mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 10:41:07 +06:00
TF: purge TFTrainer
(#28483)
This commit is contained in:
parent
afc45b13ca
commit
4fb3d3a0f6
@ -2049,7 +2049,6 @@ In this case you usually need to raise the value of `initial_scale_power`. Setti
|
||||
|
||||
### Notes
|
||||
|
||||
- DeepSpeed works with the PyTorch [`Trainer`] but not TF [`TFTrainer`].
|
||||
- While DeepSpeed has a pip installable PyPI package, it is highly recommended that it gets installed from [source](https://github.com/microsoft/deepspeed#installation) to best match your hardware and also if you need to enable
|
||||
certain features, like 1-bit Adam, which aren't available in the pypi distribution.
|
||||
- You don't have to use the [`Trainer`] to use DeepSpeed with 🤗 Transformers - you can use any model
|
||||
|
@ -166,13 +166,6 @@ Per quanto riguarda la classe `Trainer`:
|
||||
- Il metodo `is_local_master` di `Trainer` è deprecato a favore di `is_local_process_zero`.
|
||||
- Il metodo `is_world_master` di `Trainer` è deprecato a favore di `is_world_process_zero`.
|
||||
|
||||
Per quanto riguarda la classe `TFTrainer`:
|
||||
- L'argomento `prediction_loss_only` di `TFTrainer` è stato rimosso a favore dell'argomento di classe `args.prediction_loss_only`.
|
||||
- Il metodo `_log` di `Trainer` è deprecato a favore di `log`.
|
||||
- Il metodo `_prediction_loop` di `TFTrainer` è deprecato a favore di `prediction_loop`.
|
||||
- Il metodo `_setup_wandb` di `TFTrainer` è deprecato a favore di `setup_wandb`.
|
||||
- Il metodo `_run_model` di `TFTrainer` è deprecato a favore di `run_model`.
|
||||
|
||||
Per quanto riguarda la classe `TrainingArguments`:
|
||||
- L'argomento `evaluate_during_training` di `TrainingArguments` è deprecato a favore di `evaluation_strategy`.
|
||||
|
||||
|
@ -1994,7 +1994,6 @@ SW: Model with 2783M total params, 65M largest layer params.
|
||||
|
||||
### Notes
|
||||
|
||||
- DeepSpeed は PyTorch [`Trainer`] では動作しますが、TF [`TFTrainer`] では動作しません。
|
||||
- DeepSpeed には pip でインストール可能な PyPI パッケージがありますが、ハードウェアに最も適合するように、また有効にする必要がある場合は、[ソース](https://github.com/microsoft/deepspeed#installation) からインストールすることを強くお勧めします。
|
||||
1 ビット Adam などの特定の機能は、pypi ディストリビューションでは利用できません。
|
||||
- 🤗 Transformers で DeepSpeed を使用するために [`Trainer`] を使用する必要はありません - 任意のモデルを使用できます
|
||||
|
@ -1845,7 +1845,6 @@ SW: Model with 2783M total params, 65M largest layer params.
|
||||
|
||||
### 注意事项
|
||||
|
||||
- DeepSpeed 与 PyTorch [`Trainer`] 一起工作,但不与 TF [`TFTrainer`] 一起工作。
|
||||
- 尽管 DeepSpeed 有一个可安装的 PyPI 包,但强烈建议从源代码安装它,以最好地匹配您的硬件,如果您需要启用某些功能,如 1-bit Adam,这些功能在 pypi 发行版中不可用。
|
||||
- 您不必使用🤗 Transformers的 [`Trainer`] 来使用 DeepSpeed - 您可以使用任何模型与自己的训练器,您还需要根据 [DeepSpeed 集成说明](https://www.deepspeed.ai/getting-started/#writing-deepspeed-models) 调整后者。
|
||||
|
||||
|
@ -1,313 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Fine-tuning the library models for sequence classification."""
