_kv(value, module.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None and causal_mask.ndim == 4:
causal_mask = causal_mask[:, :, :, : key.shape[-2]]
if attention_mask is not None and attention_mask.ndim == 4:
attention_mask = attention_mask[:, :, :, : key.shape[-2]]
# SDPA with memory-efficient backend is bugged with non-contiguous inputs and custom attn_mask for some torch versions
# Reference: https://github.com/pytorch/pytorch/issues/112577.
@ -44,7 +54,9 @@ def sdpa_attention_forward(
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# Note that it is important to check first for the shape, otherwise compile will fail with `argument 'is_causal' must be bool, not SymBool`
if is_causal is None:
is_causal = query.shape[2] > 1 and causal_mask is None
# The last condition is for encoder (decoder) models which specify this by passing their own `is_causal` flag
# This is mainly due to those models having mixed implementations for encoder, decoder, and encoder-decoder attns
is_causal = query.shape[2] > 1 and attention_mask is None and getattr(module, "is_causal", True)
# Shapes (e.g. query.shape[2]) are tensors during jit tracing, resulting in `is_causal` being a tensor.
# We convert it to a bool for the SDPA kernel that only accepts bools.
@ -55,7 +67,7 @@ def sdpa_attention_forward(
query,
key,
value,
attn_mask=causal_mask,
attn_mask=attention_mask,
dropout_p=dropout,
scale=scaling,
is_causal=is_causal,

View File

@ -0,0 +1,51 @@
from typing import Optional, Tuple
import torch
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def sdpa_attention_paged_forward(
module: torch.nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
dropout: float = 0.0,
scaling: Optional[float] = None,
is_causal: Optional[bool] = None,
**kwargs,
) -> Tuple[torch.Tensor, None]:
cache = kwargs.pop("cache", None)
if cache is not None:
key, value = cache.update(key, value, module.layer_idx, **kwargs)
if hasattr(module, "num_key_value_groups"):
key = repeat_kv(key, module.num_key_value_groups)
value = repeat_kv(value, module.num_key_value_groups)
causal_mask = attention_mask
query = query.contiguous()
key = key.contiguous()
value = value.contiguous()
attn_output = torch.nn.functional.scaled_dot_product_attention(
query,
key,
value,
attn_mask=causal_mask,
dropout_p=dropout,
scale=scaling,
is_causal=False,
)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, None

View File

@ -900,7 +900,7 @@ def verify_tp_plan(expected_keys: list[str], tp_plan: Optional[dict[str, str]]):
unused_rules = tp_plan
for key in generic_keys:
param_name, _ = key.rsplit(".", 1) if "." in key else key
param_name = key.rsplit(".", 1)[0] if "." in key else key
generic_param_name = re.sub(r"\d+", "*", param_name)
if generic_param_name in tp_plan:

View File

@ -25,11 +25,16 @@ from .utils.import_utils import is_torch_flex_attn_available, is_torch_greater_o
if is_torch_flex_attn_available():
from torch._dynamo._trace_wrapped_higher_order_op import TransformGetItemToIndex
from torch.nn.attention.flex_attention import BlockMask, create_block_mask
else:
# Register a fake type to avoid crashing for annotations and `isinstance` checks
BlockMask = torch.Tensor
_is_torch_greater_or_equal_than_2_5 = is_torch_greater_or_equal("2.5", accept_dev=True)
_is_torch_greater_or_equal_than_2_6 = is_torch_greater_or_equal("2.6", accept_dev=True)
if _is_torch_greater_or_equal_than_2_6:
from torch._dynamo._trace_wrapped_higher_order_op import TransformGetItemToIndex
def and_masks(*mask_functions: list[Callable]) -> Callable:
@ -415,14 +420,14 @@ def sdpa_mask_older_torch(
# Due to a bug in versions of torch<2.5, we need to update the mask in case a query is not attending to any
# tokens (due to padding). See details in https://github.com/pytorch/pytorch/issues/110213
if allow_torch_fix:
if not _is_torch_greater_or_equal_than_2_5 and allow_torch_fix:
causal_mask |= torch.all(~causal_mask, dim=-1, keepdim=True)
return causal_mask
# We use the version with newer torch whenever possible, as it is more general and can handle arbitrary mask functions
# (especially mask_function indexing a tensor, such as the padding mask function)
sdpa_mask = sdpa_mask_recent_torch if is_torch_flex_attn_available() else sdpa_mask_older_torch
sdpa_mask = sdpa_mask_recent_torch if _is_torch_greater_or_equal_than_2_6 else sdpa_mask_older_torch
def eager_mask(
@ -522,7 +527,7 @@ def flex_attention_mask(
mask_function: Callable = causal_mask_function,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> "BlockMask":
) -> BlockMask:
"""
Create a 4D block mask which is a compressed representation of the full 4D block causal mask. BlockMask is essential
for performant computation of flex attention. See: https://pytorch.org/blog/flexattention/
@ -623,7 +628,11 @@ def _preprocess_mask_arguments(
return True, attention_mask, None, None
# For TGI/vLLM backends, or other custom attention without equivalent mask creation: we don't need a mask!
if config._attn_implementation not in ALL_MASK_ATTENTION_FUNCTIONS:
# Note: it's not ideal to check the `_global_mapping` attribute instead of the object itself, however otherwise
# full graph dynamo tracing (i.e. torch.export or compile with `fullgraph=True`) will fail on Python<3.11
# with `torch._dynamo.exc.Unsupported: 'inline in skipfiles:Mapping.__contains__ | __contains__, skipped
# according trace_rules.lookup SKIP_DIRS'` -- can be removed when we require Python>=3.11
if config._attn_implementation not in ALL_MASK_ATTENTION_FUNCTIONS._global_mapping:
return True, None, None, None
# Move the mask to correct device, and potentially switch dtype for efficiency
@ -640,33 +649,15 @@ def _preprocess_mask_arguments(
return False, attention_mask, kv_length, kv_offset
def _get_mask_interface(config: PretrainedConfig, output_attentions: bool = False) -> Callable:
"""
Return the mask interface (a function) to be used, based on the type of attention found in the config.
Args:
config (`PretrainedConfig`):
The model config.
output_attentions (`bool`, optional):
Whether we return the attention scores or not. By default `False`.
"""
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS[config._attn_implementation]
# Sdpa fallbacks to eager in the Attention modules if `output_attentions=True`
if config._attn_implementation == "sdpa" and output_attentions:
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS["eager"]
return mask_interface
def create_causal_mask(
config: PretrainedConfig,
input_embeds: torch.Tensor,
attention_mask: Optional[torch.Tensor],
cache_position: torch.Tensor,
past_key_values: Optional[Cache],
output_attentions: bool = False,
or_mask_function: Optional[Callable] = None,
and_mask_function: Optional[Callable] = None,
) -> Optional[Union[torch.Tensor, "BlockMask"]]:
) -> Optional[Union[torch.Tensor, BlockMask]]:
"""
Create a standard causal mask based on the attention implementation used (stored in the config). If `past_key_values`
has an HybridCache structure, this function will return the mask corresponding to one of the "full_attention" layers (to align
@ -685,8 +676,6 @@ def create_causal_mask(
A tensor of shape (query_length,) indicating the current indices of the input sequence elements.
past_key_values (`Cache`, optional):
The past key values, if we use a cache.
output_attentions (`bool`, optional):
Whether we return the attention scores or not. By default `False`.
or_mask_function (`Callable`, optional):
An optional mask function to combine with the causal mask function (by doing the union of both). This is
useful to easily overlay another mask on top of the causal one, for example for image tokens handling.
