mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
Add generic text classification example in TF (#5716)
* Add new example with nlp * Update README * replace nlp by datasets * Update examples/text-classification/README.md Add Lysandre's suggestion. Co-authored-by: Lysandre Debut <lysandre@huggingface.co> Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
This commit is contained in:
parent
6e21f24220
commit
585217c87f
@ -23,6 +23,31 @@ Quick benchmarks from the script (no other modifications):
|
||||
Mixed precision (AMP) reduces the training time considerably for the same hardware and hyper-parameters (same batch size was used).
|
||||
|
||||
|
||||
## Run generic text classification script in TensorFlow
|
||||
|
||||
The script [run_tf_text_classification.py](https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_tf_text_classification.py) allows users to run a text classification on their own CSV files. For now there are few restrictions, the CSV files must have a header corresponding to the column names and not more than three columns: one column for the id, one column for the text and another column for a second piece of text in case of an entailment classification for example.
|
||||
|
||||
To use the script, one as to run the following command line:
|
||||
```bash
|
||||
python run_tf_text_classification.py \
|
||||
--train_file train.csv \ ### training dataset file location (mandatory if running with --do_train option)
|
||||
--dev_file dev.csv \ ### development dataset file location (mandatory if running with --do_eval option)
|
||||
--test_file test.csv \ ### test dataset file location (mandatory if running with --do_predict option)
|
||||
--label_column_id 0 \ ### which column corresponds to the labels
|
||||
--model_name_or_path bert-base-multilingual-uncased \
|
||||
--output_dir model \
|
||||
--num_train_epochs 4 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--per_device_eval_batch_size 32 \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--do_predict \
|
||||
--logging_steps 10 \
|
||||
--evaluate_during_training \
|
||||
--save_steps 10 \
|
||||
--overwrite_output_dir \
|
||||
--max_seq_length 128
|
||||
```
|
||||
|
||||
# Run PyTorch version
|
||||
|
||||
|
283
examples/text-classification/run_tf_text_classification.py
Normal file
283
examples/text-classification/run_tf_text_classification.py
Normal file
@ -0,0 +1,283 @@
|
||||
# coding=utf-8
|
||||
""" Fine-tuning the library models for sequence classification."""
|
||||
|
||||
|
||||
import logging
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, Optional
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
EvalPrediction,
|
||||
HfArgumentParser,
|
||||
PreTrainedTokenizer,
|
||||
TFAutoModelForSequenceClassification,
|
||||
TFTrainer,
|
||||
TFTrainingArguments,
|
||||
)
|
||||
|
||||
|
||||
def get_tfds(
|
||||
train_file: str,
|
||||
eval_file: str,
|
||||
test_file: str,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
label_column_id: int,
|
||||
max_seq_length: Optional[int] = None,
|
||||
):
|
||||
files = {}
|
||||
|
||||
if train_file is not None:
|
||||
files[datasets.Split.TRAIN] = [train_file]
|
||||
if eval_file is not None:
|
||||
files[datasets.Split.VALIDATION] = [eval_file]
|
||||
if test_file is not None:
|
||||
files[datasets.Split.TEST] = [test_file]
|
||||
|
||||
ds = datasets.load_dataset("csv", data_files=files)
|
||||
features_name = list(ds[list(files.keys())[0]].features.keys())
|
||||
label_name = features_name.pop(label_column_id)
|
||||
label_list = list(set(ds[list(files.keys())[0]][label_name]))
|
||||
label2id = {label: i for i, label in enumerate(label_list)}
|
||||
input_names = ["input_ids"] + tokenizer.model_input_names
|
||||
transformed_ds = {}
|
||||
|
||||
if len(features_name) == 1:
|
||||
for k in files.keys():
|
||||
transformed_ds[k] = ds[k].map(
|
||||
lambda example: tokenizer.batch_encode_plus(
|
||||
example[features_name[0]], truncation=True, max_length=max_seq_length, padding="max_length"
|
||||
),
|
||||
batched=True,
|
||||
)
|
||||
elif len(features_name) == 2:
|
||||
for k in files.keys():
|
||||
transformed_ds[k] = ds[k].map(
|
||||
lambda example: tokenizer.batch_encode_plus(
|
||||
(example[features_name[0]], features_name[1]),
|
||||
truncation=True,
|
||||
max_length=max_seq_length,
|
||||
padding="max_length",
|
||||
),
|
||||
batched=True,
|
||||
)
|
||||
|
||||
def gen_train():
|
||||
for ex in transformed_ds[datasets.Split.TRAIN]:
|
||||
d = {k: v for k, v in ex.items() if k in input_names}
|
||||
label = label2id[ex[label_name]]
|
||||
yield (d, label)
|
||||
|
||||
def gen_val():
|
||||
for ex in transformed_ds[datasets.Split.VALIDATION]:
|
||||
d = {k: v for k, v in ex.items() if k in input_names}
|
||||
label = label2id[ex[label_name]]
|
||||
yield (d, label)
|
||||
|
||||
def gen_test():
|
||||
for ex in transformed_ds[datasets.Split.TEST]:
|
||||
d = {k: v for k, v in ex.items() if k in input_names}
|
||||
label = label2id[ex[label_name]]
|
||||
yield (d, label)
|
||||
|
||||
train_ds = (
|
||||
tf.data.Dataset.from_generator(
|
||||
gen_train,
|
||||
({k: tf.int32 for k in input_names}, tf.int64),
|
||||
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
|
||||
)
|
||||
if datasets.Split.TRAIN in transformed_ds
|
||||
else None
|
||||
)
|
||||
|
||||
val_ds = (
|
||||
tf.data.Dataset.from_generator(
|
||||
gen_val,
|
||||
({k: tf.int32 for k in input_names}, tf.int64),
|
||||
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
|
||||
)
|
||||
if datasets.Split.VALIDATION in transformed_ds
|
||||
else None
|
||||
)
|
||||
|
||||
test_ds = (
|
||||
tf.data.Dataset.from_generator(
|
||||
gen_test,
|
||||
({k: tf.int32 for k in input_names}, tf.int64),
|
||||
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
|
||||
)
|
||||
if datasets.Split.TEST in transformed_ds
|
||||
else None
|
||||
)
|
||||
|
||||
return train_ds, val_ds, test_ds, label2id
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataTrainingArguments:
|
||||
"""
|
||||
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||
|
||||
Using `HfArgumentParser` we can turn this class
|
||||
into argparse arguments to be able to specify them on
|
||||
the command line.
