mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
HF <-> megatron checkpoint reshaping and conversion for GPT (#19317)
* HF <-> megatron checkpoint conversion handling reshaping from different tensor and parallel sizes
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
* addressing comments
* add doc strings and 🐛 fixes
Co-authored-by: Sylvain Gugger <35901082+sgugger@users.noreply.github.com>
This commit is contained in:
parent
41ec5d0ced
commit
56af8df359
@ -0,0 +1,900 @@
|
||||
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
import types
|
||||
|
||||
import torch
|
||||
|
||||
from transformers import AutoTokenizer, GPT2Config
|
||||
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME, shard_checkpoint
|
||||
|
||||
|
||||
def add_checkpointing_args(parser):
|
||||
parser.add_argument("--megatron-path", type=str, default=None, help="Base directory of Megatron repository")
|
||||
parser.add_argument(
|
||||
"--convert_checkpoint_from_megatron_to_transformers",
|
||||
action="store_true",
|
||||
help=(
|
||||
"If True, convert a Megatron checkpoint to a Transformers checkpoint. "
|
||||
"If False, convert a Transformers checkpoint to a Megatron checkpoint."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--load_path",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the checkpoint to convert.",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--save_path",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to the converted checkpoint.",
|
||||
)
|
||||
parser.add_argument("--print-checkpoint-structure", action="store_true")
|
||||
return parser
|
||||
|
||||
|
||||
def add_megatron_checkpoint_args(parser):
|
||||
parser.add_argument(
|
||||
"--target_tensor_model_parallel_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help=(
|
||||
"The tensor model parallel size of the converted checkpoint. "
|
||||
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--target_pipeline_model_parallel_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help=(
|
||||
"The pipeline model parallel size of the converted checkpoint. "
|
||||
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--target_data_parallel_size",
|
||||
type=int,
|
||||
default=1,
|
||||
help=(
|
||||
"The data parallel size of the converted checkpoint. "
|
||||
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--target_params_dtype",
|
||||
type=str,
|
||||
default="fp32",
|
||||
help=(
|
||||
"The dtype of the converted checkpoint. "
|
||||
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--make_vocab_size_divisible_by",
|
||||
type=int,
|
||||
default=128,
|
||||
help=(
|
||||
"Pad the vocab size to be divisible by this value. "
|
||||
"This is added for computational efficieny reasons. "
|
||||
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use_distributed_optimizer",
|
||||
action="store_true",
|
||||
help=(
|
||||
"If True, use the distributed optimizer. "
|
||||
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
|
||||
),
|
||||
)
|
||||
return parser
|
||||
|
||||
|
||||
def add_transformers_checkpoint_args(parser):
|
||||
parser.add_argument(
|
||||
"--tokenizer_name",
|
||||
type=str,
|
||||
default=None,
|
||||
help=(
|
||||
"The name of the pre-trained tokenizer to save. "
|
||||
"If not None, the tokenizer will be saved. "
|
||||
"Only used when converting a Megatron checkpoint to a Transformers checkpoint."
|
||||
),
|
||||
)
|
||||
parser.add_argument(
|
||||
"--max_shard_size",
|
||||
type=str,
|
||||
default="10GB",
|
||||
help=(
|
||||
"The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size "
|
||||
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`). "
|
||||
"Only used when converting a Megatron checkpoint to a Transformers checkpoint."
|
||||
),
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
# The simple map of names for "automated" rules.
|
||||
megatron_to_transformers = {
|
||||
"attention.dense": ".attn.c_proj.",
|
||||
"self_attention.dense": ".attn.c_proj.",
|
||||
"mlp.dense_h_to_4h": ".mlp.c_fc.",
|
||||
"mlp.dense_4h_to_h": ".mlp.c_proj.",
|
||||
}
|
||||
transformers_to_megatron = {v[1:-1]: k for k, v in megatron_to_transformers.items()}
|
||||
|
||||
tensor_parallel_params = [
|
||||
# megatron-lm layers to merge across tp ranks
|
||||
"self_attention.query_key_value.weight",
|
||||
"self_attention.query_key_value.bias",
|
||||
"self_attention.dense.weight",
|
||||
"mlp.dense_h_to_4h.weight",
|
||||
"mlp.dense_h_to_4h.bias",
|
||||
"mlp.dense_4h_to_h.weight",
|
||||
# deprecated
|
||||
"attention.query_key_value.weight",
|
||||
"attention.query_key_value.bias",
|
||||
"attention.dense.weight",
|
||||
# transformers layers to split across tp ranks
|
||||
"attn.c_attn.weight",
|
||||
"attn.c_attn.bias",
|
||||
"attn.c_proj.weight",
|
||||
"mlp.c_fc.weight",
|
||||
"mlp.c_fc.bias",
|
||||
"mlp.c_proj.weight",
|
||||
]
|
||||
|
||||
|
||||
def recursive_print(name, val, spaces=0):
|
||||
"""
|
||||
Recursively print the structure of a checkpoint. This function is taken from `convert_megatron_gpt2_checkpoint.py`
|
||||
|
||||
Args:
|
||||
name (str): the name of the current tensor parameter
|
||||
val (Tuple(int)): the shape of the current tensor parameter
|
||||
spaces (int): the number of spaces to print before the output for a nested structure
|
||||
"""