|
||||
|
||||
|
||||
import logging
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Dict, Optional
|
||||
|
||||
import datasets
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
EvalPrediction,
|
||||
HfArgumentParser,
|
||||
PreTrainedTokenizer,
|
||||
TFAutoModelForSequenceClassification,
|
||||
TFTrainer,
|
||||
TFTrainingArguments,
|
||||
)
|
||||
from transformers.utils import logging as hf_logging
|
||||
|
||||
|
||||
hf_logging.set_verbosity_info()
|
||||
hf_logging.enable_default_handler()
|
||||
hf_logging.enable_explicit_format()
|
||||
|
||||
|
||||
def get_tfds(
|
||||
train_file: str,
|
||||
eval_file: str,
|
||||
test_file: str,
|
||||
tokenizer: PreTrainedTokenizer,
|
||||
label_column_id: int,
|
||||
max_seq_length: Optional[int] = None,
|
||||
):
|
||||
files = {}
|
||||
|
||||
if train_file is not None:
|
||||
files[datasets.Split.TRAIN] = [train_file]
|
||||
if eval_file is not None:
|
||||
files[datasets.Split.VALIDATION] = [eval_file]
|
||||
if test_file is not None:
|
||||
files[datasets.Split.TEST] = [test_file]
|
||||
|
||||
ds = datasets.load_dataset("csv", data_files=files)
|
||||
features_name = list(ds[list(files.keys())[0]].features.keys())
|
||||
label_name = features_name.pop(label_column_id)
|
||||
label_list = list(set(ds[list(files.keys())[0]][label_name]))
|
||||
label2id = {label: i for i, label in enumerate(label_list)}
|
||||
input_names = tokenizer.model_input_names
|
||||
transformed_ds = {}
|
||||
|
||||
if len(features_name) == 1:
|
||||
for k in files.keys():
|
||||
transformed_ds[k] = ds[k].map(
|
||||
lambda example: tokenizer.batch_encode_plus(
|
||||
example[features_name[0]], truncation=True, max_length=max_seq_length, padding="max_length"
|
||||
),
|
||||
batched=True,
|
||||
)
|
||||
elif len(features_name) == 2:
|
||||
for k in files.keys():
|
||||
transformed_ds[k] = ds[k].map(
|
||||
lambda example: tokenizer.batch_encode_plus(
|
||||
(example[features_name[0]], example[features_name[1]]),
|
||||
truncation=True,
|
||||
max_length=max_seq_length,
|
||||
padding="max_length",
|
||||
),
|
||||
batched=True,
|
||||
)
|
||||
|
||||
def gen_train():
|
||||
for ex in transformed_ds[datasets.Split.TRAIN]:
|
||||
d = {k: v for k, v in ex.items() if k in input_names}
|
||||
label = label2id[ex[label_name]]
|
||||
yield (d, label)
|
||||
|
||||
def gen_val():
|
||||
for ex in transformed_ds[datasets.Split.VALIDATION]:
|
||||
d = {k: v for k, v in ex.items() if k in input_names}
|
||||
label = label2id[ex[label_name]]
|
||||
yield (d, label)
|
||||
|
||||
def gen_test():
|
||||
for ex in transformed_ds[datasets.Split.TEST]:
|
||||
d = {k: v for k, v in ex.items() if k in input_names}
|
||||
label = label2id[ex[label_name]]
|
||||
yield (d, label)
|
||||
|
||||
train_ds = (
|
||||
tf.data.Dataset.from_generator(
|
||||
gen_train,
|
||||
({k: tf.int32 for k in input_names}, tf.int64),
|
||||
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
|
||||
)
|
||||
if datasets.Split.TRAIN in transformed_ds
|
||||
else None
|
||||
)
|
||||
|
||||
if train_ds is not None:
|
||||
train_ds = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN])))
|
||||
|
||||
val_ds = (
|
||||
tf.data.Dataset.from_generator(
|
||||
gen_val,
|
||||
({k: tf.int32 for k in input_names}, tf.int64),
|
||||
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
|
||||
)
|
||||
if datasets.Split.VALIDATION in transformed_ds
|
||||
else None
|
||||
)
|
||||
|
||||
if val_ds is not None:
|
||||
val_ds = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION])))
|
||||
|
||||
test_ds = (
|
||||
tf.data.Dataset.from_generator(
|
||||
gen_test,
|
||||
({k: tf.int32 for k in input_names}, tf.int64),
|
||||
({k: tf.TensorShape([None]) for k in input_names}, tf.TensorShape([])),
|
||||
)
|
||||
if datasets.Split.TEST in transformed_ds
|
||||
else None
|
||||
)
|
||||
|
||||
if test_ds is not None:
|
||||
test_ds = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST])))
|
||||
|
||||
return train_ds, val_ds, test_ds, label2id
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataTrainingArguments:
|
||||
"""
|
||||
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||
|
||||
Using `HfArgumentParser` we can turn this class
|
||||
into argparse arguments to be able to specify them on
|
||||
the command line.