@ -708,7 +697,7 @@ def create_causal_mask(
batch_size, dtype = input_embeds.shape[0], input_embeds.dtype
mask_factory_function = causal_mask_function
mask_interface = _get_mask_interface(config, output_attentions)
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS[config._attn_implementation]
# Do not allow skip if we are compiling (this is to match BC)
# TODO: cyril -> probably revisit and remove this, but a lot of tests rely on it
@ -716,13 +705,13 @@ def create_causal_mask(
# Allow slight deviations from causal mask
if or_mask_function is not None:
if not _is_torch_greater_or_equal_than_2_5:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.5")
if not _is_torch_greater_or_equal_than_2_6:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = or_masks(mask_factory_function, or_mask_function)
allow_is_causal_skip = False
if and_mask_function is not None:
if not _is_torch_greater_or_equal_than_2_5:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.5")
if not _is_torch_greater_or_equal_than_2_6:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = and_masks(mask_factory_function, and_mask_function)
allow_is_causal_skip = False
@ -747,10 +736,9 @@ def create_sliding_window_causal_mask(
attention_mask: Optional[torch.Tensor],
cache_position: torch.Tensor,
past_key_values: Optional[Cache],
output_attentions: bool = False,
or_mask_function: Optional[Callable] = None,
and_mask_function: Optional[Callable] = None,
) -> Optional[Union[torch.Tensor, "BlockMask"]]:
) -> Optional[Union[torch.Tensor, BlockMask]]:
"""
Create a sliding window causal mask based on the attention implementation used (stored in the config). This type
of attention pattern was mostly democratized by Mistral. If `past_key_values` has an HybridCache structure, this
@ -770,8 +758,6 @@ def create_sliding_window_causal_mask(
A tensor of shape (query_length,) indicating the current indices of the input sequence elements.
past_key_values (`Cache`, optional):
The past key values, if we use a cache.
output_attentions (`bool`, optional):
Whether we return the attention scores or not. By default `False`.
or_mask_function (`Callable`, optional):
An optional mask function to combine with the sliding causal mask function (by doing the union of both). This is
useful to easily overlay another mask on top of the sliding causal one, for example for image tokens handling.
@ -797,7 +783,7 @@ def create_sliding_window_causal_mask(
batch_size, dtype = input_embeds.shape[0], input_embeds.dtype
mask_factory_function = sliding_window_causal_mask_function(sliding_window)
mask_interface = _get_mask_interface(config, output_attentions)
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS[config._attn_implementation]
# Do not allow skip if we are compiling (this is to match BC)
# TODO: cyril -> probably revisit and remove this, but a lot of tests rely on it
@ -805,13 +791,13 @@ def create_sliding_window_causal_mask(
# Allow slight deviations from sliding causal mask
if or_mask_function is not None:
if not _is_torch_greater_or_equal_than_2_5:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.5")
if not _is_torch_greater_or_equal_than_2_6:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = or_masks(mask_factory_function, or_mask_function)
allow_is_causal_skip = False
if and_mask_function is not None:
if not _is_torch_greater_or_equal_than_2_5:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.5")
if not _is_torch_greater_or_equal_than_2_6:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = and_masks(mask_factory_function, and_mask_function)
allow_is_causal_skip = False
@ -837,10 +823,9 @@ def create_chunked_causal_mask(
attention_mask: Optional[torch.Tensor],
cache_position: torch.Tensor,
past_key_values: Optional[Cache],
output_attentions: bool = False,
or_mask_function: Optional[Callable] = None,
and_mask_function: Optional[Callable] = None,
) -> Optional[Union[torch.Tensor, "BlockMask"]]:
) -> Optional[Union[torch.Tensor, BlockMask]]:
"""
Create a chunked attention causal mask based on the attention implementation used (stored in the config). This type
of attention pattern was mostly democratized by Llama4. If `past_key_values` has an HybridCache structure, this
@ -860,8 +845,6 @@ def create_chunked_causal_mask(
A tensor of shape (query_length,) indicating the current indices of the input sequence elements.
past_key_values (`Cache`, optional):
The past key values, if we use a cache.
output_attentions (`bool`, optional):
Whether we return the attention scores or not. By default `False`.
or_mask_function (`Callable`, optional):
An optional mask function to combine with the chunked causal mask function (by doing the union of both). This is
useful to easily overlay another mask on top of the chunked causal one, for example for image tokens handling.
@ -894,7 +877,7 @@ def create_chunked_causal_mask(
batch_size, dtype = input_embeds.shape[0], input_embeds.dtype
mask_factory_function = chunked_causal_mask_function(chunk_size)
mask_interface = _get_mask_interface(config, output_attentions)
mask_interface = ALL_MASK_ATTENTION_FUNCTIONS[config._attn_implementation]
# Do not allow skip if we are compiling (this is to match BC)
# TODO: cyril -> probably revisit and remove this, but a lot of tests rely on it
@ -902,13 +885,13 @@ def create_chunked_causal_mask(
# Allow slight deviations from chunked causal mask
if or_mask_function is not None:
if not _is_torch_greater_or_equal_than_2_5:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.5")
if not _is_torch_greater_or_equal_than_2_6:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = or_masks(mask_factory_function, or_mask_function)
allow_is_causal_skip = False
if and_mask_function is not None:
if not _is_torch_greater_or_equal_than_2_5:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.5")
if not _is_torch_greater_or_equal_than_2_6:
raise ValueError("Using `or_mask_function` or `and_mask_function` arguments require torch>=2.6")
mask_factory_function = and_masks(mask_factory_function, and_mask_function)
allow_is_causal_skip = False
@ -941,7 +924,6 @@ def create_masks_for_generate(
attention_mask: Optional[torch.Tensor],
cache_position: torch.Tensor,
past_key_values: Optional[Cache],
output_attentions: bool = False,
or_mask_function: Optional[Callable] = None,
and_mask_function: Optional[Callable] = None,
**kwargs,
@ -963,8 +945,6 @@ def create_masks_for_generate(
A tensor of shape (query_length,) indicating the current indices of the input sequence elements.
past_key_values (`Cache`, optional):
The past key values, if we use a cache.
output_attentions (`bool`, optional):
Whether we return the attention scores or not. By default `False`.
or_mask_function (`Callable`, optional):
An optional mask function to combine with the other mask function (by doing the union of both). This is
useful to easily overlay another mask on top of the causal one, for example for image tokens handling.
@ -981,7 +961,6 @@ def create_masks_for_generate(
"attention_mask": attention_mask,
"cache_position": cache_position,
"past_key_values": past_key_values,
"output_attentions": output_attentions,
"or_mask_function": or_mask_function,
"and_mask_function": and_mask_function,
}

View File

@ -21,6 +21,8 @@ from contextlib import contextmanager, redirect_stdout
from io import StringIO
from typing import Optional
from safetensors.torch import save_file
from transformers.utils.import_utils import requires
from .utils import is_torch_available
@ -65,64 +67,94 @@ def _dtensor_repr(x):
return "DTensor(non-rank0)"
def _serialize_io(value):
def _serialize_tensor_like_io(
value, debug_path: Optional[str] = None, use_repr: bool = True, path_to_value: Optional[str] = None
):
"""
Converts Tensors and DTensors to a JSON-serializable dictionary representation.