|
||||
# Format the message.
|
||||
if name is None:
|
||||
msg = None
|
||||
else:
|
||||
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
|
||||
msg = fmt.format(name)
|
||||
|
||||
# Print and recurse (if needed).
|
||||
if isinstance(val, dict):
|
||||
if msg is not None:
|
||||
print(msg)
|
||||
for k in val.keys():
|
||||
recursive_print(k, val[k], spaces + 2)
|
||||
elif isinstance(val, torch.Tensor):
|
||||
print(msg, ":", val.size())
|
||||
else:
|
||||
print(msg, ":", val)
|
||||
|
||||
|
||||
def megatron_to_transformers_fix_query_key_value_ordering(
|
||||
param, checkpoint_version, num_splits, num_heads, hidden_size
|
||||
):
|
||||
"""
|
||||
Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] for compatibility with later versions
|
||||
of NVIDIA Megatron-LM. The inverse operation is performed inside Megatron-LM to read checkpoints:
|
||||
https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 If param is the weight tensor of the
|
||||
self-attention block, the returned tensor will have to be transposed one more time to be read by HuggingFace GPT2.
|
||||
This function is taken from `convert_megatron_gpt2_checkpoint.py`
|
||||
|
||||
Args:
|
||||
param (torch.Tensor): the tensor to permute
|
||||
checkpoint_version (int): the version of the checkpoint.
|
||||
num_splits (int): the number of projections, usually 3 for (Query, Key, Value)
|
||||
num_heads (int): the number of attention heads
|
||||
hidden_size (int): the hidden size per head
|
||||
"""
|
||||
|
||||
input_shape = param.size()
|
||||
if checkpoint_version == 1.0:
|
||||
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
|
||||
saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:]
|
||||
param = param.view(*saved_shape)
|
||||
param = param.transpose(0, 2)
|
||||
param = param.transpose(1, 2).contiguous()
|
||||
elif checkpoint_version >= 2.0:
|
||||
# other versions store [num_heads * num_splits * hidden_size, :]
|
||||
saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:]
|
||||
param = param.view(*saved_shape)
|
||||
param = param.transpose(0, 1).contiguous()
|
||||
param = param.view(*input_shape)
|
||||
return param
|
||||
|
||||
|
||||
def transformers_to_megatron_fix_query_key_value_ordering(
|
||||
param, checkpoint_version, num_splits, num_heads, hidden_size
|
||||
):
|
||||
"""
|
||||
Permutes layout of param tensor to the one compatible with respective NVIDIA Megatron-LM chekpoint versions. Input
|
||||
is [num_splits * num_heads * hidden_size, :] and output is [num_heads * hidden_size * num_splits, :] for version
|
||||
1.0 and [num_heads * num_splits * hidden_size, :] for version 2.0 and later. If param is the weight tensor of the
|
||||
self-attention block, the param needs to be already transposed before calling this function.
|
||||
|
||||
Args:
|
||||
param (torch.Tensor): the tensor to permute
|
||||
checkpoint_version (int): the version of the checkpoint.
|
||||
num_splits (int): the number of projections, usually 3 for (Query, Key, Value)
|
||||
num_heads (int): the number of attention heads
|
||||
hidden_size (int): the hidden size per head
|
||||
"""
|
||||
|
||||
# Input is [num_splits * num_heads * hidden_size, :]
|
||||
input_shape = param.size()
|
||||
if checkpoint_version == 1.0:
|
||||
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
|
||||
current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:]
|
||||
param = param.view(*current_shape)
|
||||
param = param.transpose(0, 2)
|
||||
param = param.transpose(1, 2).contiguous()
|
||||
elif checkpoint_version >= 2.0:
|
||||
# other versions store [num_heads * num_splits * hidden_size, :]
|
||||
current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:]
|
||||
param = param.view(*current_shape)
|
||||
param = param.transpose(0, 1).contiguous()
|
||||
param = param.view(*input_shape)
|
||||
return param
|
||||
|
||||
|
||||
def merge_transformers_sharded_states(path, num_checkpoints):
|
||||
"""
|
||||
Merge sharded checkpoints from transformers into a single checkpoint.
