mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-24 23:08:57 +06:00
Fix FalconMambaIntegrationTests
(#38566)
* update * update * update * update * update * update * update * update * update * update * update * update * update * update --------- Co-authored-by: ydshieh <ydshieh@users.noreply.github.com>
This commit is contained in:
parent
a9ce8c69c9
commit
5d26a38735
@ -19,9 +19,12 @@ from unittest.util import safe_repr
|
|||||||
|
|
||||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, FalconMambaConfig, is_torch_available
|
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, FalconMambaConfig, is_torch_available
|
||||||
from transformers.testing_utils import (
|
from transformers.testing_utils import (
|
||||||
|
Expectations,
|
||||||
|
cleanup,
|
||||||
require_bitsandbytes,
|
require_bitsandbytes,
|
||||||
require_torch,
|
require_torch,
|
||||||
require_torch_accelerator,
|
require_torch_accelerator,
|
||||||
|
require_torch_large_accelerator,
|
||||||
require_torch_multi_accelerator,
|
require_torch_multi_accelerator,
|
||||||
require_torch_multi_gpu,
|
require_torch_multi_gpu,
|
||||||
slow,
|
slow,
|
||||||
@ -450,15 +453,30 @@ class FalconMambaIntegrationTests(unittest.TestCase):
|
|||||||
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
||||||
self.text = "Hello today"
|
self.text = "Hello today"
|
||||||
|
|
||||||
def test_generation_bf16(self):
|
cleanup(torch_device, gc_collect=True)
|
||||||
model = AutoModelForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16, device_map="auto")
|
|
||||||
|
def tearDown(self):
|
||||||
|
cleanup(torch_device, gc_collect=True)
|
||||||
|
|
||||||
|
# On T4, get `NotImplementedError: Cannot copy out of meta tensor; no data!`
|
||||||
|
@require_torch_large_accelerator
|
||||||
|
def test_generation_fp16(self):
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.float16, device_map="auto")
|
||||||
|
|
||||||
inputs = self.tokenizer(self.text, return_tensors="pt").to(torch_device)
|
inputs = self.tokenizer(self.text, return_tensors="pt").to(torch_device)
|
||||||
out = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
out = model.generate(**inputs, max_new_tokens=20, do_sample=False)
|
||||||
|
|
||||||
|
EXPECTED_OUTPUTS = Expectations(
|
||||||
|
{
|
||||||
|
("cuda", 7): "Hello today I am going to show you how to make a simple and easy to make paper plane.\nStep",
|
||||||
|
("cuda", 8): 'Hello today Iava,\n\nI am writing to you today to discuss the importance of maintaining a healthy lifestyle',
|
||||||
|
}
|
||||||
|
) # fmt: skip
|
||||||
|
EXPECTED_OUTPUT = EXPECTED_OUTPUTS.get_expectation()
|
||||||
|
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
self.tokenizer.batch_decode(out, skip_special_tokens=False)[0],
|
self.tokenizer.batch_decode(out, skip_special_tokens=False)[0],
|
||||||
"Hello today I am going to show you how to make a simple and easy to make paper plane.\nStep",
|
EXPECTED_OUTPUT,
|
||||||
)
|
)
|
||||||
|
|
||||||
@require_bitsandbytes
|
@require_bitsandbytes
|
||||||
@ -471,11 +489,11 @@ class FalconMambaIntegrationTests(unittest.TestCase):
|
|||||||
|
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
self.tokenizer.batch_decode(out, skip_special_tokens=False)[0],
|
self.tokenizer.batch_decode(out, skip_special_tokens=False)[0],
|
||||||
"""Hello today I'm going to talk about the "C" in the "C-I-""",
|
"Hello today Iava,\n\nI'm sorry to hear that you're having trouble with the ",
|
||||||
)
|
)
|
||||||
|
|
||||||
def test_generation_torch_compile(self):
|
def test_generation_torch_compile(self):
|
||||||
model = AutoModelForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.bfloat16).to(torch_device)
|
model = AutoModelForCausalLM.from_pretrained(self.model_id, torch_dtype=torch.float16).to(torch_device)
|
||||||
model = torch.compile(model)
|
model = torch.compile(model)
|
||||||
|
|
||||||
inputs = self.tokenizer(self.text, return_tensors="pt").to(torch_device)
|
inputs = self.tokenizer(self.text, return_tensors="pt").to(torch_device)
|
||||||
