Merge pull request #1724 from huggingface/fix_encode_plus

Fix encode_plus
This commit is contained in:
Thomas Wolf 2019-11-27 17:14:49 +01:00 committed by GitHub
commit 5afca00b47
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 77 additions and 18 deletions

View File

@ -273,7 +273,11 @@ class CommonTestCases:
sequence = tokenizer.encode(seq_0, add_special_tokens=False)
num_added_tokens = tokenizer.num_added_tokens()
total_length = len(sequence) + num_added_tokens
information = tokenizer.encode_plus(seq_0, max_length=total_length - 2, add_special_tokens=True, stride=stride)
information = tokenizer.encode_plus(seq_0,
max_length=total_length - 2,
add_special_tokens=True,
stride=stride,
return_overflowing_tokens=True)
truncated_sequence = information["input_ids"]
overflowing_tokens = information["overflowing_tokens"]
@ -300,10 +304,12 @@ class CommonTestCases:
)
information = tokenizer.encode_plus(seq_0, seq_1, max_length=len(sequence) - 2, add_special_tokens=True,
stride=stride, truncation_strategy='only_second')
stride=stride, truncation_strategy='only_second',
return_overflowing_tokens=True)
information_first_truncated = tokenizer.encode_plus(seq_0, seq_1, max_length=len(sequence) - 2,
add_special_tokens=True, stride=stride,
truncation_strategy='only_first')
truncation_strategy='only_first',
return_overflowing_tokens=True)
truncated_sequence = information["input_ids"]
overflowing_tokens = information["overflowing_tokens"]
@ -335,7 +341,7 @@ class CommonTestCases:
# Testing single inputs
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
encoded_sequence_dict = tokenizer.encode_plus(sequence_0, add_special_tokens=True)
encoded_sequence_dict = tokenizer.encode_plus(sequence_0, add_special_tokens=True, return_special_tokens_mask=True)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
@ -347,7 +353,8 @@ class CommonTestCases:
# Testing inputs pairs
encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False) + tokenizer.encode(sequence_1,
add_special_tokens=False)
encoded_sequence_dict = tokenizer.encode_plus(sequence_0, sequence_1, add_special_tokens=True)
encoded_sequence_dict = tokenizer.encode_plus(sequence_0, sequence_1, add_special_tokens=True,
return_special_tokens_mask=True)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
@ -359,7 +366,9 @@ class CommonTestCases:
# Testing with already existing special tokens
if tokenizer.cls_token_id == tokenizer.unk_token_id and tokenizer.cls_token_id == tokenizer.unk_token_id:
tokenizer.add_special_tokens({'cls_token': '</s>', 'sep_token': '<s>'})
encoded_sequence_dict = tokenizer.encode_plus(sequence_0, add_special_tokens=True)
encoded_sequence_dict = tokenizer.encode_plus(sequence_0,
add_special_tokens=True,
return_special_tokens_mask=True)
encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
special_tokens_mask_orig = encoded_sequence_dict["special_tokens_mask"]
special_tokens_mask = tokenizer.get_special_tokens_mask(encoded_sequence_w_special, already_has_special_tokens=True)

