This commit is contained in:
thomwolf 2019-07-23 17:46:01 +02:00
parent 2c9a3115b7
commit 6070b55443
2 changed files with 14 additions and 12 deletions

View File

@ -92,6 +92,12 @@ def train(args, train_dataset, model, tokenizer):
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
@ -411,13 +417,8 @@ def main():
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Distributed and parallel training
model.to(args.device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
elif args.n_gpu > 1:
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
logger.info("Training/evaluation parameters %s", args)

View File

@ -101,6 +101,12 @@ def train(args, train_dataset, model, tokenizer):
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
# Distributed training (should be after apex fp16 initialization)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
@ -450,13 +456,8 @@ def main():
if args.local_rank == 0:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
# Distributed and parrallel training
model.to(args.device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
elif args.n_gpu > 1:
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
logger.info("Training/evaluation parameters %s", args)