|
||||
|
||||
Args:
|
||||
path (str): the path to the sharded checkpoints
|
||||
num_checkpoints (int): the number of checkpoints to merge
|
||||
"""
|
||||
state_dict = {}
|
||||
for i in range(1, num_checkpoints + 1):
|
||||
checkpoint_path = os.path.join(path, f"pytorch_model-{i:05d}-of-{num_checkpoints:05d}.bin")
|
||||
current_chunk = torch.load(checkpoint_path, map_location="cpu")
|
||||
state_dict.update(current_chunk)
|
||||
return state_dict
|
||||
|
||||
|
||||
def get_megatron_sharded_states(args, tp_size, pp_size, pp_rank):
|
||||
"""
|
||||
Get sharded checkpoints from NVIDIA Megatron-LM checkpoint based on the provided tensor parallel size, pipeline
|
||||
parallel size and pipeline parallel rank.
|
||||
|
||||
Args:
|
||||
args (argparse.Namespace): the arguments to the script
|
||||
tp_size (int): the tensor parallel size
|
||||
pp_size (int): the pipeline parallel size
|
||||
pp_rank (int): the pipeline parallel rank
|
||||
"""
|
||||
tp_state_dicts = []
|
||||
for i in range(tp_size):
|
||||
sub_dir_name = f"mp_rank_{i:02d}" if pp_size == 1 else f"mp_rank_{i:02d}_{pp_rank:03d}"
|
||||
checkpoint_name = os.listdir(os.path.join(args.load_path, sub_dir_name))[0]
|
||||
checkpoint_path = os.path.join(args.load_path, sub_dir_name, checkpoint_name)
|
||||
state_dict = torch.load(checkpoint_path, map_location="cpu")
|
||||
tp_state_dicts.append(state_dict)
|
||||
return tp_state_dicts
|
||||
|
||||
|
||||
def get_element_from_dict_by_path(d, path):
|
||||
"""
|
||||
Get element from dictionary by path. If element is not present, recursively add empty dictionaries.
|
||||
|
||||
Args:
|
||||
d (dict): the dictionary to get the element from
|
||||
path (list): the path to the element which is delimited by "."
|
||||
"""
|
||||
path = path.split(".")
|
||||
for k in path:
|
||||
if k not in d:
|
||||
d[k] = {}
|
||||
d = d[k]
|
||||
return d
|
||||
|
||||
|
||||
def convert_checkpoint_from_megatron_to_transformers(args):
|
||||
"""
|
||||
Convert NVIDIA Megatron-LM checkpoint to HuggingFace Transformers checkpoint. This handles Megatron checkpoints
|
||||
with different tensor parallelism and pipeline parallelism sizes. It saves the converted checkpoint into shards
|
||||
using HuggingFace Transformers checkpoint sharding functionality. This greatly extends the functionality of
|
||||
`convert_megatron_gpt2_checkpoint.py`
|
||||
|
||||
Args:
|
||||
args (argparse.Namespace): the arguments to the script
|
||||
"""
|
||||
# Load Megatron-LM checkpoint arguments from the state dict
|
||||
sub_dirs = os.listdir(args.load_path)
|
||||
possible_sub_dirs = ["mp_rank_00", "mp_rank_00_000"]
|
||||
for sub_dir in possible_sub_dirs:
|
||||
if sub_dir in sub_dirs:
|
||||
rank0_checkpoint_name = os.listdir(os.path.join(args.load_path, sub_dir))[0]
|
||||
rank0_checkpoint_path = os.path.join(args.load_path, sub_dir, rank0_checkpoint_name)
|
||||
break
|
||||
print(f"Loading Megatron-LM checkpoint arguments from: {rank0_checkpoint_path}")
|
||||
state_dict = torch.load(rank0_checkpoint_path, map_location="cpu")
|
||||
megatron_args = state_dict.get("args", None)
|
||||
if megatron_args is None:
|
||||
raise ValueError(
|
||||
"Megatron-LM checkpoint does not contain arguments. This utility only supports Megatron-LM checkpoints"
|
||||
" containing all the megatron arguments. This is because it loads all config related to model"
|
||||
" architecture, the tensor and pipeline model parallel size from the checkpoint insead of user having to"
|
||||
" manually specify all the details. Please save Megatron-LM checkpoint along with all the megatron"
|
||||
" arguments to use this utility."