@ -483,7 +501,7 @@ class FalconMambaIntegrationTests(unittest.TestCase):
|
|||||||
|
|
||||||
self.assertEqual(
|
self.assertEqual(
|
||||||
self.tokenizer.batch_decode(out, skip_special_tokens=False)[0],
|
self.tokenizer.batch_decode(out, skip_special_tokens=False)[0],
|
||||||
"Hello today I am going to show you how to make a simple and easy to make paper plane.\nStep",
|
"Hello today Iava,\n\nI am writing to you today to discuss the importance of maintaining a healthy lifestyle",
|
||||||
)
|
)
|
||||||
|
|
||||||
def test_batched_generation(self):
|
def test_batched_generation(self):
|
||||||
@ -493,13 +511,22 @@ class FalconMambaIntegrationTests(unittest.TestCase):
|
|||||||
|
|
||||||
texts = ["Hello today", "Hello my name is Younes and today"]
|
texts = ["Hello today", "Hello my name is Younes and today"]
|
||||||
|
|
||||||
EXPECTED_OUTPUT = [
|
EXPECTED_OUTPUTS = Expectations(
|
||||||
"Hello today I'm going to show you how to make a 3D model of a house.\n",
|
{
|
||||||
"Hello my name is Younes and today I will be talking about the topic of “The importance of the internet in our life”.\n",
|
("cuda", 7): [
|
||||||
]
|
'Hello today I will be talking about the “Theory of Relativity” by Albert Einstein.\nThe',
|
||||||
|
'Hello my name is Younes and today I will be talking about the importance of the internet in our lives.\nThe internet is a global',
|
||||||
|
],
|
||||||
|
("cuda", 8): [
|
||||||
|
'Hello today I am going to talk about the “Theory of Relativity” by Albert Einstein.\n',
|
||||||
|
'Hello my name is Younes and today I will be talking about the importance of the internet in our lives.\nThe internet is a global',
|
||||||
|
],
|
||||||
|
}
|
||||||
|
) # fmt: skip
|
||||||
|
EXPECTED_OUTPUT = EXPECTED_OUTPUTS.get_expectation()
|
||||||
|
|
||||||
inputs = tok(texts, return_tensors="pt", padding=True, return_token_type_ids=False).to(torch_device)
|
inputs = tok(texts, return_tensors="pt", padding=True, return_token_type_ids=False).to(torch_device)
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_id, device_map=0, torch_dtype=torch.bfloat16)
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map=0, torch_dtype=torch.float16)
|
||||||
|
|
||||||
out = model.generate(**inputs, max_new_tokens=20)
|
out = model.generate(**inputs, max_new_tokens=20)
|
||||||
out = tok.batch_decode(out, skip_special_tokens=True)
|
out = tok.batch_decode(out, skip_special_tokens=True)
|
||||||
@ -514,6 +541,19 @@ class FalconMambaIntegrationTests(unittest.TestCase):
|
|||||||
out = model.generate(**inputs, max_new_tokens=20)
|
out = model.generate(**inputs, max_new_tokens=20)
|
||||||
out = tok.batch_decode(out, skip_special_tokens=True)
|
out = tok.batch_decode(out, skip_special_tokens=True)
|
||||||
|
|
||||||
|
EXPECTED_OUTPUTS = Expectations(
|
||||||
|
{
|
||||||
|
("cuda", 7): [
|
||||||
|
' I will be talking about the “Theory of Relativity” by Albert Einstein.\nThe',
|
||||||
|
' I will be talking about the importance of the internet in our lives.\nThe internet is a global',
|
||||||
|
],
|
||||||
|
("cuda", 8): [
|
||||||
|
' I am going to talk about the “Theory of Relativity” by Albert Einstein.\n',
|
||||||
|
' I will be talking about the importance of the internet in our lives.\nThe internet is a global'
|
||||||
|
],
|
||||||
|
}
|
||||||
|
) # fmt: skip
|
||||||
|
EXPECTED_OUTPUT = EXPECTED_OUTPUTS.get_expectation()
|
||||||
self.assertListEqual(out, EXPECTED_OUTPUT)
|
self.assertListEqual(out, EXPECTED_OUTPUT)
|
||||||
|
|
||||||
@require_torch_multi_accelerator
|
@require_torch_multi_accelerator
|
||||||
@ -521,7 +561,7 @@ class FalconMambaIntegrationTests(unittest.TestCase):
|
|||||||
model_id = "tiiuae/falcon-mamba-7b"
|
model_id = "tiiuae/falcon-mamba-7b"
|
||||||
|
|
||||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.float16)
|
||||||
tokenizer.pad_token_id = tokenizer.eos_token_id
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
||||||
|
|
||||||
text = "Hello today"
|
text = "Hello today"
|
||||||
|
Loading…
Reference in New Issue
Block a user