Args:
value: Any Python object, often including torch Tensors, lists, dicts, etc.
debug_path (`str`, *optional*, defaults to `None`): Directory to dump debug JSON and SafeTensors files.
use_repr (bool, *optional*, defaults to `True`): Whether to save a `repr()`-ized version of the tensor as the
`value` property in the asscoiated FULL_TENSORS.json file, or to store the full tensors in separate
SafeTensors file and store the relative path to that file in the `value` property in the dictionary.
path_to_value (`str`, *optional*, defaults to `None`): The file name for the SafeTensors file holding the full
tensor value if `use_repr=False`.
Returns:
A nested Python structure (list, dict, or sanitized string) that is safe to json.dump.
"""
torch.set_printoptions(sci_mode=True)
if use_repr:
value_out = _repr_to_list(value)
elif path_to_value:
if not path_to_value.endswith(".safetensors"):
path_to_value += ".safetensors"
filepath = os.path.join(debug_path, path_to_value) if debug_path else path_to_value
save_file({"data": value.contiguous().detach().cpu()}, filepath)
value_out = f"./{path_to_value}"
else:
raise ValueError(f"{use_repr=} and {path_to_value=} cannot both be falsy.")
out = {
"shape": repr(value.shape),
"dtype": repr(value.dtype),
"value": value_out,
}
if value.dtype in {torch.float16, torch.float32, torch.bfloat16}:
out.update(
{
"mean": _sanitize_repr_for_diff(repr(value.mean())),
"std": _sanitize_repr_for_diff(repr(value.std())),
"min": _sanitize_repr_for_diff(repr(value.min())),
"max": _sanitize_repr_for_diff(repr(value.max())),
}
)
return out
def _serialize_io(value, debug_path: Optional[str] = None, use_repr: bool = True, path_to_value: Optional[str] = None):
"""
Recursively build a JSON-serializable Python structure from `value`.
Tensors and DTensors become sanitized repr strings.
Tensors and DTensors become either sanitized repr strings, or are saved to disk as SafeTensors files and their
relative paths are recorded in the returned Python structure.
Lists/tuples/dicts are recursed into.
All memory addresses are replaced with a stable placeholder.
Args:
value: Any Python object, often including torch Tensors, lists, dicts, etc.
debug_path (`str`, *optional*, defaults to `None`): Directory to dump debug JSON and SafeTensors files.
use_repr (bool, *optional*, defaults to `True`): Whether to save a `repr()`-ized version of the tensors as the
`value` property in the asscoiated FULL_TENSORS.json file, or to store full tensors in separate SafeTensors
files and store the relative path to that file in the `value` property.
path_to_value (`str`, *optional*, defaults to `None`): The file name for the SafeTensors file holding the full
tensor value if `use_repr=False`.
Returns:
A nested Python structure (list, dict, or sanitized string) that is safe to json.dump.
"""
if isinstance(value, (list, tuple)):
return [_serialize_io(v) for v in value]
return [
_serialize_io(v, debug_path=debug_path, use_repr=use_repr, path_to_value=f"{path_to_value}_{i}")
for i, v in enumerate(value)
]
if isinstance(value, dict):
return {k: _serialize_io(v) for k, v in value.items()}
return {
k: _serialize_io(v, debug_path=debug_path, use_repr=use_repr, path_to_value=f"{path_to_value}_{k}")
for k, v in value.items()
}
if hasattr(value, "_local_tensor"):
# DTensor-like handling, just use local tensor attribute
torch.set_printoptions(sci_mode=True)
val_repr = _repr_to_list(value)
out = {
"shape": repr(value._local_tensor.shape),
"dtype": repr(value._local_tensor.dtype),
"value": val_repr,
}
if value._local_tensor.dtype in {torch.float16, torch.float32, torch.bfloat16}:
value = value._local_tensor.clone()
out.update(
{
"mean": _sanitize_repr_for_diff(repr(value.mean())),
"std": _sanitize_repr_for_diff(repr(value.std())),
"min": _sanitize_repr_for_diff(repr(value.min())),
"max": _sanitize_repr_for_diff(repr(value.max())),
}
)
return out
return _serialize_tensor_like_io(
value._local_tensor, debug_path=debug_path, use_repr=use_repr, path_to_value=path_to_value
)
if isinstance(value, torch.Tensor):
torch.set_printoptions(sci_mode=True)
val_repr = _repr_to_list(value)
out = {
"shape": repr(value.shape),
"dtype": repr(value.dtype),
"value": val_repr,
}
if value.dtype in {torch.float16, torch.float32, torch.bfloat16}:
out.update(
{
"mean": _sanitize_repr_for_diff(repr(value.mean())),
"std": _sanitize_repr_for_diff(repr(value.std())),
"min": _sanitize_repr_for_diff(repr(value.min())),
"max": _sanitize_repr_for_diff(repr(value.max())),
}
)
return out
return _serialize_tensor_like_io(value, debug_path=debug_path, use_repr=use_repr, path_to_value=path_to_value)
return _sanitize_repr_for_diff(repr(value))
@ -199,7 +231,7 @@ def log_model_debug_trace(debug_path, model):
os.makedirs(debug_path, exist_ok=True)
base = os.path.join(debug_path, model._debugger_module_dump_name + "_debug_tree")
except Exception as e:
raise ValueError(f"Unexpected or existing debug_path={debug_path}. {e}")
raise ValueError(f"Unexpected or existing debug_path={debug_path}.") from e
else:
base = model._debugger_module_dump_name + "_debug_tree"
@ -240,6 +272,7 @@ def _attach_debugger_logic(
model,
debug_path: Optional[str] = ".",
do_prune_layers: Optional[bool] = True,
use_repr: bool = True,
):
"""
Attaches a debugging wrapper to every module in the model.
@ -250,6 +283,9 @@ def _attach_debugger_logic(
model (`PreTrainedModel`, `nn.Module`): Model to wrap.
debug_path (`str`): Optional directory to dump debug JSON files.
do_prune_layers (`bool`, *optional*, defaults to `True`): Whether to prune intermediate layers.
use_repr (bool, *optional*, defaults to `True`): Whether to save a `repr()`-ized version of the tensors as the
`value` property in the asscoiated FULL_TENSORS.json file, or to store full tensors in separate SafeTensors
files and store the relative path to that file in the `value` property.