|
||||
)
|
||||
|
||||
# Create Transformers GPT2 config from Megatron-LM arguments
|
||||
if megatron_args is not None:
|
||||
if megatron_args.bias_gelu_fusion:
|
||||
activation_function = "gelu_fast"
|
||||
elif megatron_args.openai_gelu:
|
||||
activation_function = "gelu_new"
|
||||
else:
|
||||
activation_function = "gelu"
|
||||
else:
|
||||
# in the very early days this used to be "gelu_new"
|
||||
activation_function = "gelu_new"
|
||||
vocab_size = (
|
||||
megatron_args.padded_vocab_size
|
||||
if getattr(megatron_args, "orig_vocab_size", None) is None
|
||||
else megatron_args.orig_vocab_size
|
||||
)
|
||||
print(vocab_size)
|
||||
|
||||
config = GPT2Config(
|
||||
vocab_size=vocab_size,
|
||||
n_positions=megatron_args.max_position_embeddings,
|
||||
n_embd=megatron_args.hidden_size,
|
||||
n_layer=megatron_args.num_layers,
|
||||
n_head=megatron_args.num_attention_heads,
|
||||
n_inner=megatron_args.ffn_hidden_size,
|
||||
activation_function=activation_function,
|
||||
resid_pdrop=0.1,
|
||||
embd_pdrop=0.1,
|
||||
attn_pdrop=0.1,
|
||||
layer_norm_epsilon=1e-5,
|
||||
initializer_range=0.02,
|
||||
summary_type="cls_index",
|
||||
summary_use_proj=True,
|
||||
summary_activation=None,
|
||||
summary_proj_to_labels=True,
|
||||
summary_first_dropout=0.1,
|
||||
scale_attn_weights=True,
|
||||
use_cache=True,
|
||||
bos_token_id=vocab_size - 1,
|
||||
eos_token_id=vocab_size - 1,
|
||||
architectures=["GPT2LMHeadModel"],
|
||||
)
|
||||
|
||||
output_state_dict = {}
|
||||
|
||||
checkpoint_version = state_dict.get("checkpoint_version", 0.0)
|
||||
tp_size = megatron_args.tensor_model_parallel_size
|
||||
pp_size = megatron_args.pipeline_model_parallel_size
|
||||
dtype = torch.float32
|
||||
# The regex to extract layer names.
|
||||
layer_re = re.compile("layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
|
||||
|
||||
# Convert.
|
||||
print("Converting")
|
||||
|
||||
# Embeddings
|
||||
print("Converting embeddings")
|
||||
tp_state_dicts = get_megatron_sharded_states(args, tp_size, pp_size, 0)
|
||||
|
||||
# Convert and store the position embeddings.
|
||||
position_embeddings = get_element_from_dict_by_path(
|
||||
tp_state_dicts[0], "model.language_model.embedding.position_embeddings.weight"
|
||||
)
|
||||
output_state_dict["transformer.wpe.weight"] = position_embeddings.to(dtype)
|
||||
|
||||
# Convert and store the word embeddings.
|
||||
word_embeddings = torch.cat(
|
||||
[
|
||||
get_element_from_dict_by_path(
|
||||
tp_state_dicts[tp_rank], "model.language_model.embedding.word_embeddings.weight"
|
||||
)
|
||||
for tp_rank in range(tp_size)
|
||||
],
|
||||
dim=0,
|
||||
)
|
||||
word_embeddings = word_embeddings[:vocab_size].to(dtype)
|
||||
output_state_dict["transformer.wte.weight"] = word_embeddings
|
||||
|
||||
# Transformer Layers
|
||||
print("Converting transformer layers")
|
||||
# The number of heads.
|
||||
heads = config.n_head
|
||||
# The hidden_size per head.
|
||||
hidden_size_per_head = config.n_embd // config.n_head
|
||||
n_positions = config.n_positions
|
||||
num_layers = config.num_hidden_layers // pp_size
|
||||
|
||||
for pp_rank in range(pp_size):
|
||||
if pp_size > 0:
|
||||
print(f"Converting pipeline parallel rank {pp_rank}")
|
||||
tp_state_dicts = get_megatron_sharded_states(args, tp_size, pp_size, pp_rank)
|
||||
|
||||
# The transformer.
|
||||
path = (
|
||||
"model.language_model.transformer"
|
||||
if "transformer" in get_element_from_dict_by_path(tp_state_dicts[0], "model.language_model").keys()
|
||||
else "model.language_model.encoder"
|
||||
)
|
||||
# Extract the layers.
|
||||
for key, val in get_element_from_dict_by_path(tp_state_dicts[0], path).items():
|
||||
# Match the name.
|
||||
m = layer_re.match(key)
|
||||
# Stop if that's not a layer
|
||||
if m is None:
|
||||
break
|
||||
|
||||
# The index of the layer.
|
||||
layer_idx = int(m.group(1)) + pp_rank * num_layers
|
||||
# The name of the operation.
|
||||
op_name = m.group(2)
|
||||
# Is it a weight or a bias?
|
||||
weight_or_bias = m.group(3)
|
||||
|
||||
# The name of the layer.
|
||||
layer_name = f"transformer.h.{layer_idx}"
|
||||
|
||||
if op_name + "." + weight_or_bias not in tensor_parallel_params:
|
||||
params = val.to(dtype)
|
||||
else:
|
||||
dim = 1 if op_name in ["self_attention.dense", "mlp.dense_4h_to_h", "attention.dense"] else 0
|
||||
params = torch.cat(
|
||||
[val]
|
||||
+ [
|
||||
get_element_from_dict_by_path(tp_state_dicts[tp_rank], f"{path}")[key]
|
||||
for tp_rank in range(1, tp_size)
|
||||
],
|
||||
dim=dim,
|
||||
).to(dtype)