|
||||
"""
|
||||
|
||||
label_column_id: int = field(metadata={"help": "Which column contains the label"})
|
||||
train_file: str = field(default=None, metadata={"help": "The path of the training file"})
|
||||
dev_file: Optional[str] = field(default=None, metadata={"help": "The path of the development file"})
|
||||
test_file: Optional[str] = field(default=None, metadata={"help": "The path of the test file"})
|
||||
max_seq_length: int = field(
|
||||
default=128,
|
||||
metadata={
|
||||
"help": (
|
||||
"The maximum total input sequence length after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded."
|
||||
)
|
||||
},
|
||||
)
|
||||
overwrite_cache: bool = field(
|
||||
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
"""
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
||||
"""
|
||||
|
||||
model_name_or_path: str = field(
|
||||
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
||||
)
|
||||
config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
||||
)
|
||||
tokenizer_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
||||
)
|
||||
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
|
||||
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
|
||||
# or just modify its tokenizer_config.json.
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
# See all possible arguments in src/transformers/training_args.py
|
||||
# or by passing the --help flag to this script.
|
||||
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if (
|
||||
os.path.exists(training_args.output_dir)
|
||||
and os.listdir(training_args.output_dir)
|
||||
and training_args.do_train
|
||||
and not training_args.overwrite_output_dir
|
||||
):
|
||||
raise ValueError(
|
||||
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
|
||||
" --overwrite_output_dir to overcome."
|
||||
)
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
level=logging.INFO,
|
||||
)
|
||||
logger.info(
|
||||
f"n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1)}, "
|
||||
f"16-bits training: {training_args.fp16}"
|
||||
)
|
||||
logger.info(f"Training/evaluation parameters {training_args}")
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
#
|
||||
# Distributed training:
|
||||
# The .from_pretrained methods guarantee that only one local process can concurrently
|
||||
# download model & vocab.
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
)
|
||||
|
||||
train_dataset, eval_dataset, test_ds, label2id = get_tfds(
|
||||
train_file=data_args.train_file,
|
||||
eval_file=data_args.dev_file,
|
||||
test_file=data_args.test_file,
|
||||
tokenizer=tokenizer,
|
||||
label_column_id=data_args.label_column_id,
|
||||
max_seq_length=data_args.max_seq_length,
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
num_labels=len(label2id),
|
||||
label2id=label2id,
|
||||
id2label={id: label for label, id in label2id.items()},
|
||||
finetuning_task="text-classification",
|
||||
cache_dir=model_args.cache_dir,
|
||||
)
|
||||
|
||||
with training_args.strategy.scope():
|
||||
model = TFAutoModelForSequenceClassification.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
from_pt=bool(".bin" in model_args.model_name_or_path),
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
)
|
||||
|
||||
def compute_metrics(p: EvalPrediction) -> Dict:
|
||||
preds = np.argmax(p.predictions, axis=1)
|
||||
|
||||
return {"acc": (preds == p.label_ids).mean()}
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = TFTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
trainer.train()
|
||||
trainer.save_model()
|
||||
tokenizer.save_pretrained(training_args.output_dir)
|
||||
|
||||
# Evaluation
|
||||
results = {}
|
||||
if training_args.do_eval:
|
||||
logger.info("*** Evaluate ***")
|
||||
result = trainer.evaluate()
|
||||
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
|
||||
|
||||
with open(output_eval_file, "w") as writer:
|
||||
logger.info("***** Eval results *****")
|
||||
|
||||
for key, value in result.items():
|
||||
logger.info(f" {key} = {value}")
|
||||
writer.write(f"{key} = {value}\n")
|
||||
|
||||
results.update(result)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -1,310 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# coding=utf-8
|
||||
# Copyright 2018 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" Fine-tuning the library models for named entity recognition."""
