[s2s]: script to convert pl checkpoints to hf checkpoints (#6911)

Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
This commit is contained in:
Sam Shleifer 2020-09-03 09:47:00 -04:00 committed by GitHub
parent b8e4906c97
commit 5a318f075a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 77 additions and 1 deletions

View File

@ -0,0 +1,72 @@
import os
from pathlib import Path
from typing import Dict, List
import fire
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.utils.logging import get_logger
logger = get_logger(__name__)
def remove_prefix(text: str, prefix: str):
if text.startswith(prefix):
return text[len(prefix) :]
return text # or whatever
def sanitize(sd):
return {remove_prefix(k, "model."): v for k, v in sd.items()}
def average_state_dicts(state_dicts: List[Dict[str, torch.Tensor]]):
new_sd = {}
for k in state_dicts[0].keys():
tensors = [sd[k] for sd in state_dicts]
new_t = sum(tensors) / len(tensors)
assert isinstance(new_t, torch.Tensor)
new_sd[k] = new_t
return new_sd
def convert_pl_to_hf(pl_ckpt_path: str, hf_src_model_dir: str, save_path: str) -> None:
"""Cleanup a pytorch-lightning .ckpt file or experiment dir and save a huggingface model with that state dict.
Silently allows extra pl keys (like teacher.) Puts all ckpt models into CPU RAM at once!
Args:
pl_ckpt_path (:obj:`str`): Path to a .ckpt file saved by pytorch_lightning or dir containing ckpt files.
If a directory is passed, all .ckpt files inside it will be averaged!
hf_src_model_dir (:obj:`str`): Path to a directory containing a correctly shaped checkpoint
save_path (:obj:`str`): Directory to save the new model
"""
hf_model = AutoModelForSeq2SeqLM.from_pretrained(hf_src_model_dir)
if os.path.isfile(pl_ckpt_path):
ckpt_files = [pl_ckpt_path]
else:
assert os.path.isdir(pl_ckpt_path)
ckpt_files = list(Path(pl_ckpt_path).glob("*.ckpt"))
assert ckpt_files, f"could not find any ckpt files inside the {pl_ckpt_path} directory"
if len(ckpt_files) > 1:
logger.info(f"averaging the weights of {ckpt_files}")
state_dicts = [sanitize(torch.load(x, map_location="cpu")["state_dict"]) for x in ckpt_files]
state_dict = average_state_dicts(state_dicts)
missing, unexpected = hf_model.load_state_dict(state_dict, strict=False)
assert not missing, f"missing keys: {missing}"
hf_model.save_pretrained(save_path)
try:
tok = AutoTokenizer.from_pretrained(hf_src_model_dir)
tok.save_pretrained(save_path)
except Exception:
pass
# dont copy tokenizer if cant
if __name__ == "__main__":
fire.Fire(convert_pl_to_hf)

View File

@ -416,7 +416,7 @@ def create_module(args):
def evaluate_checkpoint(ckpt_path: Path, dest_dir=None):
# TODO(SS): DELETE?
# TODO(SS): DELETE? Better to convert_pl_ckpt_to_hf and run_eval.py
exp_dir = ckpt_path.parent
if dest_dir is None:
dest_dir = exp_dir

View File

@ -18,6 +18,7 @@ from transformers.hf_api import HfApi
from transformers.modeling_bart import shift_tokens_right
from transformers.testing_utils import CaptureStderr, CaptureStdout, require_multigpu, require_torch_and_cuda, slow
from .convert_pl_checkpoint_to_hf import convert_pl_to_hf
from .distillation import distill_main, evaluate_checkpoint
from .finetune import SummarizationModule, main
from .pack_dataset import pack_data_dir
@ -173,6 +174,9 @@ class TestSummarizationDistiller(unittest.TestCase):
self.assertTrue(Path(out_path).exists())
evaluate_checkpoint(ckpts[0], dest_dir=Path(tempfile.mkdtemp()))
out_path_new = tempfile.mkdtemp()
convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new)
assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin"))
def test_loss_fn(self):
model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY, return_dict=True)