"""
class_name = model.__class__.__name__
@ -258,6 +294,12 @@ def _attach_debugger_logic(
model._debugger_model_call_stack = []
model._debugger_module_dump_name = class_name # used for final JSON filename
if debug_path:
try:
os.makedirs(debug_path, exist_ok=True)
except Exception as e:
raise ValueError(f"Unexpected or existing debug_path={debug_path}.") from e
def wrap_forward(module, full_path):
orig_forward = module.forward
@ -268,7 +310,12 @@ def _attach_debugger_logic(
dict_inputs = {k: dict_inputs[k] for k in dict_inputs if len(dict_inputs[k]) > 0}
node = {
"module_path": full_path,
"inputs": _serialize_io(dict_inputs),
"inputs": _serialize_io(
dict_inputs,
debug_path=debug_path,
use_repr=use_repr,
path_to_value=f"{full_path}_inputs",
),
"outputs": None,
"children": [],
}
@ -280,7 +327,12 @@ def _attach_debugger_logic(
if sum(1 for _ in module.named_children()) > 0:
node["outputs"] = None
else:
node["outputs"] = _serialize_io(out)
node["outputs"] = _serialize_io(
out,
debug_path=debug_path,
use_repr=use_repr,
path_to_value=f"{full_path}_outputs",
)
finished = model._debugger_model_call_stack.pop()
# prune empty vertices here as well (mostly empty children nodes)
@ -307,7 +359,12 @@ def _attach_debugger_logic(
if _is_rank_zero():
top_node = {
"module_path": f"{class_name} (top-level)",
"inputs": _serialize_io({"args": inps, "kwargs": kws}),
"inputs": _serialize_io(
{"args": inps, "kwargs": kws},
debug_path=debug_path,
use_repr=use_repr,
path_to_value=f"{class_name}_inputs",
),
"outputs": None,
"children": [],
}
@ -315,7 +372,12 @@ def _attach_debugger_logic(
out = real_top_forward(*inps, **kws)
if _is_rank_zero() and model._debugger_model_call_stack:
top_node["outputs"] = _serialize_io(out)
top_node["outputs"] = _serialize_io(
out,
debug_path=debug_path,
use_repr=use_repr,
path_to_value=f"{class_name}_outputs",
)
finished = model._debugger_model_call_stack.pop()
model._call_tree["inputs"] = finished["inputs"]
model._call_tree["outputs"] = finished["outputs"]
@ -335,11 +397,21 @@ def _attach_debugger_logic(
@requires(backends=("torch",))
@contextmanager
def model_addition_debugger_context(model, debug_path: Optional[str] = None, do_prune_layers: Optional[bool] = True):
def model_addition_debugger_context(
model,
debug_path: Optional[str] = None,
do_prune_layers: Optional[bool] = True,
use_repr: Optional[bool] = True,
):
"""
# Model addition debugger - context manager for model adders
This context manager is a power user tool intended for model adders.
It tracks all forward calls within a model forward and logs a slice of each input and output on a nested Json.
It tracks all forward calls within a model forward and logs a slice of each input and output on a nested JSON file.
If `use_repr=True` (the default), the JSON file will record a `repr()`-ized version of the tensors as a list of
strings. If `use_repr=False`, the full tensors will be stored in spearate SafeTensors files and the JSON file will
provide a relative path to that file.
To note, this context manager enforces `torch.no_grad()`.
## Usage
@ -348,10 +420,10 @@ def model_addition_debugger_context(model, debug_path: Optional[str] = None, do_
```python
import torch
from PIL import Image
import requests
from transformers import LlavaProcessor, LlavaForConditionalGeneration
from transformers.model_debugging_utils import model_addition_debugger_context
from transformers import LlavaProcessor, LlavaForConditionalGeneration, model_addition_debugger_context
torch.random.manual_seed(673)
# load pretrained model and processor
@ -376,7 +448,7 @@ def model_addition_debugger_context(model, debug_path: Optional[str] = None, do_
"""
orig_forwards = {m: m.forward for _, m in model.named_modules()}
orig_forwards[model] = model.forward
_attach_debugger_logic(model, debug_path, do_prune_layers)
_attach_debugger_logic(model, debug_path, do_prune_layers, use_repr)
try:
yield model
finally:

View File

@ -427,9 +427,9 @@ class FlashAttentionKwargs(TypedDict, total=False):
Keyword arguments for Flash Attention with Compile.
Attributes:
cu_seq_lens_q (`torch.LongTensor`, *optional*)
cumulative_seqlens_q (`torch.LongTensor`, *optional*)
Gets cumulative sequence length for query state.
cu_seq_lens_k (`torch.LongTensor`, *optional*)
cumulative_seqlens_k (`torch.LongTensor`, *optional*)
Gets cumulative sequence length for key state.
max_length_q (`int`, *optional*):
Maximum sequence length for query state.
@ -437,7 +437,7 @@ class FlashAttentionKwargs(TypedDict, total=False):
Maximum sequence length for key state.
"""
cu_seq_lens_q: Optional[torch.LongTensor]
cu_seq_lens_k: Optional[torch.LongTensor]
cumulative_seqlens_q: Optional[torch.LongTensor]
cumulative_seqlens_k: Optional[torch.LongTensor]
max_length_q: Optional[int]
max_length_k: Optional[int]

View File

@ -1218,11 +1218,7 @@ class FlaxPreTrainedModel(PushToHubMixin, FlaxGenerationMixin):
Register this class with a given auto class. This should only be used for custom models as the ones in the
library are already mapped with an auto class.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"FlaxAutoModel"`):

View File

@ -78,6 +78,9 @@ def convert_tf_weight_name_to_pt_weight_name(
tf_name = tf_name[len(name_scope) :]
tf_name = tf_name.lstrip("/")
tf_name = tf_name.replace(":0", "") # device ids
if (len(tf_name) > 2048 and "___" in tf_name) or tf_name.count("___") > 10:
# ReDOS check
raise ValueError("TF variable name is too long or contains too many ___ separators: " + tf_name)
tf_name = re.sub(
r"/[^/]*___([^/]*)/", r"/\1/", tf_name
) # '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch)

View File

@ -3229,11 +3229,7 @@ class TFPreTrainedModel(keras.Model, TFModelUtilsMixin, TFGenerationMixin, PushT
Register this class with a given auto class. This should only be used for custom models as the ones in the
library are already mapped with an auto class.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"TFAutoModel"`):

View File

@ -27,6 +27,7 @@ import shutil
import tempfile
import warnings
from collections import defaultdict
from concurrent.futures import ThreadPoolExecutor, as_completed
from contextlib import contextmanager
from dataclasses import dataclass
from enum import Enum
@ -57,9 +58,12 @@ from .generation import CompileConfig, GenerationConfig
from .integrations import PeftAdapterMixin, deepspeed_config, is_deepspeed_zero3_enabled
from .integrations.accelerate import find_tied_parameters, init_empty_weights
from .integrations.deepspeed import _load_state_dict_into_zero3_model
from .integrations.eager_paged import eager_paged_attention_forward
from .integrations.flash_attention import flash_attention_forward
from .integrations.flash_paged import paged_attention_forward
from .integrations.flex_attention import flex_attention_forward
from .integrations.sdpa_attention import sdpa_attention_forward
from .integrations.sdpa_paged import sdpa_attention_paged_forward
from .integrations.tensor_parallel import (
ALL_PARALLEL_STYLES,
_get_parameter_tp_plan,
@ -165,6 +169,7 @@ if is_safetensors_available():
if is_kernels_available():
from kernels import get_kernel
logger = logging.get_logger(__name__)
@ -319,7 +324,8 @@ def get_torch_context_manager_or_global_device():
is not "cpu". This is used to infer the correct device to load the model on, in case `device_map` is not provided.