|
||||
|
||||
|
||||
import logging
|
||||
import os
|
||||
from dataclasses import dataclass, field
|
||||
from importlib import import_module
|
||||
from typing import Dict, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
from seqeval.metrics import classification_report, f1_score, precision_score, recall_score
|
||||
from utils_ner import Split, TFTokenClassificationDataset, TokenClassificationTask
|
||||
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoTokenizer,
|
||||
EvalPrediction,
|
||||
HfArgumentParser,
|
||||
TFAutoModelForTokenClassification,
|
||||
TFTrainer,
|
||||
TFTrainingArguments,
|
||||
)
|
||||
from transformers.utils import logging as hf_logging
|
||||
|
||||
|
||||
hf_logging.set_verbosity_info()
|
||||
hf_logging.enable_default_handler()
|
||||
hf_logging.enable_explicit_format()
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ModelArguments:
|
||||
"""
|
||||
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
||||
"""
|
||||
|
||||
model_name_or_path: str = field(
|
||||
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
||||
)
|
||||
config_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
||||
)
|
||||
task_type: Optional[str] = field(
|
||||
default="NER", metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"}
|
||||
)
|
||||
tokenizer_name: Optional[str] = field(
|
||||
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
||||
)
|
||||
use_fast: bool = field(default=False, metadata={"help": "Set this flag to use fast tokenization."})
|
||||
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
|
||||
# or just modify its tokenizer_config.json.
|
||||
cache_dir: Optional[str] = field(
|
||||
default=None,
|
||||
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DataTrainingArguments:
|
||||
"""
|
||||
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||
"""
|
||||
|
||||
data_dir: str = field(
|
||||
metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."}
|
||||
)
|
||||
labels: Optional[str] = field(
|
||||
metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."}
|
||||
)
|
||||
max_seq_length: int = field(
|
||||
default=128,
|
||||
metadata={
|
||||
"help": (
|
||||
"The maximum total input sequence length after tokenization. Sequences longer "
|
||||
"than this will be truncated, sequences shorter will be padded."
|
||||
)
|
||||
},
|
||||
)
|
||||
overwrite_cache: bool = field(
|
||||
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
|
||||
)
|
||||
|
||||
|
||||
def main():
|
||||
# See all possible arguments in src/transformers/training_args.py
|
||||
# or by passing the --help flag to this script.
|
||||
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
||||
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
|
||||
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||
|
||||
if (
|
||||
os.path.exists(training_args.output_dir)
|
||||
and os.listdir(training_args.output_dir)
|
||||
and training_args.do_train
|
||||
and not training_args.overwrite_output_dir
|
||||
):
|
||||
raise ValueError(
|
||||
f"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
|
||||
" --overwrite_output_dir to overcome."
|
||||
)
|
||||
|
||||
module = import_module("tasks")
|
||||
|
||||
try:
|
||||
token_classification_task_clazz = getattr(module, model_args.task_type)
|
||||
token_classification_task: TokenClassificationTask = token_classification_task_clazz()
|
||||
except AttributeError:
|
||||
raise ValueError(
|
||||
f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
|
||||
f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}"
|
||||
)
|
||||
|
||||
# Setup logging
|
||||
logging.basicConfig(
|
||||
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||
datefmt="%m/%d/%Y %H:%M:%S",
|
||||
level=logging.INFO,
|
||||
)
|
||||
logger.info(
|
||||
"n_replicas: %s, distributed training: %s, 16-bits training: %s",
|
||||
training_args.n_replicas,
|
||||
bool(training_args.n_replicas > 1),
|
||||
training_args.fp16,
|
||||
)
|
||||
logger.info("Training/evaluation parameters %s", training_args)
|
||||
|
||||
# Prepare Token Classification task
|
||||
labels = token_classification_task.get_labels(data_args.labels)
|
||||
label_map: Dict[int, str] = dict(enumerate(labels))
|
||||
num_labels = len(labels)
