mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-24 23:08:57 +06:00
[doc] Replicate doc from #2144
This commit is contained in:
parent
fe92755b99
commit
5d67aa21ae
@ -83,6 +83,7 @@ class AutoConfig(object):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model configuration that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing a configuration file saved using the :func:`~transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``.
|
||||
|
||||
|
@ -79,6 +79,7 @@ class PretrainedConfig(object):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model configuration to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model configuration that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing a configuration file saved using the :func:`~transformers.PretrainedConfig.save_pretrained` method, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a saved configuration JSON `file`, e.g.: ``./my_model_directory/configuration.json``.
|
||||
|
||||
|
@ -93,6 +93,7 @@ class AutoModel(object):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
||||
|
||||
@ -231,6 +232,7 @@ class AutoModelWithLMHead(object):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
||||
|
||||
@ -360,6 +362,7 @@ class AutoModelForSequenceClassification(object):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
||||
|
||||
@ -478,6 +481,7 @@ class AutoModelForQuestionAnswering(object):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
||||
|
||||
|
@ -59,12 +59,14 @@ class PreTrainedEncoderDecoder(nn.Module):
|
||||
encoder_pretrained_model_name_or_path: information necessary to initiate the encoder. Either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/encoder``.
|
||||
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
||||
|
||||
decoder_pretrained_model_name_or_path: information necessary to initiate the decoder. Either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/decoder``.
|
||||
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
||||
|
||||
|
@ -81,6 +81,7 @@ class TFAutoModel(object):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument.
|
||||
|
||||
@ -212,6 +213,7 @@ class TFAutoModelWithLMHead(object):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument.
|
||||
|
||||
@ -338,6 +340,7 @@ class TFAutoModelForSequenceClassification(object):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument.
|
||||
|
||||
@ -453,6 +456,7 @@ class TFAutoModelForQuestionAnswering(object):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a `PyTorch, TF 1.X or TF 2.0 checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In the case of a PyTorch checkpoint, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument.
|
||||
|
||||
|
@ -177,6 +177,7 @@ class TFPreTrainedModel(tf.keras.Model):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a `PyTorch state_dict save file` (e.g. `./pt_model/pytorch_model.bin`). In this case, ``from_pt`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in a TensorFlow model using the provided conversion scripts and loading the TensorFlow model afterwards.
|
||||
|
||||
|
@ -266,6 +266,7 @@ class PreTrainedModel(nn.Module):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a pre-trained model to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a pre-trained model that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing model weights saved using :func:`~transformers.PreTrainedModel.save_pretrained`, e.g.: ``./my_model_directory/``.
|
||||
- a path or url to a `tensorflow index checkpoint file` (e.g. `./tf_model/model.ckpt.index`). In this case, ``from_tf`` should be set to True and a configuration object should be provided as ``config`` argument. This loading path is slower than converting the TensorFlow checkpoint in a PyTorch model using the provided conversion scripts and loading the PyTorch model afterwards.
|
||||
- None if you are both providing the configuration and state dictionary (resp. with keyword arguments ``config`` and ``state_dict``)
|
||||
|
@ -86,6 +86,7 @@ class AutoTokenizer(object):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a predefined tokenizer that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
|
||||
- (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.
|
||||
|
||||
@ -108,8 +109,14 @@ class AutoTokenizer(object):
|
||||
|
||||
Examples::
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') # Download vocabulary from S3 and cache.
|
||||
tokenizer = AutoTokenizer.from_pretrained('./test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
|
||||
# Download vocabulary from S3 and cache.
|
||||
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
||||
|
||||
# Download vocabulary from S3 (user-uploaded) and cache.
|
||||
tokenizer = AutoTokenizer.from_pretrained('dbmdz/bert-base-german-cased')
|
||||
|
||||
# If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`)
|
||||
tokenizer = AutoTokenizer.from_pretrained('./test/bert_saved_model/')
|
||||
|
||||
"""
|
||||
if 'distilbert' in pretrained_model_name_or_path:
|
||||
|
@ -255,7 +255,7 @@ class PreTrainedTokenizer(object):
|
||||
pretrained_model_name_or_path: either:
|
||||
|
||||
- a string with the `shortcut name` of a predefined tokenizer to load from cache or download, e.g.: ``bert-base-uncased``.
|
||||
- a string with the `identifier name` of a predefined tokenizer that was user-uploaded to our S3, e.g.: ``dbmz/bert-base-german-cased``.
|
||||
- a string with the `identifier name` of a predefined tokenizer that was user-uploaded to our S3, e.g.: ``dbmdz/bert-base-german-cased``.
|
||||
- a path to a `directory` containing vocabulary files required by the tokenizer, for instance saved using the :func:`~transformers.PreTrainedTokenizer.save_pretrained` method, e.g.: ``./my_model_directory/``.
|
||||
- (not applicable to all derived classes) a path or url to a single saved vocabulary file if and only if the tokenizer only requires a single vocabulary file (e.g. Bert, XLNet), e.g.: ``./my_model_directory/vocab.txt``.
|
||||
|
||||
@ -284,7 +284,7 @@ class PreTrainedTokenizer(object):
|
||||
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
||||
|
||||
# Download vocabulary from S3 (user-uploaded) and cache.
|
||||
tokenizer = BertTokenizer.from_pretrained('dbmz/bert-base-german-cased')
|
||||
tokenizer = BertTokenizer.from_pretrained('dbmdz/bert-base-german-cased')
|
||||
|
||||
# If vocabulary files are in a directory (e.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`)
|
||||
tokenizer = BertTokenizer.from_pretrained('./test/saved_model/')
|
||||
|
Loading…
Reference in New Issue
Block a user