Fix doc examples (#15257)

This commit is contained in:
NielsRogge 2022-01-20 21:51:51 +01:00 committed by GitHub
parent ad7390636d
commit 515ed3ad2a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 39 additions and 10 deletions

View File

@ -70,7 +70,8 @@ into a single instance to both extract the input features and decode the predict
>>> processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten") >>> processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
>>> model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten") >>> model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
>>> # load image from the IAM dataset url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" >>> # load image from the IAM dataset
>>> url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB") >>> image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
>>> pixel_values = processor(image, return_tensors="pt").pixel_values >>> pixel_values = processor(image, return_tensors="pt").pixel_values

View File

@ -42,10 +42,10 @@ from .configuration_vilt import ViltConfig
logger = logging.get_logger(__name__) logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "ViltConfig" _CONFIG_FOR_DOC = "ViltConfig"
_CHECKPOINT_FOR_DOC = "dandelin/vilt-b32-mlm-itm" _CHECKPOINT_FOR_DOC = "dandelin/vilt-b32-mlm"
VILT_PRETRAINED_MODEL_ARCHIVE_LIST = [ VILT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"dandelin/vilt-b32-mlm-itm", "dandelin/vilt-b32-mlm",
# See all ViLT models at https://huggingface.co/models?filter=vilt # See all ViLT models at https://huggingface.co/models?filter=vilt
] ]
@ -775,17 +775,19 @@ class ViltModel(ViltPreTrainedModel):
Examples: Examples:
```python ```python
>>> from transformers import ViltFeatureExtractor, ViltModel >>> from transformers import ViltProcessor, ViltModel
>>> from PIL import Image >>> from PIL import Image
>>> import requests >>> import requests
>>> # prepare image and text
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw) >>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "hello world"
>>> feature_extractor = ViltFeatureExtractor.from_pretrained("dandelin/vilt-b32-mlm-itm") >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm")
>>> model = ViltModel.from_pretrained("dandelin/vilt-b32-mlm-itm") >>> model = ViltModel.from_pretrained("dandelin/vilt-b32-mlm")
>>> inputs = feature_extractor(images=image, return_tensors="pt") >>> inputs = processor(image, text, return_tensors="pt")
>>> outputs = model(**inputs) >>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state >>> last_hidden_states = outputs.last_hidden_state
```""" ```"""
@ -930,10 +932,11 @@ class ViltForMaskedLM(ViltPreTrainedModel):
>>> from transformers import ViltProcessor, ViltForMaskedLM >>> from transformers import ViltProcessor, ViltForMaskedLM
>>> import requests >>> import requests
>>> from PIL import Image >>> from PIL import Image
>>> import re
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw) >>> image = Image.open(requests.get(url, stream=True).raw)
>>> text = "How many cats are there?" >>> text = "a bunch of [MASK] laying on a [MASK]."
>>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm") >>> processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm")
>>> model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm") >>> model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm")
@ -943,7 +946,31 @@ class ViltForMaskedLM(ViltPreTrainedModel):
>>> # forward pass >>> # forward pass
>>> outputs = model(**encoding) >>> outputs = model(**encoding)
>>> logits = outputs.logits
>>> tl = len(re.findall("\[MASK\]", text))
>>> inferred_token = [text]
>>> # gradually fill in the MASK tokens, one by one
>>> with torch.no_grad():
... for i in range(tl):
... encoded = processor.tokenizer(inferred_token)
... input_ids = torch.tensor(encoded.input_ids).to(device)
... encoded = encoded["input_ids"][0][1:-1]
... outputs = model(input_ids=input_ids, pixel_values=pixel_values)
... mlm_logits = outputs.logits[0] # shape (seq_len, vocab_size)
... # only take into account text features (minus CLS and SEP token)
... mlm_logits = mlm_logits[1 : input_ids.shape[1] - 1, :]
... mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1)
... # only take into account text
... mlm_values[torch.tensor(encoded) != 103] = 0
... select = mlm_values.argmax().item()
... encoded[select] = mlm_ids[select].item()
... inferred_token = [processor.decode(encoded)]
>>> selected_token = ""
>>> encoded = processor.tokenizer(inferred_token)
>>> processor.decode(encoded.input_ids[0], skip_special_tokens=True)
a bunch of cats laying on a couch.
```""" ```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
@ -1093,6 +1120,7 @@ class ViltForQuestionAnswering(ViltPreTrainedModel):
>>> logits = outputs.logits >>> logits = outputs.logits
>>> idx = logits.argmax(-1).item() >>> idx = logits.argmax(-1).item()
>>> print("Predicted answer:", model.config.id2label[idx]) >>> print("Predicted answer:", model.config.id2label[idx])
Predicted answer: 2
```""" ```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict return_dict = return_dict if return_dict is not None else self.config.use_return_dict
@ -1297,13 +1325,13 @@ class ViltForImagesAndTextClassification(ViltPreTrainedModel):
>>> # prepare inputs >>> # prepare inputs
>>> encoding = processor([image1, image2], text, return_tensors="pt") >>> encoding = processor([image1, image2], text, return_tensors="pt")
>>> pixel_values = torch.stack([encoding_1.pixel_values, encoding_2.pixel_values], dim=1)
>>> # forward pass >>> # forward pass
>>> outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0)) >>> outputs = model(input_ids=encoding.input_ids, pixel_values=encoding.pixel_values.unsqueeze(0))
>>> logits = outputs.logits >>> logits = outputs.logits
>>> idx = logits.argmax(-1).item() >>> idx = logits.argmax(-1).item()
>>> print("Predicted answer:", model.config.id2label[idx]) >>> print("Predicted answer:", model.config.id2label[idx])
Predicted answer: True
```""" ```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = ( output_hidden_states = (