|
||||
"""
|
||||
|
||||
label_column_id: int = field(metadata={"help": "Which column contains the label"})
|
||||
train_file: str = field(default=None, metadata={"help": "The path of the training file"})
|
||||
dev_file: Optional[str] = field(default=None, metadata={"help": "The path of the development file"})
|
||||
test_file: Optional[str] = field(default=None, metadata={"help": "The path of the test file"})
|
||||
max_seq_length: int = field(
|
||||
default=128,
|
||||
metadata={
|
||||
"help": "The maximum total input sequence length after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded."
|
||||
},
|
||||
)
|
||||
overwrite_cache: bool = field(
|
||||
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
"""
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
||||
"""
|
||||
|
||||
model_name_or_path: str = field(
|
||||
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
||||
)
|
||||
config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
||||
)
|
||||
tokenizer_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
||||
)
|
||||
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
|
||||
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
|
||||
# or just modify its tokenizer_config.json.
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
# See all possible arguments in src/transformers/training_args.py
|
||||
# or by passing the --help flag to this script.
|
||||
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if (
|
||||
os.path.exists(training_args.output_dir)
|
||||
and os.listdir(training_args.output_dir)
|
||||
and training_args.do_train
|
||||
and not training_args.overwrite_output_dir
|
||||
):
|
||||
raise ValueError(
|
||||
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
|
||||
)
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
level=logging.INFO,
|
||||
)
|
||||
logger.info(
|
||||
"n_replicas: %s, distributed training: %s, 16-bits training: %s",
|
||||
training_args.n_replicas,
|
||||
bool(training_args.n_replicas > 1),
|
||||
training_args.fp16,
|
||||
)
|
||||
logger.info("Training/evaluation parameters %s", training_args)
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
#
|
||||
# Distributed training:
|
||||
# The .from_pretrained methods guarantee that only one local process can concurrently
|
||||
# download model & vocab.
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
)
|
||||
|
||||
train_dataset, eval_dataset, test_ds, label2id = get_tfds(
|
||||
train_file=data_args.train_file,
|
||||
eval_file=data_args.dev_file,
|
||||
test_file=data_args.test_file,
|
||||
tokenizer=tokenizer,
|
||||
label_column_id=data_args.label_column_id,
|
||||
max_seq_length=data_args.max_seq_length,
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
num_labels=len(label2id),
|
||||
label2id=label2id,
|
||||
id2label={id: label for label, id in label2id.items()},
|
||||
finetuning_task="text-classification",
|
||||
cache_dir=model_args.cache_dir,
|
||||
)
|
||||
|
||||
with training_args.strategy.scope():
|
||||
model = TFAutoModelForSequenceClassification.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
from_pt=bool(".bin" in model_args.model_name_or_path),
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
)
|
||||
|
||||
def compute_metrics(p: EvalPrediction) -> Dict:
|
||||
preds = np.argmax(p.predictions, axis=1)
|
||||
|
||||
return {"acc": (preds == p.label_ids).mean()}
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = TFTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
trainer.train()
|
||||
trainer.save_model()
|
||||
tokenizer.save_pretrained(training_args.output_dir)
|
||||
|
||||
# Evaluation
|
||||
results = {}
|
||||
if training_args.do_eval:
|
||||
logger.info("*** Evaluate ***")
|
||||
|
||||
result = trainer.evaluate()
|
||||
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
|
||||
|
||||
with open(output_eval_file, "w") as writer:
|
||||
logger.info("***** Eval results *****")
|
||||
|
||||
for key, value in result.items():
|
||||
logger.info(" %s = %s", key, value)
|
||||
writer.write("%s = %s\n" % (key, value))
|
||||
|
||||
results.update(result)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user