mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
parent
86822a358b
commit
5104223552
@ -181,6 +181,7 @@ Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
|
|||||||
1. **[LXMERT](https://huggingface.co/transformers/model_doc/lxmert.html)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
|
1. **[LXMERT](https://huggingface.co/transformers/model_doc/lxmert.html)** (from UNC Chapel Hill) released with the paper [LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering](https://arxiv.org/abs/1908.07490) by Hao Tan and Mohit Bansal.
|
||||||
1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
|
1. **[MarianMT](https://huggingface.co/transformers/model_doc/marian.html)** Machine translation models trained using [OPUS](http://opus.nlpl.eu/) data by Jörg Tiedemann. The [Marian Framework](https://marian-nmt.github.io/) is being developed by the Microsoft Translator Team.
|
||||||
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
|
1. **[MBart](https://huggingface.co/transformers/model_doc/mbart.html)** (from Facebook) released with the paper [Multilingual Denoising Pre-training for Neural Machine Translation](https://arxiv.org/abs/2001.08210) by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
|
||||||
|
1. **[MT5](https://huggingface.co/transformers/model_doc/mt5.html)** (from Google AI) released with the paper [mT5: A massively multilingual pre-trained text-to-text transformer](https://arxiv.org/abs/2010.11934) by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
|
||||||
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)> by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
|
1. **[Pegasus](https://huggingface.co/transformers/model_doc/pegasus.html)** (from Google) released with the paper [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization](https://arxiv.org/abs/1912.08777)> by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
|
||||||
1. **[ProphetNet](https://huggingface.co/transformers/model_doc/prophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
1. **[ProphetNet](https://huggingface.co/transformers/model_doc/prophetnet.html)** (from Microsoft Research) released with the paper [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||||
1. **[Reformer](https://huggingface.co/transformers/model_doc/reformer.html)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
|
1. **[Reformer](https://huggingface.co/transformers/model_doc/reformer.html)** (from Google Research) released with the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
|
||||||
|
@ -126,41 +126,44 @@ conversion utilities for the following models:
|
|||||||
21. :doc:`MBart <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Denoising Pre-training for
|
21. :doc:`MBart <model_doc/mbart>` (from Facebook) released with the paper `Multilingual Denoising Pre-training for
|
||||||
Neural Machine Translation <https://arxiv.org/abs/2001.08210>`__ by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li,
|
Neural Machine Translation <https://arxiv.org/abs/2001.08210>`__ by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li,
|
||||||
Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
|
Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
|
||||||
22. :doc:`Pegasus <model_doc/pegasus>` (from Google) released with the paper `PEGASUS: Pre-training with Extracted
|
22. :doc:`MT5 <model_doc/mt5>` (from Google AI) released with the paper `mT5: A massively multilingual pre-trained
|
||||||
|
text-to-text transformer <https://arxiv.org/abs/2010.11934>`__ by Linting Xue, Noah Constant, Adam Roberts, Mihir
|
||||||
|
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
|
||||||
|
23. :doc:`Pegasus <model_doc/pegasus>` (from Google) released with the paper `PEGASUS: Pre-training with Extracted
|
||||||
Gap-sentences for Abstractive Summarization <https://arxiv.org/abs/1912.08777>`__> by Jingqing Zhang, Yao Zhao,
|
Gap-sentences for Abstractive Summarization <https://arxiv.org/abs/1912.08777>`__> by Jingqing Zhang, Yao Zhao,
|
||||||
Mohammad Saleh and Peter J. Liu.
|
Mohammad Saleh and Peter J. Liu.
|
||||||
23. :doc:`ProphetNet <model_doc/prophetnet>` (from Microsoft Research) released with the paper `ProphetNet: Predicting
|
24. :doc:`ProphetNet <model_doc/prophetnet>` (from Microsoft Research) released with the paper `ProphetNet: Predicting
|
||||||
Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan, Weizhen Qi,
|
Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan, Weizhen Qi,
|
||||||
Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||||
24. :doc:`Reformer <model_doc/reformer>` (from Google Research) released with the paper `Reformer: The Efficient
|
25. :doc:`Reformer <model_doc/reformer>` (from Google Research) released with the paper `Reformer: The Efficient
|
||||||
Transformer <https://arxiv.org/abs/2001.04451>`__ by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
|
Transformer <https://arxiv.org/abs/2001.04451>`__ by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
|
||||||
25. :doc:`RoBERTa <model_doc/roberta>` (from Facebook), released together with the paper a `Robustly Optimized BERT
|
26. :doc:`RoBERTa <model_doc/roberta>` (from Facebook), released together with the paper a `Robustly Optimized BERT
|
||||||
Pretraining Approach <https://arxiv.org/abs/1907.11692>`__ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
|
Pretraining Approach <https://arxiv.org/abs/1907.11692>`__ by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
|
||||||
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. ultilingual BERT into `DistilmBERT
|
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov. ultilingual BERT into `DistilmBERT
|
||||||
<https://github.com/huggingface/transformers/tree/master/examples/distillation>`__ and a German version of
|
<https://github.com/huggingface/transformers/tree/master/examples/distillation>`__ and a German version of
|
||||||
DistilBERT.
|
DistilBERT.
|
||||||
26. :doc:`SqueezeBert <model_doc/squeezebert>` released with the paper `SqueezeBERT: What can computer vision teach NLP
|
27. :doc:`SqueezeBert <model_doc/squeezebert>` released with the paper `SqueezeBERT: What can computer vision teach NLP
|
||||||
about efficient neural networks? <https://arxiv.org/abs/2006.11316>`__ by Forrest N. Iandola, Albert E. Shaw, Ravi
|
about efficient neural networks? <https://arxiv.org/abs/2006.11316>`__ by Forrest N. Iandola, Albert E. Shaw, Ravi
|
||||||
Krishna, and Kurt W. Keutzer.