"""
device_in_context = torch.tensor([]).device
default_device = torch.get_default_device()
# `get_default_device` was only introduced in torch>=2.3 - use cpu otherwise to align the behavior
default_device = torch.get_default_device() if is_torch_greater_or_equal("2.3") else torch.device("cpu")
# This case means no context manager was used -> we still check if the default that was potentially set is not cpu
if device_in_context == default_device:
if default_device != torch.device("cpu"):
@ -866,6 +872,116 @@ def _load_state_dict_into_meta_model(
return disk_offload_index, cpu_offload_index
def load_shard_file(args):
(
shard_file,
state_dict,
disk_only_shard_files,
is_hqq_or_bnb,
is_quantized,
device_map,
hf_quantizer,
key_renaming_mapping,
weights_only,
model_to_load,
expected_keys,
reverse_key_renaming_mapping,
disk_offload_folder,
disk_offload_index,
cpu_offload_folder,
cpu_offload_index,
is_offloaded_safetensors,
keep_in_fp32_regex,
unexpected_keys,
device_mesh,
) = args
# Skip the load for shards that only contain disk-offloaded weights
if shard_file in disk_only_shard_files:
return [], disk_offload_index, cpu_offload_index
map_location = "cpu"
if (
shard_file.endswith(".safetensors")
and not is_hqq_or_bnb
and not (is_deepspeed_zero3_enabled() and not is_quantized)
):
map_location = "meta"
elif (
device_map is not None
and hf_quantizer is not None
and hf_quantizer.quantization_config.quant_method == QuantizationMethod.TORCHAO
and (
hf_quantizer.quantization_config.quant_type in ["int4_weight_only", "autoquant"]
or isinstance(hf_quantizer.quantization_config.quant_type, Int4WeightOnlyConfig)
)
):
map_location = torch.device([d for d in device_map.values() if d not in ["cpu", "disk"]][0])
# If shard_file is "", we use the existing state_dict instead of loading it
if shard_file != "":
state_dict = load_state_dict(
shard_file, is_quantized=is_quantized, map_location=map_location, weights_only=weights_only
)
# Fix the key names
state_dict = {key_renaming_mapping[k]: v for k, v in state_dict.items() if k in key_renaming_mapping}
error_msgs = []
if is_deepspeed_zero3_enabled() and not is_quantized:
error_msgs += _load_state_dict_into_zero3_model(model_to_load, state_dict)
# Skip it with fsdp on ranks other than 0
elif not (is_fsdp_enabled() and not is_local_dist_rank_0() and not is_quantized):
disk_offload_index, cpu_offload_index = _load_state_dict_into_meta_model(
model_to_load,
state_dict,
shard_file,
expected_keys,
reverse_key_renaming_mapping,
device_map=device_map,
disk_offload_folder=disk_offload_folder,
disk_offload_index=disk_offload_index,
cpu_offload_folder=cpu_offload_folder,
cpu_offload_index=cpu_offload_index,
hf_quantizer=hf_quantizer,
is_safetensors=is_offloaded_safetensors,
keep_in_fp32_regex=keep_in_fp32_regex,
unexpected_keys=unexpected_keys,
device_mesh=device_mesh,
)
return error_msgs, disk_offload_index, cpu_offload_index
def load_shard_files_with_threadpool(args_list):
num_workers = int(os.environ.get("HF_PARALLEL_LOADING_WORKERS", "8"))
# Do not spawn anymore workers than you need
num_workers = min(len(args_list), num_workers)
logger.info(f"Loading model weights in parallel with {num_workers} workers...")
error_msgs = []
with ThreadPoolExecutor(max_workers=num_workers) as executor:
with logging.tqdm(total=len(args_list), desc="Loading checkpoint shards") as pbar:
futures = [executor.submit(load_shard_file, arg) for arg in args_list]
for future in as_completed(futures):
result = future.result()
(
_error_msgs,
disk_offload_index,
cpu_offload_index,
) = result
error_msgs += _error_msgs
pbar.update(1)
return error_msgs, disk_offload_index, cpu_offload_index
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
if variant is not None:
path, name = weights_name.rsplit(".", 1)
@ -889,6 +1005,7 @@ def _get_resolved_checkpoint_files(
user_agent: dict,
revision: str,
commit_hash: Optional[str],
is_remote_code: bool, # Because we can't determine this inside this function, we need it to be passed in
transformers_explicit_filename: Optional[str] = None,
) -> Tuple[Optional[List[str]], Optional[Dict]]:
"""Get all the checkpoint filenames based on `pretrained_model_name_or_path`, and optional metadata if the
@ -1085,7 +1202,10 @@ def _get_resolved_checkpoint_files(
"_commit_hash": commit_hash,
**has_file_kwargs,
}
if not has_file(pretrained_model_name_or_path, safe_weights_name, **has_file_kwargs):
if (
not has_file(pretrained_model_name_or_path, safe_weights_name, **has_file_kwargs)
and not is_remote_code
):
Thread(
target=auto_conversion,
args=(pretrained_model_name_or_path,),
@ -1457,7 +1577,8 @@ def _find_mismatched_keys(
# This skips size mismatches for 4-bit weights. Two 4-bit values share an 8-bit container, causing size differences.
# Without matching with module type or parameter type it seems like a practical way to detect valid 4bit weights.
if not (
new_state_dict[key].shape[-1] == 1
is_quantized
and new_state_dict[key].shape[-1] == 1
and new_state_dict[key].numel() * 2 == model_state_dict[key].numel()
):
mismatched_keys.append(key)
@ -1963,7 +2084,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
if plan := getattr(module, "_tp_plan", None):
self._tp_plan.update({f"{name}.{k}": v for k, v in plan.copy().items()})
if self._tp_plan is not None and is_torch_greater_or_equal("2.3"):
if self._tp_plan is not None and is_torch_greater_or_equal("2.5"):
for _, v in self._tp_plan.items():
if v not in ALL_PARALLEL_STYLES:
raise ValueError(
@ -2542,7 +2663,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
def smart_apply(self, fn):
for module in self.children():