|
||||
|
||||
# For layernorm(s), simply store the layer norm.
|
||||
if op_name.endswith("layernorm"):
|
||||
|
||||
ln_name = "ln_1" if op_name.startswith("input") else "ln_2"
|
||||
output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = params
|
||||
|
||||
# Transpose the QKV matrix.
|
||||
elif (
|
||||
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
|
||||
) and weight_or_bias == "weight":
|
||||
|
||||
# Insert a tensor of 1x1xDxD bias.
|
||||
causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=dtype)).view(
|
||||
1, 1, n_positions, n_positions
|
||||
)
|
||||
output_state_dict[layer_name + ".attn.bias"] = causal_mask
|
||||
|
||||
# Insert a "dummy" tensor for masked_bias.
|
||||
masked_bias = torch.tensor(-1e4, dtype=dtype)
|
||||
output_state_dict[layer_name + ".attn.masked_bias"] = masked_bias
|
||||
|
||||
out_val = megatron_to_transformers_fix_query_key_value_ordering(
|
||||
params,
|
||||
checkpoint_version,
|
||||
3,
|
||||
heads,
|
||||
hidden_size_per_head,
|
||||
)
|
||||
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
|
||||
out_val = out_val.transpose(0, 1).contiguous()
|
||||
# Store.
|
||||
output_state_dict[layer_name + ".attn.c_attn.weight"] = out_val
|
||||
|
||||
# Transpose the bias.
|
||||
elif (
|
||||
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
|
||||
) and weight_or_bias == "bias":
|
||||
|
||||
out_val = megatron_to_transformers_fix_query_key_value_ordering(
|
||||
params, checkpoint_version, 3, heads, hidden_size_per_head
|
||||
)
|
||||
# Store. No change of shape.
|
||||
output_state_dict[layer_name + ".attn.c_attn.bias"] = out_val
|
||||
|
||||
# Transpose the weights.
|
||||
elif weight_or_bias == "weight":
|
||||
|
||||
out_name = megatron_to_transformers[op_name]
|
||||
output_state_dict[layer_name + out_name + "weight"] = params.transpose(0, 1)
|
||||
|
||||
# Copy the bias.
|
||||
elif weight_or_bias == "bias":
|
||||
|
||||
out_name = megatron_to_transformers[op_name]
|
||||
output_state_dict[layer_name + out_name + "bias"] = params
|
||||
|
||||
if config.n_layer != (layer_idx + 1):
|
||||
raise ValueError(f"Expected {config.n_layer} layers but found {layer_idx + 1}")
|
||||
|
||||
# The final layernorm.
|
||||
print("Converting final layernorm")
|
||||
params = get_element_from_dict_by_path(tp_state_dicts[0], str(path))
|
||||
output_state_dict["transformer.ln_f.weight"] = params["final_layernorm.weight"].to(dtype)
|
||||
output_state_dict["transformer.ln_f.bias"] = params["final_layernorm.bias"].to(dtype)
|
||||
|
||||
# For LM head, transformers' wants the matrix to weight embeddings.
|
||||
print("Converting LM head")
|
||||
output_state_dict["lm_head.weight"] = word_embeddings.to(dtype)
|
||||
|
||||
# It should be done!
|
||||
print("Conversion from Megatron-LM to Transformers is done!")
|
||||
|
||||
# Print the structure of converted state dict.
|
||||
if args.print_checkpoint_structure:
|
||||
recursive_print(None, output_state_dict)
|
||||
|
||||
# Add tokenizer class info to config
|
||||
# see https://github.com/huggingface/transformers/issues/13906)
|
||||
|
||||
if args.tokenizer_name is None:
|
||||
tokenizer_name = "gpt2"
|
||||
else:
|
||||
tokenizer_name = args.tokenizer_name
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
||||
tokenizer_class = type(tokenizer).__name__
|
||||
config.tokenizer_class = tokenizer_class
|
||||
|
||||
# Store the config to file.
|
||||
print("Saving config")
|
||||
config.save_pretrained(args.save_path)
|
||||
|
||||
# Save tokenizer based on args
|
||||
if args.tokenizer_name is not None:
|
||||
print(f"Adding {tokenizer_class} tokenizer files")
|
||||
tokenizer.save_pretrained(args.save_path)
|
||||
|
||||
# Store the state_dict to file.
|
||||
max_shard_size = int(args.max_shard_size) if args.max_shard_size.isdigit() else args.max_shard_size
|
||||
shards, index = shard_checkpoint(output_state_dict, max_shard_size=max_shard_size)
|
||||
|
||||
# Save the model
|
||||
for shard_file, shard in shards.items():
|
||||
torch.save(shard, os.path.join(args.save_path, shard_file))
|
||||
|
||||
if index is None:
|
||||
print(f"Model weights saved in {os.path.join(args.save_path, WEIGHTS_NAME)}")
|
||||
else:
|
||||
save_index_file = os.path.join(args.save_path, WEIGHTS_INDEX_NAME)
|
||||
# Save the index as well
|
||||
with open(save_index_file, "w", encoding="utf-8") as f:
|
||||
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
||||
f.write(content)
|
||||
print(
|
||||
f"The model is bigger than the maximum size per checkpoint ({args.max_shard_size}) and is going to be "
|
||||
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
|
||||
f"index located at {save_index_file}."