|
||||
|
||||
# Load pretrained model and tokenizer
|
||||
#
|
||||
# Distributed training:
|
||||
# The .from_pretrained methods guarantee that only one local process can concurrently
|
||||
# download model & vocab.
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||
num_labels=num_labels,
|
||||
id2label=label_map,
|
||||
label2id={label: i for i, label in enumerate(labels)},
|
||||
cache_dir=model_args.cache_dir,
|
||||
)
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||
cache_dir=model_args.cache_dir,
|
||||
use_fast=model_args.use_fast,
|
||||
)
|
||||
|
||||
with training_args.strategy.scope():
|
||||
model = TFAutoModelForTokenClassification.from_pretrained(
|
||||
model_args.model_name_or_path,
|
||||
from_pt=bool(".bin" in model_args.model_name_or_path),
|
||||
config=config,
|
||||
cache_dir=model_args.cache_dir,
|
||||
)
|
||||
|
||||
# Get datasets
|
||||
train_dataset = (
|
||||
TFTokenClassificationDataset(
|
||||
token_classification_task=token_classification_task,
|
||||
data_dir=data_args.data_dir,
|
||||
tokenizer=tokenizer,
|
||||
labels=labels,
|
||||
model_type=config.model_type,
|
||||
max_seq_length=data_args.max_seq_length,
|
||||
overwrite_cache=data_args.overwrite_cache,
|
||||
mode=Split.train,
|
||||
)
|
||||
if training_args.do_train
|
||||
else None
|
||||
)
|
||||
eval_dataset = (
|
||||
TFTokenClassificationDataset(
|
||||
token_classification_task=token_classification_task,
|
||||
data_dir=data_args.data_dir,
|
||||
tokenizer=tokenizer,
|
||||
labels=labels,
|
||||
model_type=config.model_type,
|
||||
max_seq_length=data_args.max_seq_length,
|
||||
overwrite_cache=data_args.overwrite_cache,
|
||||
mode=Split.dev,
|
||||
)
|
||||
if training_args.do_eval
|
||||
else None
|
||||
)
|
||||
|
||||
def align_predictions(predictions: np.ndarray, label_ids: np.ndarray) -> Tuple[List[int], List[int]]:
|
||||
preds = np.argmax(predictions, axis=2)
|
||||
batch_size, seq_len = preds.shape
|
||||
out_label_list = [[] for _ in range(batch_size)]
|
||||
preds_list = [[] for _ in range(batch_size)]
|
||||
|
||||
for i in range(batch_size):
|
||||
for j in range(seq_len):
|
||||
if label_ids[i, j] != -100:
|
||||
out_label_list[i].append(label_map[label_ids[i][j]])
|
||||
preds_list[i].append(label_map[preds[i][j]])
|
||||
|
||||
return preds_list, out_label_list
|
||||
|
||||
def compute_metrics(p: EvalPrediction) -> Dict:
|
||||
preds_list, out_label_list = align_predictions(p.predictions, p.label_ids)
|
||||
|
||||
return {
|
||||
"precision": precision_score(out_label_list, preds_list),
|
||||
"recall": recall_score(out_label_list, preds_list),
|
||||
"f1": f1_score(out_label_list, preds_list),
|
||||
}
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = TFTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset.get_dataset() if train_dataset else None,
|
||||
eval_dataset=eval_dataset.get_dataset() if eval_dataset else None,
|
||||
compute_metrics=compute_metrics,
|
||||
)
|
||||
|
||||
# Training
|
||||
if training_args.do_train:
|
||||
trainer.train()
|
||||
trainer.save_model()
|
||||
tokenizer.save_pretrained(training_args.output_dir)
|
||||
|
||||
# Evaluation
|
||||
results = {}
|
||||
if training_args.do_eval:
|
||||
logger.info("*** Evaluate ***")
|
||||
|
||||
result = trainer.evaluate()
|
||||
output_eval_file = os.path.join(training_args.output_dir, "eval_results.txt")
|
||||
|
||||
with open(output_eval_file, "w") as writer:
|
||||
logger.info("***** Eval results *****")
|
||||
|
||||
for key, value in result.items():
|
||||
logger.info(" %s = %s", key, value)
|
||||
writer.write("%s = %s\n" % (key, value))
|
||||
|
||||
results.update(result)
|
||||
|
||||
# Predict
|
||||
if training_args.do_predict:
|
||||
test_dataset = TFTokenClassificationDataset(
|
||||
token_classification_task=token_classification_task,
|
||||
data_dir=data_args.data_dir,
|
||||
tokenizer=tokenizer,
|
||||
labels=labels,
|
||||
model_type=config.model_type,
|
||||
max_seq_length=data_args.max_seq_length,
|
||||
overwrite_cache=data_args.overwrite_cache,
|
||||
mode=Split.test,
|
||||
)
|
||||
|
||||
predictions, label_ids, metrics = trainer.predict(test_dataset.get_dataset())
|
||||
preds_list, labels_list = align_predictions(predictions, label_ids)
|
||||
report = classification_report(labels_list, preds_list)
|
||||
|
||||
logger.info("\n%s", report)
|
||||
|
||||
output_test_results_file = os.path.join(training_args.output_dir, "test_results.txt")
|
||||
|
||||
with open(output_test_results_file, "w") as writer:
|
||||
writer.write("%s\n" % report)
|
||||
|
||||
# Save predictions
|
||||
output_test_predictions_file = os.path.join(training_args.output_dir, "test_predictions.txt")
|
||||
|
||||
with open(output_test_predictions_file, "w") as writer:
|
||||
with open(os.path.join(data_args.data_dir, "test.txt"), "r") as f:
|
||||
example_id = 0
|
||||
|
||||
for line in f:
|
||||
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
||||
writer.write(line)
|
||||
|
||||
if not preds_list[example_id]:
|
||||
example_id += 1
|
||||
elif preds_list[example_id]:
|
||||
output_line = line.split()[0] + " " + preds_list[example_id].pop(0) + "\n"
|
||||
|
||||
writer.write(output_line)
|
||||
else:
|
||||
logger.warning("Maximum sequence length exceeded: No prediction for '%s'.", line.split()[0])
|
||||
|
||||
return results
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -226,7 +226,7 @@ wandb.login()
|
||||
|
||||
To enable logging to W&B, include `"wandb"` in the `report_to` of your `TrainingArguments` or script. Or just pass along `--report_to_all` if you have `wandb` installed.