# We found a sub-model: recursively dispatch its own init function now!
if hasattr(module, "_init_weights"):
if isinstance(module, PreTrainedModel):
module.smart_apply(module._initialize_weights)
else:
module.smart_apply(fn)
@ -3532,7 +3653,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
for key, value in state_dict.items():
for pattern, replacement in reverse_key_mapping.items():
replacement = replacement.lstrip("^") # strip off un-needed chars and patterns
replacement = re.sub(r"\(.*?\)", "", pattern)
replacement = re.sub(r"\(.*\)", "", replacement)
key, n_replace = re.subn(pattern, replacement, key)
# Early exit of the loop
if n_replace > 0:
@ -4434,6 +4555,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
user_agent=user_agent,
revision=revision,
commit_hash=commit_hash,
is_remote_code=cls._auto_class is not None,
transformers_explicit_filename=transformers_explicit_filename,
)
@ -4969,9 +5091,6 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
cpu_offload_folder = tempfile.mkdtemp()
cpu_offload_index = {}
# For nice tqdm bars
if checkpoint_files is not None and len(checkpoint_files) > 1:
checkpoint_files = logging.tqdm(checkpoint_files, desc="Loading checkpoint shards")
# To be able to iterate, even if we don't use it if the state_dict is already provided
elif state_dict is not None:
checkpoint_files = [""]
@ -4989,64 +5108,48 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
expanded_device_map = expand_device_map(device_map, expected_keys)
caching_allocator_warmup(model_to_load, expanded_device_map, hf_quantizer)
# Prepare and compatabilize arguments for serial and parallel shard loading
args_list = [
(
shard_file,
state_dict,
disk_only_shard_files,
is_hqq_or_bnb,
is_quantized,
device_map,
hf_quantizer,
key_renaming_mapping,
weights_only,
model_to_load,
expected_keys,
reverse_key_renaming_mapping,
disk_offload_folder,
disk_offload_index,
cpu_offload_folder,
cpu_offload_index,
is_offloaded_safetensors,
keep_in_fp32_regex,
unexpected_keys,
device_mesh,
)
for shard_file in checkpoint_files
]
error_msgs = []
# Iterate on all the shards to load the weights
for shard_file in checkpoint_files:
# Skip the load for shards that only contain disk-offloaded weights
if shard_file in disk_only_shard_files:
continue
map_location = "cpu"
if (
shard_file.endswith(".safetensors")
and not is_hqq_or_bnb
and not (is_deepspeed_zero3_enabled() and not is_quantized)
):
map_location = "meta"
elif (
device_map is not None
and hf_quantizer is not None
and hf_quantizer.quantization_config.quant_method == QuantizationMethod.TORCHAO
and (
hf_quantizer.quantization_config.quant_type in ["int4_weight_only", "autoquant"]
or isinstance(hf_quantizer.quantization_config.quant_type, Int4WeightOnlyConfig)
)
):
map_location = torch.device([d for d in device_map.values() if d not in ["cpu", "disk"]][0])
if (
os.environ.get("HF_ENABLE_PARALLEL_LOADING", "").upper() in ENV_VARS_TRUE_VALUES
and not is_deepspeed_zero3_enabled()
):
_error_msgs, disk_offload_index, cpu_offload_index = load_shard_files_with_threadpool(args_list)
error_msgs += _error_msgs
else:
if len(args_list) > 1:
args_list = logging.tqdm(args_list, desc="Loading checkpoint shards")
# If shard_file is "", we use the existing state_dict instead of loading it
if shard_file != "":
state_dict = load_state_dict(
shard_file, is_quantized=is_quantized, map_location=map_location, weights_only=weights_only
)
# Fix the key names
state_dict = {key_renaming_mapping[k]: v for k, v in state_dict.items() if k in key_renaming_mapping}
if is_deepspeed_zero3_enabled() and not is_quantized:
error_msgs += _load_state_dict_into_zero3_model(model_to_load, state_dict)
# Skip it with fsdp on ranks other than 0
elif not (is_fsdp_enabled() and not is_local_dist_rank_0() and not is_quantized):
disk_offload_index, cpu_offload_index = _load_state_dict_into_meta_model(
model_to_load,
state_dict,
shard_file,
expected_keys,
reverse_key_renaming_mapping,
device_map=device_map,
disk_offload_folder=disk_offload_folder,
disk_offload_index=disk_offload_index,
cpu_offload_folder=cpu_offload_folder,
cpu_offload_index=cpu_offload_index,
hf_quantizer=hf_quantizer,
is_safetensors=is_offloaded_safetensors,
keep_in_fp32_regex=keep_in_fp32_regex,
unexpected_keys=unexpected_keys,
device_mesh=device_mesh,
)
# force memory release if loading multiple shards, to avoid having 2 state dicts in memory in next loop
del state_dict
for args in args_list:
_error_msgs, disk_offload_index, cpu_offload_index = load_shard_file(args)
error_msgs += _error_msgs
# Adjust offloaded weights name and save if needed
if disk_offload_index is not None and len(disk_offload_index) > 0:
@ -5224,11 +5327,7 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
Register this class with a given auto class. This should only be used for custom models as the ones in the
library are already mapped with an auto class.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"AutoModel"`):
@ -5478,8 +5577,8 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
def get_parameter_or_buffer(self, target: str):
"""
Return the parameter or buffer given by `target` if it exists, otherwise throw an error. This combines
`get_parameter()` and `get_buffer()` in a single handy function. Note that it only work if `target` is a
leaf of the model.
`get_parameter()` and `get_buffer()` in a single handy function. If the target is an `_extra_state` attribute,
it will return the extra state provided by the module. Note that it only work if `target` is a leaf of the model.
"""
try:
return self.get_parameter(target)
@ -5489,7 +5588,15 @@ class PreTrainedModel(nn.Module, ModuleUtilsMixin, PushToHubMixin, PeftAdapterMi
return self.get_buffer(target)
except AttributeError:
pass
raise AttributeError(f"`{target}` is neither a parameter nor a buffer.")
module, param_name = get_module_from_name(self, target)
if (
param_name == "_extra_state"
and getattr(module.__class__, "get_extra_state", torch.nn.Module.get_extra_state)
is not torch.nn.Module.get_extra_state
):
return module.get_extra_state()
raise AttributeError(f"`{target}` is neither a parameter, buffer, nor extra state.")
PreTrainedModel.push_to_hub = copy_func(PreTrainedModel.push_to_hub)
@ -6088,7 +6195,10 @@ class AttentionInterface(GeneralInterface):
_global_mapping = {
"flash_attention_2": flash_attention_forward,
"flex_attention": flex_attention_forward,
"paged_attention": paged_attention_forward,
"sdpa": sdpa_attention_forward,
"sdpa_paged": sdpa_attention_paged_forward,
"eager_paged": eager_paged_attention_forward,
}

View File

@ -130,10 +130,6 @@ class AlbertTokenizerFast(PreTrainedTokenizerFast):
self.keep_accents = keep_accents
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:

View File

@ -500,5 +500,26 @@ class AriaImageProcessor(BaseImageProcessor):
]
return patches
def get_number_of_image_patches(self, height: int, width: int, images_kwargs=None):
"""
A utility that returns number of image patches for a given image size.
Args:
height (`int`):
Height of the input image.
width (`int`):
Width of the input image.
images_kwargs (`dict`, *optional*)
Any kwargs to override defaults of the image processor.
Returns:
`int`: Number of patches per image.
"""
split_image = images_kwargs.get("split_image", None) or self.split_image
max_image_size = images_kwargs.get("max_image_size", None) or self.max_image_size
resized_height, resized_width = select_best_resolution((height, width), self.split_resolutions)
num_patches = 1 if not split_image else resized_height // max_image_size * resized_width // max_image_size
return num_patches
__all__ = ["AriaImageProcessor"]

View File

@ -549,15 +549,8 @@ class AriaTextAttention(nn.Module):
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
@ -812,7 +805,6 @@ class AriaTextModel(AriaTextPreTrainedModel):
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
output_attentions=output_attentions,
)
hidden_states = inputs_embeds
@ -1227,6 +1219,12 @@ class AriaForConditionalGeneration(AriaPreTrainedModel, GenerationMixin):
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
# Make modules available throught conditional class for BC
@property
def language_model(self):

View File

@ -34,7 +34,7 @@ from ...image_utils import (
)
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_utils import PreTrainedModel
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...processing_utils import MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils import PreTokenizedInput, TextInput
from ...utils import LossKwargs, TensorType, auto_docstring, can_return_tuple, logging
from ...utils.import_utils import is_torch_available
@ -884,11 +884,33 @@ class AriaImageProcessor(BaseImageProcessor):
]
return patches
def get_number_of_image_patches(self, height: int, width: int, images_kwargs=None):
"""
A utility that returns number of image patches for a given image size.
Args:
height (`int`):
Height of the input image.
width (`int`):
Width of the input image.
images_kwargs (`dict`, *optional*)
Any kwargs to override defaults of the image processor.
Returns:
`int`: Number of patches per image.