View File

@ -750,6 +750,9 @@ class PreTrainedTokenizer(object):
stride=0,
truncation_strategy='longest_first',
return_tensors=None,
return_token_type_ids=True,
return_overflowing_tokens=False,
return_special_tokens_mask=False,
**kwargs):
"""
Returns a dictionary containing the encoded sequence or sequence pair and additional informations:
@ -776,7 +779,30 @@ class PreTrainedTokenizer(object):
- 'do_not_truncate': Does not truncate (raise an error if the input sequence is longer than max_length)
return_tensors: (optional) can be set to 'tf' or 'pt' to return respectively TensorFlow tf.constant
or PyTorch torch.Tensor instead of a list of python integers.
return_token_type_ids: (optional) Set to False to avoid returning token_type_ids (default True).
return_overflowing_tokens: (optional) Set to True to return overflowing token information (default False).
return_special_tokens_mask: (optional) Set to True to return special tokens mask information (default False).
**kwargs: passed to the `self.tokenize()` method
Return:
A Dictionary of shape::
{
input_ids: list[int],
token_type_ids: list[int] if return_token_type_ids is True (default)
overflowing_tokens: list[int] if a ``max_length`` is specified and return_overflowing_tokens is True
num_truncated_tokens: int if a ``max_length`` is specified and return_overflowing_tokens is True
special_tokens_mask: list[int] if ``add_special_tokens`` if set to ``True`` and return_special_tokens_mask is True
}
With the fields:
``input_ids``: list of token ids to be fed to a model
``token_type_ids``: list of token type ids to be fed to a model
``overflowing_tokens``: list of overflowing tokens if a max length is specified.
``num_truncated_tokens``: number of overflowing tokens a ``max_length`` is specified
``special_tokens_mask``: if adding special tokens, this is a list of [0, 1], with 0 specifying special added
tokens and 1 specifying sequence tokens.
"""
def get_input_ids(text):
@ -798,10 +824,17 @@ class PreTrainedTokenizer(object):
add_special_tokens=add_special_tokens,
stride=stride,
truncation_strategy=truncation_strategy,
return_tensors=return_tensors)
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask)
def prepare_for_model(self, ids, pair_ids=None, max_length=None, add_special_tokens=True, stride=0,
truncation_strategy='longest_first', return_tensors=None):
truncation_strategy='longest_first',
return_tensors=None,
return_token_type_ids=True,
return_overflowing_tokens=False,
return_special_tokens_mask=False):
"""
Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model.
It adds special tokens, truncates
@ -826,21 +859,27 @@ class PreTrainedTokenizer(object):
- 'do_not_truncate': Does not truncate (raise an error if the input sequence is longer than max_length)
return_tensors: (optional) can be set to 'tf' or 'pt' to return respectively TensorFlow tf.constant
or PyTorch torch.Tensor instead of a list of python integers.
return_token_type_ids: (optional) Set to False to avoid returning token_type_ids (default True).
return_overflowing_tokens: (optional) Set to True to return overflowing token information (default False).
return_special_tokens_mask: (optional) Set to True to return special tokens mask information (default False).
Return:
A Dictionary of shape::
{
input_ids: list[int],
overflowing_tokens: list[int] if a ``max_length`` is specified, else None
special_tokens_mask: list[int] if ``add_special_tokens`` if set to ``True``
token_type_ids: list[int] if return_token_type_ids is True (default)
overflowing_tokens: list[int] if a ``max_length`` is specified and return_overflowing_tokens is True
num_truncated_tokens: int if a ``max_length`` is specified and return_overflowing_tokens is True
special_tokens_mask: list[int] if ``add_special_tokens`` if set to ``True`` and return_special_tokens_mask is True
}
With the fields:
``input_ids``: list of tokens to be fed to a model
``input_ids``: list of token ids to be fed to a model
``token_type_ids``: list of token type ids to be fed to a model
``overflowing_tokens``: list of overflowing tokens if a max length is specified.
``num_truncated_tokens``: number of overflowing tokens a ``max_length`` is specified
``special_tokens_mask``: if adding special tokens, this is a list of [0, 1], with 0 specifying special added
tokens and 1 specifying sequence tokens.
"""
@ -849,23 +888,31 @@ class PreTrainedTokenizer(object):
len_pair_ids = len(pair_ids) if pair else 0
encoded_inputs = {}
# Handle max sequence length
total_len = len_ids + len_pair_ids + (self.num_added_tokens(pair=pair) if add_special_tokens else 0)
if max_length and total_len > max_length:
ids, pair_ids, overflowing_tokens = self.truncate_sequences(ids, pair_ids=pair_ids,
num_tokens_to_remove=total_len-max_length,
truncation_strategy=truncation_strategy,
stride=stride)
encoded_inputs["overflowing_tokens"] = overflowing_tokens
encoded_inputs["num_truncated_tokens"] = total_len - max_length
if return_overflowing_tokens:
encoded_inputs["overflowing_tokens"] = overflowing_tokens
encoded_inputs["num_truncated_tokens"] = total_len - max_length
# Handle special_tokens
if add_special_tokens:
sequence = self.build_inputs_with_special_tokens(ids, pair_ids)
token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids)
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
special_tokens_mask = self.get_special_tokens_mask(ids, pair_ids)
else:
sequence = ids + pair_ids if pair else ids
token_type_ids = [0] * len(ids) + ([1] * len(pair_ids) if pair else [])
special_tokens_mask = [0] * (len(ids) + (len(pair_ids) if pair else 0))
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids)
# Prepare inputs as tensors if asked
if return_tensors == 'tf' and is_tf_available():
sequence = tf.constant([sequence])
token_type_ids = tf.constant([token_type_ids])
@ -876,12 +923,15 @@ class PreTrainedTokenizer(object):
logger.warning("Unable to convert output to tensors format {}, PyTorch or TensorFlow is not available.".format(return_tensors))
encoded_inputs["input_ids"] = sequence
encoded_inputs["token_type_ids"] = token_type_ids
if return_token_type_ids:
encoded_inputs["token_type_ids"] = token_type_ids
if max_length and len(encoded_inputs["input_ids"]) > max_length:
encoded_inputs["input_ids"] = encoded_inputs["input_ids"][:max_length]
encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"][:max_length]
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"][:max_length]
if return_token_type_ids:
encoded_inputs["token_type_ids"] = encoded_inputs["token_type_ids"][:max_length]
if return_special_tokens_mask:
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"][:max_length]
if max_length is None and len(encoded_inputs["input_ids"]) > self.max_len:
logger.warning("Token indices sequence length is longer than the specified maximum sequence length "