|
||||
)
|
||||
|
||||
|
||||
def convert_checkpoint_from_transformers_to_megatron(args):
|
||||
"""
|
||||
Convert a checkpoint from HuggingFace Transformers to Megatron-LM. This allows converted checkpoints with variable
|
||||
tensor parallelism and pipeline parallelism sizes. It takes as input a checkpoint from HuggingFace Transformers
|
||||
which can have multiple shards.
|
||||
|
||||
Args:
|
||||
args (argparse.Namespace): the arguments to the script
|
||||
|
||||
"""
|
||||
os.makedirs(args.save_path, exist_ok=True)
|
||||
# Search in directory above this
|
||||
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
|
||||
if args.megatron_path is not None:
|
||||
sys.path.insert(0, args.megatron_path)
|
||||
|
||||
try:
|
||||
from megatron.tokenizer.tokenizer import _vocab_size_with_padding
|
||||
except ModuleNotFoundError:
|
||||
print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.")
|
||||
exit(1)
|
||||
|
||||
# load the transformers model state dict and config
|
||||
sub_dirs = [x for x in os.listdir(args.load_path) if x.startswith("pytorch_model")]
|
||||
if len(sub_dirs) == 1:
|
||||
checkpoint_name = "pytorch_model.bin"
|
||||
state_dict = torch.load(os.path.join(args.load_path, checkpoint_name), map_location="cpu")
|
||||
else:
|
||||
num_checkpoints = len(sub_dirs) - 1
|
||||
state_dict = merge_transformers_sharded_states(args.load_path, num_checkpoints)
|
||||
|
||||
config = GPT2Config.from_pretrained(args.load_path)
|
||||
|
||||
# Saving the tracker file
|
||||
tracker_filepath = os.path.join(args.save_path, "latest_checkpointed_iteration.txt")
|
||||
with open(tracker_filepath, "w") as f:
|
||||
f.write("release")
|
||||
|
||||
# create `release` dir in args.load_path
|
||||
release_dir = os.path.join(args.save_path, "release")
|
||||
os.makedirs(release_dir, exist_ok=True)
|
||||
|
||||
# megatron args
|
||||
megatron_args = {
|
||||
"orig_vocab_size": config.vocab_size,
|
||||
"max_position_embeddings": config.n_positions,
|
||||
"hidden_size": config.n_embd,
|
||||
"num_layers": config.n_layer,
|
||||
"num_attention_heads": config.n_head,
|
||||
"ffn_hidden_size": config.n_inner,
|
||||
"tensor_model_parallel_size": args.target_tensor_model_parallel_size,
|
||||
"pipeline_model_parallel_size": args.target_pipeline_model_parallel_size,
|
||||
"data_parallel_size": args.target_data_parallel_size,
|
||||
"make_vocab_size_divisible_by": args.make_vocab_size_divisible_by,
|
||||
"rank": 0,
|
||||
"tokenizer_type": None,
|
||||
}
|
||||
|
||||
if config.activation_function == "gelu":
|
||||
megatron_args["bias_gelu_fusion"] = False
|
||||
megatron_args["openai_gelu"] = False
|
||||
elif config.activation_function == "gelu_fast":
|
||||
megatron_args["bias_gelu_fusion"] = True
|
||||
megatron_args["openai_gelu"] = False
|
||||
elif config.activation_function == "gelu_new":
|
||||
megatron_args["bias_gelu_fusion"] = False
|
||||
megatron_args["openai_gelu"] = True
|
||||
|
||||
margs = types.SimpleNamespace()
|
||||
for k, v in megatron_args.items():
|
||||
setattr(margs, k, v)
|
||||
|
||||
# params dtype
|
||||
if args.target_params_dtype == "fp16":
|
||||
dtype = torch.float16
|
||||
elif args.target_params_dtype == "bf16":
|
||||
dtype = torch.bfloat16
|
||||
else:
|
||||
dtype = torch.float32
|
||||
setattr(margs, "params_dtype", dtype)
|
||||
|
||||
# save dummy optim state dict
|
||||
dummy_optim_state_dict = {}
|
||||
dummy_optim_state_dict["optimizer"] = {
|
||||
"step": 0,
|
||||
"param_groups": [
|
||||
{
|
||||
"lr": 0.0,
|
||||
"beta1": 0.0,
|
||||
"beta2": 0.0,
|
||||
"eps": 0.0,
|
||||
"weight_decay": 0.0,
|
||||
"correct_bias": False,
|
||||
"params": [],
|
||||
}
|
||||
],
|
||||
}
|
||||
if args.use_distributed_optimizer:
|
||||
for i in range(args.target_pipeline_model_parallel_size):
|
||||
for j in range(args.target_tensor_model_parallel_size):
|
||||
for k in range(args.target_data_parallel_size):
|
||||
if args.target_pipeline_model_parallel_size == 1:
|
||||
checkpoint_dir = f"mp_rank_{i:02d}_{k:03d}"
|
||||
else:
|
||||
checkpoint_dir = f"mp_rank_{i:02d}_{j:03d}_{k:03d}"
|
||||
checkpoint_dir = os.path.join(release_dir, checkpoint_dir)
|
||||
os.makedirs(checkpoint_dir, exist_ok=True)
|
||||
torch.save(
|
||||
dummy_optim_state_dict,
|
||||
os.path.join(checkpoint_dir, "optim.pt"),
|
||||
)