"""
split_image = images_kwargs.get("split_image", None) or self.split_image
max_image_size = images_kwargs.get("max_image_size", None) or self.max_image_size
resized_height, resized_width = select_best_resolution((height, width), self.split_resolutions)
num_patches = 1 if not split_image else resized_height // max_image_size * resized_width // max_image_size
return num_patches
class AriaProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
"return_mm_token_type_ids": False,
},
"images_kwargs": {
"max_image_size": 980,
@ -914,7 +936,6 @@ class AriaProcessor(ProcessorMixin):
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template", "size_conversion"]
image_processor_class = "AriaImageProcessor"
tokenizer_class = "AutoTokenizer"
@ -978,10 +999,7 @@ class AriaProcessor(ProcessorMixin):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
if images is not None:
image_inputs = self.image_processor(
images,
**output_kwargs["images_kwargs"],
)
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
# expand the image_token according to the num_crops and tokens per image
tokens_per_image = self.size_conversion[image_inputs.pixel_values.shape[2]]
prompt_strings = []
@ -995,11 +1013,44 @@ class AriaProcessor(ProcessorMixin):
prompt_strings = text
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", False)
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None)
self._check_special_mm_tokens(prompt_strings, text_inputs, modalities=["image"])
if return_mm_token_type_ids:
array_ids = np.array(text_inputs["input_ids"])
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
mm_token_type_ids[array_ids == self.image_token_id] = 1
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
"""
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
Args:
image_sizes (`List[List[int]]`, *optional*):
The input sizes formatted as (height, width) per each image.
Returns:
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
input modalities, along with other useful data.
"""
vision_data = {}
if image_sizes is not None:
images_kwargs = AriaProcessorKwargs._defaults.get("images_kwargs", {})
images_kwargs.update(kwargs)
max_size = images_kwargs.get("max_image_size", None) or self.image_processor.max_image_size
num_image_patches = [
self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
for image_size in image_sizes
]
num_image_tokens = [self.size_conversion[max_size] * num_patches for num_patches in num_image_patches]
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
return MultiModalData(**vision_data)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please

View File

@ -20,9 +20,11 @@
# limitations under the License.
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...processing_utils import MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils import PreTokenizedInput, TextInput
from ...utils import TensorType
from ..auto import AutoTokenizer
@ -32,6 +34,7 @@ class AriaProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"padding": False,
"return_mm_token_type_ids": False,
},
"images_kwargs": {
"max_image_size": 980,
@ -57,7 +60,6 @@ class AriaProcessor(ProcessorMixin):
"""
attributes = ["image_processor", "tokenizer"]
valid_kwargs = ["chat_template", "size_conversion"]
image_processor_class = "AriaImageProcessor"
tokenizer_class = "AutoTokenizer"
@ -121,10 +123,7 @@ class AriaProcessor(ProcessorMixin):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
if images is not None:
image_inputs = self.image_processor(
images,
**output_kwargs["images_kwargs"],
)
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
# expand the image_token according to the num_crops and tokens per image
tokens_per_image = self.size_conversion[image_inputs.pixel_values.shape[2]]
prompt_strings = []
@ -138,11 +137,44 @@ class AriaProcessor(ProcessorMixin):
prompt_strings = text
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"])
return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", False)
text_inputs = self.tokenizer(prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None)
self._check_special_mm_tokens(prompt_strings, text_inputs, modalities=["image"])
if return_mm_token_type_ids:
array_ids = np.array(text_inputs["input_ids"])
mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
mm_token_type_ids[array_ids == self.image_token_id] = 1
text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
return BatchFeature(data={**text_inputs, **image_inputs}, tensor_type=return_tensors)
def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
"""
Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
Args:
image_sizes (`List[List[int]]`, *optional*):
The input sizes formatted as (height, width) per each image.
Returns:
`MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
input modalities, along with other useful data.
"""
vision_data = {}
if image_sizes is not None:
images_kwargs = AriaProcessorKwargs._defaults.get("images_kwargs", {})
images_kwargs.update(kwargs)
max_size = images_kwargs.get("max_image_size", None) or self.image_processor.max_image_size
num_image_patches = [
self.image_processor.get_number_of_image_patches(*image_size, images_kwargs)
for image_size in image_sizes
]
num_image_tokens = [self.size_conversion[max_size] * num_patches for num_patches in num_image_patches]
vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})
return MultiModalData(**vision_data)
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please

View File

@ -420,17 +420,23 @@ class _BaseAutoModelClass:
trust_remote_code = kwargs.pop("trust_remote_code", None)
has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map
has_local_code = type(config) in cls._model_mapping.keys()
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, config._name_or_path, has_local_code, has_remote_code
)
if has_remote_code:
class_ref = config.auto_map[cls.__name__]
if "--" in class_ref:
upstream_repo = class_ref.split("--")[0]
else:
upstream_repo = None
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, config._name_or_path, has_local_code, has_remote_code, upstream_repo=upstream_repo
)
if has_remote_code and trust_remote_code:
class_ref = config.auto_map[cls.__name__]
if "--" in class_ref:
repo_id, class_ref = class_ref.split("--")
else:
repo_id = config.name_or_path
model_class = get_class_from_dynamic_module(class_ref, repo_id, **kwargs)
model_class.register_for_auto_class(auto_class=cls)
cls.register(config.__class__, model_class, exist_ok=True)
_ = kwargs.pop("code_revision", None)
model_class = add_generation_mixin_to_remote_model(model_class)
@ -545,8 +551,17 @@ class _BaseAutoModelClass:
has_remote_code = hasattr(config, "auto_map") and cls.__name__ in config.auto_map
has_local_code = type(config) in cls._model_mapping.keys()
upstream_repo = None
if has_remote_code:
class_ref = config.auto_map[cls.__name__]
if "--" in class_ref:
upstream_repo = class_ref.split("--")[0]
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
trust_remote_code,
pretrained_model_name_or_path,
has_local_code,
has_remote_code,
upstream_repo=upstream_repo,
)
kwargs["trust_remote_code"] = trust_remote_code
@ -554,12 +569,12 @@ class _BaseAutoModelClass:
kwargs["adapter_kwargs"] = adapter_kwargs
if has_remote_code and trust_remote_code:
class_ref = config.auto_map[cls.__name__]
model_class = get_class_from_dynamic_module(
class_ref, pretrained_model_name_or_path, code_revision=code_revision, **hub_kwargs, **kwargs
)
_ = hub_kwargs.pop("code_revision", None)
cls.register(config.__class__, model_class, exist_ok=True)
model_class.register_for_auto_class(auto_class=cls)
model_class = add_generation_mixin_to_remote_model(model_class)
return model_class.from_pretrained(
pretrained_model_name_or_path, *model_args, config=config, **hub_kwargs, **kwargs

View File

@ -15,7 +15,6 @@
"""Auto Config class."""