|
Krishna, and Kurt W. Keutzer.
|
||||||
27. :doc:`T5 <model_doc/t5>` (from Google AI) released with the paper `Exploring the Limits of Transfer Learning with a
|
28. :doc:`T5 <model_doc/t5>` (from Google AI) released with the paper `Exploring the Limits of Transfer Learning with a
|
||||||
Unified Text-to-Text Transformer <https://arxiv.org/abs/1910.10683>`__ by Colin Raffel and Noam Shazeer and Adam
|
Unified Text-to-Text Transformer <https://arxiv.org/abs/1910.10683>`__ by Colin Raffel and Noam Shazeer and Adam
|
||||||
Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
|
||||||
28. :doc:`Transformer-XL <model_doc/transformerxl>` (from Google/CMU) released with the paper `Transformer-XL:
|
29. :doc:`Transformer-XL <model_doc/transformerxl>` (from Google/CMU) released with the paper `Transformer-XL:
|
||||||
Attentive Language Models Beyond a Fixed-Length Context <https://arxiv.org/abs/1901.02860>`__ by Zihang Dai*,
|
Attentive Language Models Beyond a Fixed-Length Context <https://arxiv.org/abs/1901.02860>`__ by Zihang Dai*,
|
||||||
Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
|
Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
|
||||||
29. :doc:`XLM <model_doc/xlm>` (from Facebook) released together with the paper `Cross-lingual Language Model
|
30. :doc:`XLM <model_doc/xlm>` (from Facebook) released together with the paper `Cross-lingual Language Model
|
||||||
Pretraining <https://arxiv.org/abs/1901.07291>`__ by Guillaume Lample and Alexis Conneau.
|
Pretraining <https://arxiv.org/abs/1901.07291>`__ by Guillaume Lample and Alexis Conneau.
|
||||||
30. :doc:`XLM-ProphetNet <model_doc/xlmprophetnet>` (from Microsoft Research) released with the paper `ProphetNet:
|
31. :doc:`XLM-ProphetNet <model_doc/xlmprophetnet>` (from Microsoft Research) released with the paper `ProphetNet:
|
||||||
Predicting Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan,
|
Predicting Future N-gram for Sequence-to-Sequence Pre-training <https://arxiv.org/abs/2001.04063>`__ by Yu Yan,
|
||||||
Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
|
||||||
31. :doc:`XLM-RoBERTa <model_doc/xlmroberta>` (from Facebook AI), released together with the paper `Unsupervised
|
32. :doc:`XLM-RoBERTa <model_doc/xlmroberta>` (from Facebook AI), released together with the paper `Unsupervised
|
||||||
Cross-lingual Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__ by Alexis Conneau*, Kartikay
|
Cross-lingual Representation Learning at Scale <https://arxiv.org/abs/1911.02116>`__ by Alexis Conneau*, Kartikay
|
||||||
Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke
|
Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke
|
||||||
Zettlemoyer and Veselin Stoyanov.
|
Zettlemoyer and Veselin Stoyanov.
|
||||||
32. :doc:`XLNet <model_doc/xlnet>` (from Google/CMU) released with the paper `XLNet: Generalized Autoregressive
|
33. :doc:`XLNet <model_doc/xlnet>` (from Google/CMU) released with the paper `XLNet: Generalized Autoregressive
|
||||||
Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`__ by Zhilin Yang*, Zihang Dai*, Yiming
|
Pretraining for Language Understanding <https://arxiv.org/abs/1906.08237>`__ by Zhilin Yang*, Zihang Dai*, Yiming
|
||||||
Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
|
Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
|
||||||
33. `Other community models <https://huggingface.co/models>`__, contributed by the `community
|
34. `Other community models <https://huggingface.co/models>`__, contributed by the `community
|
||||||
<https://huggingface.co/users>`__.
|
<https://huggingface.co/users>`__.
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
|
@ -560,6 +560,7 @@ A framework for translation models, using the same models as BART
|
|||||||
|
|
||||||
The library provides a version of this model for conditional generation.
|
The library provides a version of this model for conditional generation.
|
||||||
|
|
||||||
|
|
||||||
T5
|
T5
|
||||||
-----------------------------------------------------------------------------------------------------------------------
|
-----------------------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
@ -592,6 +593,28 @@ For instance, if we have the sentence “My dog is very cute .”, and we decide
|
|||||||
|
|
||||||
The library provides a version of this model for conditional generation.
|
The library provides a version of this model for conditional generation.
|
||||||
|
|
||||||
|
|
||||||
|
MT5
|
||||||
|
-----------------------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
.. raw:: html
|
||||||
|
|
||||||
|
<a href="https://huggingface.co/models?filter=mt5">
|
||||||
|
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-mt5-blueviolet">
|
||||||
|
</a>
|
||||||
|
<a href="model_doc/mt5.html">
|
||||||
|
<img alt="Doc" src="https://img.shields.io/badge/Model_documentation-mt5-blueviolet">
|
||||||
|
</a>
|
||||||
|
|
||||||
|
`mT5: A massively multilingual pre-trained text-to-text transformer <https://arxiv.org/abs/2010.11934>`_, Linting Xue
|
||||||
|
et al.
|
||||||
|
|
||||||
|
The model architecture is same as T5. mT5's pre-training objective includes T5's self-supervised training, but not T5's
|
||||||
|
supervised training. mT5 is trained on 101 languages.
|
||||||
|
|
||||||
|
The library provides a version of this model for conditional generation.
|
||||||
|
|
||||||
|
|
||||||
MBart
|
MBart
|
||||||
-----------------------------------------------------------------------------------------------------------------------
|
-----------------------------------------------------------------------------------------------------------------------
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user