Add generic text classification example in TF (#5716)

* Add new example with nlp

* Update README

* replace nlp by datasets

* Update examples/text-classification/README.md

Add Lysandre's suggestion.

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>

Co-authored-by: Lysandre Debut <lysandre@huggingface.co>
This commit is contained in:
Julien Plu 2020-09-22 18:05:05 +02:00 committed by GitHub
parent 6e21f24220
commit 585217c87f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 308 additions and 0 deletions

View File

@ -23,6 +23,31 @@ Quick benchmarks from the script (no other modifications):
Mixed precision (AMP) reduces the training time considerably for the same hardware and hyper-parameters (same batch size was used).
## Run generic text classification script in TensorFlow
The script [run_tf_text_classification.py](https://github.com/huggingface/transformers/blob/master/examples/text-classification/run_tf_text_classification.py) allows users to run a text classification on their own CSV files. For now there are few restrictions, the CSV files must have a header corresponding to the column names and not more than three columns: one column for the id, one column for the text and another column for a second piece of text in case of an entailment classification for example.
To use the script, one as to run the following command line:
```bash
python run_tf_text_classification.py \
--train_file train.csv \ ### training dataset file location (mandatory if running with --do_train option)
--dev_file dev.csv \ ### development dataset file location (mandatory if running with --do_eval option)
--test_file test.csv \ ### test dataset file location (mandatory if running with --do_predict option)
--label_column_id 0 \ ### which column corresponds to the labels
--model_name_or_path bert-base-multilingual-uncased \
--output_dir model \
--num_train_epochs 4 \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 32 \
--do_train \
--do_eval \
--do_predict \
--logging_steps 10 \
--evaluate_during_training \
--save_steps 10 \
--overwrite_output_dir \
--max_seq_length 128
```
# Run PyTorch version

View File

@ -0,0 +1,283 @@
# coding=utf-8
""" Fine-tuning the library models for sequence classification."""
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
def get_tfds(
train_file: str,
eval_file: str,
test_file: str,
tokenizer: PreTrainedTokenizer,
label_column_id: int,
max_seq_length: Optional[int] = None,
):
files = {}
if train_file is not None:
files[datasets.Split.TRAIN] = [train_file]
if eval_file is not None:
files[datasets.Split.VALIDATION] = [eval_file]
if test_file is not None:
files[datasets.Split.TEST] = [test_file]
ds = datasets.load_dataset("csv", data_files=files)
features_name = list(ds[list(files.keys())[0]].features.keys())
label_name = features_name.pop(label_column_id)
label_list = list(set(ds[list(files.keys())[0]][label_name]))
label2id = {label: i for i, label in enumerate(label_list)}
input_names = ["input_ids"] + tokenizer.model_input_names
transformed_ds = {}
if len(features_name) == 1:
for k in files.keys():
transformed_ds[k] = ds[k].map(
lambda example: tokenizer.batch_encode_plus(
example[features_name[0]], truncation=True, max_length=max_seq_length, padding="max_length"
),
batched=True,
)
elif len(features_name) == 2:
for k in files.keys():
transformed_ds[k] = ds[k].map(
lambda example: tokenizer.batch_encode_plus(
(example[features_name[0]], features_name[1]),
truncation=True,
max_length=max_seq_length,
padding="max_length",
),
batched=True,
)
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
d = {k: v for k, v in ex.items() if k in input_names}
label = label2id[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
d = {k: v for k, v in ex.items() if k in input_names}
label = label2id[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
d = {k: v for k, v in ex.items() if k in input_names}
label = label2id[ex[label_name]]
yield (d, label)
train_ds = (
tf.data.Dataset.from_generator(
gen_train,
({k: tf.int32 for k in input_names}, tf.int64),
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
)
if datasets.Split.TRAIN in transformed_ds
else None
)
val_ds = (
tf.data.Dataset.from_generator(
gen_val,
({k: tf.int32 for k in input_names}, tf.int64),
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
)
if datasets.Split.VALIDATION in transformed_ds
else None
)
test_ds = (
tf.data.Dataset.from_generator(
gen_test,
({k: tf.int32 for k in input_names}, tf.int64),
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
)
if datasets.Split.TEST in transformed_ds
else None
)
return train_ds, val_ds, test_ds, label2id
logger = logging.getLogger(__name__)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
label_column_id: int = field(metadata={"help": "Which column contains the label"})
train_file: str = field(default=None, metadata={"help": "The path of the training file"})
dev_file: Optional[str] = field(default=None, metadata={"help": "The path of the development file"})
test_file: Optional[str] = field(default=None, metadata={"help": "The path of the test file"})
max_seq_length: int = field(
default=128,
metadata={
"help": "The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
)
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir)
and os.listdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(
"n_replicas: %s, distributed training: %s, 16-bits training: %s",
training_args.n_replicas,
bool(training_args.n_replicas > 1),
training_args.fp16,
)
logger.info("Training/evaluation parameters %s", training_args)
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
)
train_dataset, eval_dataset, test_ds, label2id = get_tfds(
train_file=data_args.train_file,
eval_file=data_args.dev_file,
test_file=data_args.test_file,
tokenizer=tokenizer,
label_column_id=data_args.label_column_id,
max_seq_length=data_args.max_seq_length,
)
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=len(label2id),
label2id=label2id,
id2label={id: label for label, id in label2id.items()},
finetuning_task="text-classification",
cache_dir=model_args.cache_dir,
)
with training_args.strategy.scope():
model = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_pt=bool(".bin" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
)
def compute_metrics(p: EvalPrediction) -> Dict:
preds = np.argmax(p.predictions, axis=1)
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
trainer = TFTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
)
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir)
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
result = trainer.evaluate()
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key, value in result.items():
logger.info(" %s = %s", key, value)
writer.write("%s = %s\n" % (key, value))
results.update(result)
return results
if __name__ == "__main__":
main()