import importlib
import os
import re
import warnings
from collections import OrderedDict
@ -1160,17 +1159,21 @@ class AutoConfig:
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
has_remote_code = "auto_map" in config_dict and "AutoConfig" in config_dict["auto_map"]
has_local_code = "model_type" in config_dict and config_dict["model_type"] in CONFIG_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code:
class_ref = config_dict["auto_map"]["AutoConfig"]
if "--" in class_ref:
upstream_repo = class_ref.split("--")[0]
else:
upstream_repo = None
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code, upstream_repo
)
if has_remote_code and trust_remote_code:
class_ref = config_dict["auto_map"]["AutoConfig"]
config_class = get_class_from_dynamic_module(
class_ref, pretrained_model_name_or_path, code_revision=code_revision, **kwargs
)
if os.path.isdir(pretrained_model_name_or_path):
config_class.register_for_auto_class()
config_class.register_for_auto_class()
return config_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
elif "model_type" in config_dict:
try:

View File

@ -371,17 +371,21 @@ class AutoFeatureExtractor:
has_remote_code = feature_extractor_auto_map is not None
has_local_code = feature_extractor_class is not None or type(config) in FEATURE_EXTRACTOR_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code:
if "--" in feature_extractor_auto_map:
upstream_repo = feature_extractor_auto_map.split("--")[0]
else:
upstream_repo = None
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code, upstream_repo
)
if has_remote_code and trust_remote_code:
feature_extractor_class = get_class_from_dynamic_module(
feature_extractor_auto_map, pretrained_model_name_or_path, **kwargs
)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
feature_extractor_class.register_for_auto_class()
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(config_dict, **kwargs)
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(config_dict, **kwargs)

View File

@ -541,26 +541,29 @@ class AutoImageProcessor:
has_remote_code = image_processor_auto_map is not None
has_local_code = image_processor_class is not None or type(config) in IMAGE_PROCESSOR_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if image_processor_auto_map is not None and not isinstance(image_processor_auto_map, tuple):
# In some configs, only the slow image processor class is stored
image_processor_auto_map = (image_processor_auto_map, None)
if has_remote_code:
if image_processor_auto_map is not None and not isinstance(image_processor_auto_map, tuple):
# In some configs, only the slow image processor class is stored
image_processor_auto_map = (image_processor_auto_map, None)
if use_fast and image_processor_auto_map[1] is not None:
class_ref = image_processor_auto_map[1]
else:
class_ref = image_processor_auto_map[0]
if "--" in class_ref:
upstream_repo = class_ref.split("--")[0]
else:
upstream_repo = None
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code, upstream_repo
)
if has_remote_code and trust_remote_code:
if not use_fast and image_processor_auto_map[1] is not None:
_warning_fast_image_processor_available(image_processor_auto_map[1])
if use_fast and image_processor_auto_map[1] is not None:
class_ref = image_processor_auto_map[1]
else:
class_ref = image_processor_auto_map[0]
image_processor_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
image_processor_class.register_for_auto_class()
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(config_dict, **kwargs)
elif image_processor_class is not None:
return image_processor_class.from_dict(config_dict, **kwargs)

View File

@ -2106,6 +2106,7 @@ __all__ = [
"AutoModelForTableQuestionAnswering",
"AutoModelForTextToSpectrogram",
"AutoModelForTextToWaveform",
"AutoModelForTimeSeriesPrediction",
"AutoModelForTokenClassification",
"AutoModelForUniversalSegmentation",
"AutoModelForVideoClassification",

View File

@ -17,7 +17,6 @@
import importlib
import inspect
import json
import os
import warnings
from collections import OrderedDict
@ -359,17 +358,21 @@ class AutoProcessor:
has_remote_code = processor_auto_map is not None
has_local_code = processor_class is not None or type(config) in PROCESSOR_MAPPING
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code:
if "--" in processor_auto_map:
upstream_repo = processor_auto_map.split("--")[0]
else:
upstream_repo = None
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code, upstream_repo
)
if has_remote_code and trust_remote_code:
processor_class = get_class_from_dynamic_module(
processor_auto_map, pretrained_model_name_or_path, **kwargs
)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
processor_class.register_for_auto_class()
processor_class.register_for_auto_class()
return processor_class.from_pretrained(
pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs
)

View File

@ -989,19 +989,23 @@ class AutoTokenizer:
or tokenizer_class_from_name(config_tokenizer_class + "Fast") is not None
)
)
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code
)
if has_remote_code and trust_remote_code:
if has_remote_code:
if use_fast and tokenizer_auto_map[1] is not None:
class_ref = tokenizer_auto_map[1]
else:
class_ref = tokenizer_auto_map[0]
if "--" in class_ref:
upstream_repo = class_ref.split("--")[0]
else:
upstream_repo = None
trust_remote_code = resolve_trust_remote_code(
trust_remote_code, pretrained_model_name_or_path, has_local_code, has_remote_code, upstream_repo
)
if has_remote_code and trust_remote_code:
tokenizer_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
tokenizer_class.register_for_auto_class()
tokenizer_class.register_for_auto_class()
return tokenizer_class.from_pretrained(
pretrained_model_name_or_path, *inputs, trust_remote_code=trust_remote_code, **kwargs
)

View File

@ -339,8 +339,7 @@ class AutoVideoProcessor:
class_ref = video_processor_auto_map
video_processor_class = get_class_from_dynamic_module(class_ref, pretrained_model_name_or_path, **kwargs)
_ = kwargs.pop("code_revision", None)
if os.path.isdir(pretrained_model_name_or_path):
video_processor_class.register_for_auto_class()
video_processor_class.register_for_auto_class()
return video_processor_class.from_dict(config_dict, **kwargs)
elif video_processor_class is not None:
return video_processor_class.from_dict(config_dict, **kwargs)

View File

@ -26,14 +26,21 @@ import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_attn_mask_utils import (
_prepare_4d_attention_mask,
_prepare_4d_attention_mask_for_sdpa,
)
from ...modeling_outputs import BaseModelOutput, ModelOutput, SampleTSPredictionOutput, Seq2SeqTSPredictionOutput
from ...modeling_utils import PreTrainedModel
from ...time_series_utils import NegativeBinomialOutput, NormalOutput, StudentTOutput
from ...utils import auto_docstring, logging
from ...utils import auto_docstring, is_torch_flex_attn_available, logging
from .configuration_autoformer import AutoformerConfig
if is_torch_flex_attn_available():
from ...integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
@ -904,6 +911,29 @@ class AutoformerPreTrainedModel(PreTrainedModel):
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
# Copied from transformers.models.bart.modeling_bart.BartPreTrainedModel._update_full_mask
def _update_full_mask(
self,
attention_mask: Union[torch.Tensor, None],
inputs_embeds: torch.Tensor,
):
if attention_mask is not None:
if self.config._attn_implementation == "flash_attention_2":
attention_mask = attention_mask if 0 in attention_mask else None
elif self.config._attn_implementation == "sdpa":
# output_attentions=True & head_mask can not be supported when using SDPA, fall back to
# the manual implementation that requires a 4D causal mask in all cases.
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask_for_sdpa(attention_mask, inputs_embeds.dtype)
elif self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
attention_mask = make_flex_block_causal_mask(attention_mask, is_causal=False)
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
return attention_mask
# Copied from transformers.models.time_series_transformer.modeling_time_series_transformer.TimeSeriesTransformerEncoder with TimeSeriesTransformer->Autoformer,TimeSeries->Autoformer
class AutoformerEncoder(AutoformerPreTrainedModel):
@ -983,10 +1013,10 @@ class AutoformerEncoder(AutoformerPreTrainedModel):
hidden_states = self.layernorm_embedding(hidden_states + embed_pos)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
attention_mask = self._update_full_mask(
attention_mask,
inputs_embeds,
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None

View File

@ -389,6 +389,12 @@ class AyaVisionForConditionalGeneration(AyaVisionPreTrainedModel, GenerationMixi
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
# Make modules available throught conditional class for BC
@property
def language_model(self):

Some files were not shown because too many files have changed in this diff Show More