|
||||
|
||||
Whenever you use `Trainer` or `TFTrainer` classes, your losses, evaluation metrics, model topology and gradients (for `Trainer` only) will automatically be logged.
|
||||
Whenever you use the `Trainer` class, your losses, evaluation metrics, model topology and gradients will automatically be logged.
|
||||
|
||||
Advanced configuration is possible by setting environment variables:
|
||||
|
||||
|
@ -15,7 +15,7 @@ limitations under the License.
|
||||
|
||||
# Examples
|
||||
|
||||
This folder contains actively maintained examples of the use of 🤗 Transformers organized into different ML tasks. All examples in this folder are **TensorFlow** examples and are written using native Keras rather than classes like `TFTrainer`, which we now consider deprecated. If you've previously only used 🤗 Transformers via `TFTrainer`, we highly recommend taking a look at the new style - we think it's a big improvement!
|
||||
This folder contains actively maintained examples of the use of 🤗 Transformers organized into different ML tasks. All examples in this folder are **TensorFlow** examples and are written using native Keras. If you've previously only used 🤗 Transformers via `TFTrainer`, we highly recommend taking a look at the new style - we think it's a big improvement!
|
||||
|
||||
In addition, all scripts here now support the [🤗 Datasets](https://github.com/huggingface/datasets) library - you can grab entire datasets just by changing one command-line argument!
|
||||
|
||||
|
@ -4401,7 +4401,6 @@ else:
|
||||
"create_optimizer",
|
||||
]
|
||||
_import_structure["tf_utils"] = []
|
||||
_import_structure["trainer_tf"] = ["TFTrainer"]
|
||||
|
||||
|
||||
try:
|
||||
@ -8560,9 +8559,6 @@ if TYPE_CHECKING:
|
||||
create_optimizer,
|
||||
)
|
||||
|
||||
# Trainer
|
||||
from .trainer_tf import TFTrainer
|
||||
|
||||
try:
|
||||
if not (
|
||||
is_librosa_available()
|
||||
|
@ -1,801 +0,0 @@
|
||||
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tensorflow trainer class."""
|
||||
|
||||
import datetime
|
||||
import math
|
||||
import os
|
||||
import warnings
|
||||
from typing import Callable, Dict, Optional, Tuple
|
||||
|
||||
from .utils import ENV_VARS_TRUE_VALUES
|
||||
|
||||
|
||||
# Integrations must be imported before ML frameworks:
|
||||
# isort: off
|
||||
from .integrations import (
|
||||
is_comet_available,
|
||||
is_wandb_available,
|
||||
)
|
||||
|
||||
# isort: on
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.distribute.values import PerReplica
|
||||
|
||||
from .modeling_tf_utils import TFPreTrainedModel
|
||||
from .optimization_tf import GradientAccumulator, create_optimizer
|
||||
from .trainer_utils import (
|
||||
PREFIX_CHECKPOINT_DIR,
|
||||
EvalPrediction,
|
||||
IntervalStrategy,
|
||||
PredictionOutput,
|
||||
enable_full_determinism,
|
||||
set_seed,
|
||||
)
|
||||
from .training_args_tf import TFTrainingArguments
|
||||
from .utils import logging
|
||||
|
||||
|
||||
if is_wandb_available():
|
||||
import wandb
|
||||
|
||||
if is_comet_available():
|
||||
import comet_ml
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class TFTrainer:
|
||||
"""
|
||||
TFTrainer is a simple but feature-complete training and eval loop for TensorFlow, optimized for 🤗 Transformers.