|
||||
|
||||
# Convert.
|
||||
print("Converting")
|
||||
output_state_dict = []
|
||||
for i in range(args.target_tensor_model_parallel_size):
|
||||
output_state_dict.append({})
|
||||
|
||||
# Embedding layer
|
||||
print("converting embedding layer")
|
||||
pos_embedding = state_dict["transformer.wpe.weight"].to(dtype)
|
||||
word_embedding = state_dict["transformer.wte.weight"].to(dtype)
|
||||
orig_vocab_size = config.vocab_size
|
||||
padded_vocab_size = _vocab_size_with_padding(orig_vocab_size, margs)
|
||||
setattr(margs, "padded_vocab_size", padded_vocab_size)
|
||||
# Cut out extra padding we don't need
|
||||
if orig_vocab_size > padded_vocab_size:
|
||||
full_word_embed = word_embedding[0:padded_vocab_size, :]
|
||||
# Expanding embedding to larger size by replicating final entry
|
||||
elif orig_vocab_size < padded_vocab_size:
|
||||
padding_size = padded_vocab_size - orig_vocab_size
|
||||
full_word_embed = torch.cat((word_embedding, word_embedding[-1].unsqueeze(0).expand(padding_size, -1)))
|
||||
# Same size!
|
||||
else:
|
||||
full_word_embed = word_embedding
|
||||
|
||||
# Split into new tensor model parallel sizes
|
||||
out_word_embed = torch.chunk(full_word_embed, args.target_tensor_model_parallel_size, dim=0)
|
||||
for i in range(args.target_tensor_model_parallel_size):
|
||||
pos_emb_dict = get_element_from_dict_by_path(
|
||||
output_state_dict[i], "model.language_model.embedding.position_embeddings"
|
||||
)
|
||||
pos_emb_dict["weight"] = pos_embedding
|
||||
|
||||
word_emb_dict = get_element_from_dict_by_path(
|
||||
output_state_dict[i], "model.language_model.embedding.word_embeddings"
|
||||
)
|
||||
word_emb_dict["weight"] = out_word_embed[i]
|
||||
|
||||
# Transformer layers
|
||||
print("converting transformer layers")
|
||||
if config.num_hidden_layers % args.target_tensor_model_parallel_size != 0:
|
||||
raise ValueError(
|
||||
f"Number of layers ({config.num_hidden_layers}) must be divisible by number of tensor parallelism"
|
||||
f" ({args.target_tensor_model_parallel_size})"
|
||||
)
|
||||
num_layers = config.num_hidden_layers // args.target_pipeline_model_parallel_size
|
||||
|
||||
layer_re = re.compile("transformer.h\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
|
||||
# The number of heads.
|
||||
heads = config.n_head
|
||||
# The hidden_size per head.
|
||||
hidden_size_per_head = config.n_embd // config.n_head
|
||||
for pp_rank in range(args.target_pipeline_model_parallel_size):
|
||||
layer_offset = pp_rank * num_layers
|
||||
if pp_rank > 0:
|
||||
output_state_dict = []
|
||||
for i in range(args.target_tensor_model_parallel_size):
|
||||
output_state_dict.append({})
|
||||
|
||||
for layer in range(num_layers):
|
||||
pp_layer_id = layer + layer_offset
|
||||
layers_to_copy = [
|
||||
layer_name
|
||||
for layer_name in state_dict.keys()
|
||||
if layer_name.startswith(f"transformer.h.{pp_layer_id}.")
