Fix Trainer and Args to mention AdamW, not Adam. (#9685)

* Fix Trainer and Args to mention AdamW, not Adam.

* Update the docs for Training Arguments.

* Change arguments adamw_* to adam_*

* Fixed links to AdamW in TrainerArguments docs

* Fix line length in Training Args docs.
This commit is contained in:
Gunjan Chhablani 2021-01-20 22:29:31 +05:30 committed by GitHub
parent 88583d4958
commit 538245b0c2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -104,15 +104,16 @@ class TrainingArguments:
left unset, the whole predictions are accumulated on GPU/TPU before being moved to the CPU (faster but
requires more memory).
learning_rate (:obj:`float`, `optional`, defaults to 5e-5):
The initial learning rate for Adam.
The initial learning rate for :class:`~transformers.AdamW` optimizer.
weight_decay (:obj:`float`, `optional`, defaults to 0):
The weight decay to apply (if not zero).
The weight decay to apply (if not zero) to all layers except all bias and LayerNorm weights in
:class:`~transformers.AdamW` optimizer.
adam_beta1 (:obj:`float`, `optional`, defaults to 0.9):
The beta1 hyperparameter for the Adam optimizer.
The beta1 hyperparameter for the :class:`~transformers.AdamW` optimizer.
adam_beta2 (:obj:`float`, `optional`, defaults to 0.999):
The beta2 hyperparameter for the Adam optimizer.
The beta2 hyperparameter for the :class:`~transformers.AdamW` optimizer.
adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8):
The epsilon hyperparameter for the Adam optimizer.
The epsilon hyperparameter for the :class:`~transformers.AdamW` optimizer.
max_grad_norm (:obj:`float`, `optional`, defaults to 1.0):
Maximum gradient norm (for gradient clipping).
num_train_epochs(:obj:`float`, `optional`, defaults to 3.0):
@ -288,11 +289,11 @@ class TrainingArguments:
metadata={"help": "Number of predictions steps to accumulate before moving the tensors to the CPU."},
)
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for Adam."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay if we apply some."})
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for Adam optimizer"})
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for Adam optimizer"})
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for Adam optimizer."})
learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for AdamW."})
weight_decay: float = field(default=0.0, metadata={"help": "Weight decay for AdamW if we apply some."})
adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for AdamW optimizer"})
adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for AdamW optimizer"})
adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."})
max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."})
num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."})
@ -407,7 +408,7 @@ class TrainingArguments:
label_smoothing_factor: float = field(
default=0.0, metadata={"help": "The label smoothing epsilon to apply (zero means no label smoothing)."}
)
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace Adam by Adafactor."})
adafactor: bool = field(default=False, metadata={"help": "Whether or not to replace AdamW by Adafactor."})
group_by_length: bool = field(
default=False,
metadata={"help": "Whether or not to group samples of roughly the same length together when batching."},