|
||||
|
||||
Args:
|
||||
model ([`TFPreTrainedModel`]):
|
||||
The model to train, evaluate or use for predictions.
|
||||
args ([`TFTrainingArguments`]):
|
||||
The arguments to tweak training.
|
||||
train_dataset ([`~tf.data.Dataset`], *optional*):
|
||||
The dataset to use for training. The dataset should yield tuples of `(features, labels)` where `features`
|
||||
is a dict of input features and `labels` is the labels. If `labels` is a tensor, the loss is calculated by
|
||||
the model by calling `model(features, labels=labels)`. If `labels` is a dict, such as when using a
|
||||
QuestionAnswering head model with multiple targets, the loss is instead calculated by calling
|
||||
`model(features, **labels)`.
|
||||
eval_dataset ([`~tf.data.Dataset`], *optional*):
|
||||
The dataset to use for evaluation. The dataset should yield tuples of `(features, labels)` where `features`
|
||||
is a dict of input features and `labels` is the labels. If `labels` is a tensor, the loss is calculated by
|
||||
the model by calling `model(features, labels=labels)`. If `labels` is a dict, such as when using a
|
||||
QuestionAnswering head model with multiple targets, the loss is instead calculated by calling
|
||||
`model(features, **labels)`.
|
||||
compute_metrics (`Callable[[EvalPrediction], Dict]`, *optional*):
|
||||
The function that will be used to compute metrics at evaluation. Must take a [`EvalPrediction`] and return
|
||||
a dictionary string to metric values.
|
||||
tb_writer (`tf.summary.SummaryWriter`, *optional*):
|
||||
Object to write to TensorBoard.
|
||||
optimizers (`Tuple[tf.keras.optimizers.Optimizer, tf.keras.optimizers.schedules.LearningRateSchedule]`, *optional*):
|
||||
A tuple containing the optimizer and the scheduler to use. The optimizer default to an instance of
|
||||
[`tf.keras.optimizers.Adam`] if `args.weight_decay_rate` is 0 else an instance of [`AdamWeightDecay`]. The
|
||||
scheduler will default to an instance of [`tf.keras.optimizers.schedules.PolynomialDecay`] if
|
||||
`args.num_warmup_steps` is 0 else an instance of [`WarmUp`].
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: TFPreTrainedModel,
|
||||
args: TFTrainingArguments,
|
||||
train_dataset: Optional[tf.data.Dataset] = None,
|
||||
eval_dataset: Optional[tf.data.Dataset] = None,
|
||||
compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None,
|
||||
tb_writer: Optional[tf.summary.SummaryWriter] = None,
|
||||
optimizers: Tuple[tf.keras.optimizers.Optimizer, tf.keras.optimizers.schedules.LearningRateSchedule] = (
|
||||
None,
|
||||
None,
|
||||
),
|
||||
):
|
||||
self.model = model
|
||||
self.args = args
|
||||
self.train_dataset = train_dataset
|
||||
self.eval_dataset = eval_dataset
|
||||
self.compute_metrics = compute_metrics
|
||||
self.optimizer, self.lr_scheduler = optimizers
|
||||
self.gradient_accumulator = GradientAccumulator()
|
||||
self.global_step = 0
|
||||
self.epoch_logging = 0
|
||||
self.eval_loss = tf.keras.metrics.Sum()
|
||||
|
||||
warnings.warn(
|
||||
"The class `TFTrainer` is deprecated and will be removed in version 5 of Transformers. "
|
||||
"We recommend using native Keras instead, by calling methods like `fit()` and `predict()` "
|
||||
"directly on the model object. Detailed examples of the Keras style can be found in our "
|
||||
"examples at https://github.com/huggingface/transformers/tree/main/examples/tensorflow",
|
||||
FutureWarning,
|
||||
)
|
||||
|
||||
if tb_writer is not None:
|
||||
self.tb_writer = tb_writer
|
||||
else:
|
||||
self.tb_writer = tf.summary.create_file_writer(self.args.logging_dir)
|
||||
|
||||
if is_wandb_available():
|
||||
self.setup_wandb()
|
||||
elif os.getenv("WANDB_DISABLED", "").upper() not in ENV_VARS_TRUE_VALUES:
|
||||
logger.info(
|
||||
"You are instantiating a Trainer but W&B is not installed. To use wandb logging, "
|
||||
"run `pip install wandb && wandb login` see https://docs.wandb.com/huggingface."