|
||||
]
|
||||
|
||||
for layer_name in layers_to_copy:
|
||||
m = layer_re.match(layer_name)
|
||||
# Stop if that's not a layer
|
||||
if m is None:
|
||||
break
|
||||
|
||||
# The index of the layer.
|
||||
_ = int(m.group(1))
|
||||
# The name of the operation.
|
||||
op_name = m.group(2)
|
||||
# Is it a weight or a bias?
|
||||
weight_or_bias = m.group(3)
|
||||
|
||||
params = state_dict[layer_name].to(dtype)
|
||||
# handle layernorm
|
||||
if op_name.startswith("ln"):
|
||||
out_name = "input_layernorm" if op_name.endswith("1") else "post_attention_layernorm"
|
||||
layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"
|
||||
|
||||
# handle attention K, V, Q weights
|
||||
elif op_name.startswith("attn.c_attn") and weight_or_bias == "weight":
|
||||
# transformers stores D X (3*D) but Megatron-LM expects (3*D) X D.
|
||||
params = params.transpose(0, 1).contiguous()
|
||||
|
||||
params = transformers_to_megatron_fix_query_key_value_ordering(
|
||||
params,
|
||||
3.0,
|
||||
3,
|
||||
heads,
|
||||
hidden_size_per_head,
|
||||
)
|
||||
layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}"
|
||||
|
||||
# handle attention K, V, Q bias
|
||||
elif op_name.startswith("attn.c_attn") and weight_or_bias == "bias":
|
||||
params = transformers_to_megatron_fix_query_key_value_ordering(
|
||||
params,
|
||||
3.0,
|
||||
3,
|
||||
heads,
|
||||
hidden_size_per_head,
|
||||
)
|
||||
layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}"
|
||||
|
||||
# handle attention and mlp weights
|
||||
elif weight_or_bias == "weight":
|
||||
out_name = transformers_to_megatron.get(op_name, None)
|
||||
if out_name is None:
|
||||
continue
|
||||
params = params.transpose(0, 1)
|
||||
layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"
|
||||
|
||||
# handle attention and mlp bias
|
||||
elif weight_or_bias == "bias":
|
||||
out_name = transformers_to_megatron.get(op_name, None)
|
||||
if out_name is None:
|
||||
continue
|
||||
layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"
|
||||
|
||||
# skip
|
||||
else:
|
||||
continue
|
||||
|
||||
if op_name + "." + weight_or_bias in tensor_parallel_params:
|
||||
dim = 1 if op_name in ["attn.c_proj", "mlp.c_proj"] else 0
|
||||
params = torch.chunk(params, args.target_tensor_model_parallel_size, dim=dim)
|
||||
|
||||
for i in range(args.target_tensor_model_parallel_size):
|
||||
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
|
||||
params_dict[layer_name] = (
|
||||
params[i] if (op_name + "." + weight_or_bias in tensor_parallel_params) else params
|
||||
)
|
||||
|
||||
if pp_rank == args.target_pipeline_model_parallel_size - 1:
|
||||
# handle final layernorm
|
||||
for weight_or_bias in ["weight", "bias"]:
|
||||
params = state_dict[f"transformer.ln_f.{weight_or_bias}"].to(dtype)
|
||||
layer_name = f"final_layernorm.{weight_or_bias}"
|
||||
for i in range(args.target_tensor_model_parallel_size):
|
||||
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
|
||||
params_dict[layer_name] = params
|
||||
|
||||
# add the LM head
|
||||
for i in range(args.target_tensor_model_parallel_size):
|
||||
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.word_embeddings_for_head")
|
||||
params_dict["weight"] = out_word_embed[i]
|
||||
|
||||
# saving the state dict as per the tp_rank and pp_rank
|
||||
for tp_rank in range(args.target_tensor_model_parallel_size):
|
||||
output_state_dict[tp_rank]["checkpoint_version"] = 3.0
|
||||
output_state_dict[tp_rank]["args"] = margs
|
||||
checkpoint_dir = (
|
||||
f"mp_rank_{tp_rank:02d}"
|
||||
if args.target_pipeline_model_parallel_size == 1
|
||||
else f"mp_rank_{tp_rank:02d}_{pp_rank:03d}"
|
||||
)
|
||||
if args.use_distributed_optimizer:
|
||||
checkpoint_name = "model_rng.pt"
|
||||
else:
|
||||
checkpoint_name = "model_optim_rng.pt"
|
||||
output_state_dict[tp_rank]["optimizer"] = dummy_optim_state_dict["optimizer"]
|
||||
checkpoint_dir = os.path.join(release_dir, checkpoint_dir)
|
||||
os.makedirs(checkpoint_dir, exist_ok=True)
|
||||
checkpoint_path = os.path.join(checkpoint_dir, checkpoint_name)
|
||||
if args.print_checkpoint_structure:
|
||||
print(
|
||||
f"Checkpoint structure of model state dict shard belonging to TP rank {tp_rank} and PP rank"
|
||||
f" {pp_rank}:"
|
||||
)
|
||||
recursive_print(None, output_state_dict[tp_rank])
|
||||
torch.save(output_state_dict[tp_rank], checkpoint_path)
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser = add_checkpointing_args(parser)
|
||||
parser = add_megatron_checkpoint_args(parser)
|
||||
parser = add_transformers_checkpoint_args(parser)
|
||||
args = parser.parse_args()
|
||||
if args.convert_checkpoint_from_megatron_to_transformers:
|
||||
convert_checkpoint_from_megatron_to_transformers(args)
|
||||
else:
|
||||
convert_checkpoint_from_transformers_to_megatron(args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user