fix init test

This commit is contained in:
ducviet00 2025-05-22 22:32:20 +07:00
parent 88e0d6e44c
commit 505a878da9
3 changed files with 5 additions and 5 deletions

View File

@ -2584,7 +2584,7 @@ class Florence2ForConditionalGeneration(Florence2PreTrainedModel, GenerationMixi
def _build_image_projection_layers(self, config: Florence2Config):
image_dim_out = config.vision_config.dim_embed[-1]
dim_projection = config.vision_config.projection_dim
self.image_projection = nn.Parameter(torch.empty(image_dim_out, dim_projection))
self.image_projection = nn.Parameter(torch.zeros(image_dim_out, dim_projection))
self.image_proj_norm = nn.LayerNorm(dim_projection)
image_pos_embed_config = config.vision_config.image_pos_embed
if image_pos_embed_config["type"] == "learned_abs_2d":

View File

@ -568,8 +568,8 @@ class Florence2VisionBlock(nn.Module):
class Florence2VisionPreTrainedModel(PreTrainedModel):
config_class = Florence2VisionConfig
main_input_name = "pixel_values"
_supports_sdpa = False
_supports_flash_attn_2 = False
# _supports_sdpa = False
# _supports_flash_attn_2 = False
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm, nn.BatchNorm2d]) -> None:
"""Initialize the weights"""
@ -1020,7 +1020,7 @@ class Florence2ForConditionalGeneration(Florence2PreTrainedModel, GenerationMixi
def _build_image_projection_layers(self, config: Florence2Config):
image_dim_out = config.vision_config.dim_embed[-1]
dim_projection = config.vision_config.projection_dim
self.image_projection = nn.Parameter(torch.empty(image_dim_out, dim_projection))
self.image_projection = nn.Parameter(torch.zeros(image_dim_out, dim_projection))
self.image_proj_norm = nn.LayerNorm(dim_projection)
image_pos_embed_config = config.vision_config.image_pos_embed
if image_pos_embed_config["type"] == "learned_abs_2d":

View File

@ -382,7 +382,7 @@ class Florence2ForConditionalGenerationIntegrationTest(unittest.TestCase):
@require_torch
@require_vision
def test_batched_generation(self):
model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-base")
model = Florence2ForConditionalGeneration.from_pretrained("microsoft/Florence-2-base").to(torch_device)
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base")