[RoBERTa] LayerNorm's eps is not a nn.Parameter so there's no point setting it on the model

Instead we correctly store it on the config

(regenerating the hosted config files)

cc @lysandrejik
This commit is contained in:
Julien Chaumond 2019-08-30 20:09:24 -04:00
parent 09363f2a8b
commit 574c5b3a72

View File

@ -53,6 +53,7 @@ def convert_roberta_checkpoint_to_pytorch(roberta_checkpoint_path, pytorch_dump_
intermediate_size=roberta.args.encoder_ffn_embed_dim,
max_position_embeddings=514,
type_vocab_size=1,
layer_norm_eps=1e-5, # PyTorch default used in fairseq
)
if classification_head:
config.num_labels = roberta.args.num_classes
@ -69,7 +70,6 @@ def convert_roberta_checkpoint_to_pytorch(roberta_checkpoint_path, pytorch_dump_
model.roberta.embeddings.token_type_embeddings.weight.data = torch.zeros_like(model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c RoBERTa doesn't use them.
model.roberta.embeddings.LayerNorm.weight = roberta_sent_encoder.emb_layer_norm.weight
model.roberta.embeddings.LayerNorm.bias = roberta_sent_encoder.emb_layer_norm.bias
model.roberta.embeddings.LayerNorm.variance_epsilon = roberta_sent_encoder.emb_layer_norm.eps
for i in range(config.num_hidden_layers):
# Encoder: start of layer
@ -98,7 +98,6 @@ def convert_roberta_checkpoint_to_pytorch(roberta_checkpoint_path, pytorch_dump_
self_output.dense.bias = roberta_layer.self_attn.out_proj.bias
self_output.LayerNorm.weight = roberta_layer.self_attn_layer_norm.weight
self_output.LayerNorm.bias = roberta_layer.self_attn_layer_norm.bias
self_output.LayerNorm.variance_epsilon = roberta_layer.self_attn_layer_norm.eps
### intermediate
intermediate: BertIntermediate = layer.intermediate
@ -117,7 +116,6 @@ def convert_roberta_checkpoint_to_pytorch(roberta_checkpoint_path, pytorch_dump_
bert_output.dense.bias = roberta_layer.fc2.bias
bert_output.LayerNorm.weight = roberta_layer.final_layer_norm.weight
bert_output.LayerNorm.bias = roberta_layer.final_layer_norm.bias
bert_output.LayerNorm.variance_epsilon = roberta_layer.final_layer_norm.eps
#### end of layer
if classification_head:
@ -131,7 +129,6 @@ def convert_roberta_checkpoint_to_pytorch(roberta_checkpoint_path, pytorch_dump_
model.lm_head.dense.bias = roberta.model.decoder.lm_head.dense.bias
model.lm_head.layer_norm.weight = roberta.model.decoder.lm_head.layer_norm.weight
model.lm_head.layer_norm.bias = roberta.model.decoder.lm_head.layer_norm.bias
model.lm_head.layer_norm.variance_epsilon = roberta.model.decoder.lm_head.layer_norm.eps
model.lm_head.decoder.weight = roberta.model.decoder.lm_head.weight
model.lm_head.bias = roberta.model.decoder.lm_head.bias
@ -144,6 +141,8 @@ def convert_roberta_checkpoint_to_pytorch(roberta_checkpoint_path, pytorch_dump_
else:
their_output = roberta.model(input_ids)[0]
print(our_output.shape, their_output.shape)
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-7
success = torch.allclose(our_output, their_output, atol=1e-3)
print(
"Do both models output the same tensors?",