mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
fix #868
This commit is contained in:
parent
2c9a3115b7
commit
6070b55443
@ -92,6 +92,12 @@ def train(args, train_dataset, model, tokenizer):
|
||||
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
||||
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
||||
|
||||
# Distributed training (should be after apex fp16 initialization)
|
||||
if args.local_rank != -1:
|
||||
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
||||
output_device=args.local_rank,
|
||||
find_unused_parameters=True)
|
||||
|
||||
# Train!
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(" Num examples = %d", len(train_dataset))
|
||||
@ -411,13 +417,8 @@ def main():
|
||||
if args.local_rank == 0:
|
||||
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
||||
|
||||
# Distributed and parallel training
|
||||
model.to(args.device)
|
||||
if args.local_rank != -1:
|
||||
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
||||
output_device=args.local_rank,
|
||||
find_unused_parameters=True)
|
||||
elif args.n_gpu > 1:
|
||||
if args.n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
logger.info("Training/evaluation parameters %s", args)
|
||||
|
@ -101,6 +101,12 @@ def train(args, train_dataset, model, tokenizer):
|
||||
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
|
||||
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)
|
||||
|
||||
# Distributed training (should be after apex fp16 initialization)
|
||||
if args.local_rank != -1:
|
||||
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
||||
output_device=args.local_rank,
|
||||
find_unused_parameters=True)
|
||||
|
||||
# Train!
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(" Num examples = %d", len(train_dataset))
|
||||
@ -450,13 +456,8 @@ def main():
|
||||
if args.local_rank == 0:
|
||||
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
|
||||
|
||||
# Distributed and parrallel training
|
||||
model.to(args.device)
|
||||
if args.local_rank != -1:
|
||||
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
|
||||
output_device=args.local_rank,
|
||||
find_unused_parameters=True)
|
||||
elif args.n_gpu > 1:
|
||||
if args.n_gpu > 1:
|
||||
model = torch.nn.DataParallel(model)
|
||||
|
||||
logger.info("Training/evaluation parameters %s", args)
|
||||
|
Loading…
Reference in New Issue
Block a user