mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Create model card for RuPERTa-base (#6016)
* Update README.md * Update model_cards/mrm8488/RuPERTa-base/README.md Co-authored-by: Julien Chaumond <chaumond@gmail.com> Co-authored-by: Julien Chaumond <chaumond@gmail.com>
This commit is contained in:
parent
bd51f0a7ab
commit
518361d69a
@ -1,5 +1,125 @@
|
||||
---
|
||||
language: es
|
||||
thumbnail: https://i.imgur.com/DUlT077.jpg
|
||||
widget:
|
||||
- text: "España es un país muy <mask> en la UE"
|
||||
---
|
||||
|
||||
# RuPERTa: the Spanish RoBERTa 🎃<img src="https://abs-0.twimg.com/emoji/v2/svg/1f1ea-1f1f8.svg" alt="spain flag" width="25"/>
|
||||
|
||||
RuPERTa-base (uncased) is a [RoBERTa model](https://github.com/pytorch/fairseq/tree/master/examples/roberta) trained on a *uncased* verison of [big Spanish corpus](https://github.com/josecannete/spanish-corpora).
|
||||
RoBERTa iterates on BERT's pretraining procedure, including training the model longer, with bigger batches over more data; removing the next sentence prediction objective; training on longer sequences; and dynamically changing the masking pattern applied to the training data.
|
||||
The architecture is the same as `roberta-base`:
|
||||
|
||||
`roberta.base:` **RoBERTa** using the **BERT-base architecture 125M** params
|
||||
|
||||
## Benchmarks 🧾
|
||||
WIP (I continue working on it) 🚧
|
||||
|
||||
| Task | F1 | Precision | Recall | Fine-tuned model | Reproduce it |
|
||||
| -------- | ----: | --------: | -----: | --------------------------------------------------------------------------------------: | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: |
|
||||
| POS | 97.39 | 97.47 | 97.32 | [RuPERTa-base-finetuned-pos](https://huggingface.co/mrm8488/RuPERTa-base-finetuned-pos) | [](https://colab.research.google.com/github/mrm8488/shared_colab_notebooks/blob/master/RuPERTa_base_finetuned_POS.ipynb)
|
||||
| NER | 77.55 | 75.53 | 79.68 | [RuPERTa-base-finetuned-ner](https://huggingface.co/mrm8488/RuPERTa-base-finetuned-ner) |
|
||||
| SQUAD-es v1 | to-do | | |
|
||||
| SQUAD-es v2 | to-do | | |
|
||||
|
||||
## Model in action 🔨
|
||||
|
||||
### Usage for POS and NER 🏷
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
||||
|
||||
id2label = {
|
||||
"0": "B-LOC",
|
||||
"1": "B-MISC",
|
||||
"2": "B-ORG",
|
||||
"3": "B-PER",
|
||||
"4": "I-LOC",
|
||||
"5": "I-MISC",
|
||||
"6": "I-ORG",
|
||||
"7": "I-PER",
|
||||
"8": "O"
|
||||
}
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained('mrm8488/RuPERTa-base-finetuned-ner')
|
||||
model = AutoModelForTokenClassification.from_pretrained('mrm8488/RuPERTa-base-finetuned-ner')
|
||||
|
||||
text ="Julien, CEO de HF, nació en Francia."
|
||||
|
||||
input_ids = torch.tensor(tokenizer.encode(text)).unsqueeze(0)
|
||||
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0]
|
||||
|
||||
for m in last_hidden_states:
|
||||
for index, n in enumerate(m):
|
||||
if(index > 0 and index <= len(text.split(" "))):
|
||||
print(text.split(" ")[index-1] + ": " + id2label[str(torch.argmax(n).item())])
|
||||
|
||||
# Output:
|
||||
'''
|
||||
Julien,: I-PER
|
||||
CEO: O
|
||||
de: O
|
||||
HF,: B-ORG
|
||||
nació: I-PER
|
||||
en: I-PER
|
||||
Francia.: I-LOC
|
||||
'''
|
||||
```
|
||||
|
||||
For **POS** just change the `id2label` dictionary and the model path to [mrm8488/RuPERTa-base-finetuned-pos](https://huggingface.co/mrm8488/RuPERTa-base-finetuned-pos)
|
||||
|
||||
### Fast usage for LM with `pipelines` 🧪
|
||||
|
||||
```python
|
||||
from transformers import AutoModelWithLMHead, AutoTokenizer
|
||||
model = AutoModelWithLMHead.from_pretrained('mrm8488/RuPERTa-base')
|
||||
tokenizer = AutoTokenizer.from_pretrained("mrm8488/RuPERTa-base", do_lower_case=True)
|
||||
|
||||
from transformers import pipeline
|
||||
|
||||
pipeline_fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
||||
|
||||
pipeline_fill_mask("España es un país muy <mask> en la UE")
|
||||
```
|
||||
|
||||
```json
|
||||
[
|
||||
{
|
||||
"score": 0.1814306527376175,
|
||||
"sequence": "<s> españa es un país muy importante en la ue</s>",
|
||||
"token": 1560
|
||||
},
|
||||
{
|
||||
"score": 0.024842597544193268,
|
||||
"sequence": "<s> españa es un país muy fuerte en la ue</s>",
|
||||
"token": 2854
|
||||
},
|
||||
{
|
||||
"score": 0.02473250962793827,
|
||||
"sequence": "<s> españa es un país muy pequeño en la ue</s>",
|
||||
"token": 2948
|
||||
},
|
||||
{
|
||||
"score": 0.023991240188479424,
|
||||
"sequence": "<s> españa es un país muy antiguo en la ue</s>",
|
||||
"token": 5240
|
||||
},
|
||||
{
|
||||
"score": 0.0215945765376091,
|
||||
"sequence": "<s> españa es un país muy popular en la ue</s>",
|
||||
"token": 5782
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
## Acknowledgments
|
||||
|
||||
I thank [🤗/transformers team](https://github.com/huggingface/transformers) for answering my doubts and Google for helping me with the [TensorFlow Research Cloud](https://www.tensorflow.org/tfrc) program.
|
||||
|
||||
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
|
||||
|
||||
> Made with <span style="color: #e25555;">♥</span> in Spain
|
||||
|
Loading…
Reference in New Issue
Block a user