|
||||
)
|
||||
|
||||
if is_comet_available():
|
||||
self.setup_comet()
|
||||
elif os.environ.get("COMET_MODE") != "DISABLED":
|
||||
logger.info(
|
||||
"To use comet_ml logging, run `pip/conda install comet_ml` "
|
||||
"see https://www.comet.ml/docs/python-sdk/huggingface/"
|
||||
)
|
||||
|
||||
enable_full_determinism(self.args.seed) if self.args.full_determinism else set_seed(self.args.seed)
|
||||
|
||||
def get_train_tfdataset(self) -> tf.data.Dataset:
|
||||
"""
|
||||
Returns the training [`~tf.data.Dataset`].
|
||||
|
||||
Subclass and override this method if you want to inject some custom behavior.
|
||||
"""
|
||||
if self.train_dataset is None:
|
||||
raise ValueError("Trainer: training requires a train_dataset.")
|
||||
|
||||
self.total_train_batch_size = self.args.train_batch_size * self.args.gradient_accumulation_steps
|
||||
self.num_train_examples = self.train_dataset.cardinality().numpy()
|
||||
|
||||
if self.num_train_examples < 0:
|
||||
raise ValueError("The training dataset must have an asserted cardinality")
|
||||
|
||||
ds = (
|
||||
self.train_dataset.repeat()
|
||||
.shuffle(self.num_train_examples, seed=self.args.seed)
|
||||
.batch(self.total_train_batch_size, drop_remainder=self.args.dataloader_drop_last)
|
||||
.prefetch(tf.data.experimental.AUTOTUNE)
|
||||
)
|
||||
|
||||
return self.args.strategy.experimental_distribute_dataset(ds)
|
||||
|
||||
def get_eval_tfdataset(self, eval_dataset: Optional[tf.data.Dataset] = None) -> tf.data.Dataset:
|
||||
"""
|
||||
Returns the evaluation [`~tf.data.Dataset`].
|
||||
|
||||
Args:
|
||||
eval_dataset ([`~tf.data.Dataset`], *optional*):
|
||||
If provided, will override *self.eval_dataset*. The dataset should yield tuples of `(features, labels)`
|
||||
where `features` is a dict of input features and `labels` is the labels. If `labels` is a tensor, the
|
||||
loss is calculated by the model by calling `model(features, labels=labels)`. If `labels` is a dict,
|
||||
such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated
|
||||
by calling `model(features, **labels)`.
|
||||
|
||||
Subclass and override this method if you want to inject some custom behavior.
|
||||
"""
|
||||
if eval_dataset is None and self.eval_dataset is None:
|
||||
raise ValueError("Trainer: evaluation requires an eval_dataset.")
|
||||
|
||||
eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset
|
||||
num_examples = eval_dataset.cardinality().numpy()
|
||||
|
||||
if num_examples < 0:
|
||||
raise ValueError("The training dataset must have an asserted cardinality")
|
||||
|
||||
approx = math.floor if self.args.dataloader_drop_last else math.ceil
|
||||
steps = approx(num_examples / self.args.eval_batch_size)
|
||||
ds = (
|
||||
eval_dataset.repeat()
|
||||
.batch(self.args.eval_batch_size, drop_remainder=self.args.dataloader_drop_last)
|
||||
.prefetch(tf.data.experimental.AUTOTUNE)
|
||||
)
|
||||
|
||||
return self.args.strategy.experimental_distribute_dataset(ds), steps, num_examples
|
||||
|
||||
def get_test_tfdataset(self, test_dataset: tf.data.Dataset) -> tf.data.Dataset:
|
||||
"""
|
||||
Returns a test [`~tf.data.Dataset`].
|
||||
|
||||
Args:
|
||||
test_dataset ([`~tf.data.Dataset`]):
|
||||
The dataset to use. The dataset should yield tuples of `(features, labels)` where `features` is a dict
|
||||
of input features and `labels` is the labels. If `labels` is a tensor, the loss is calculated by the
|
||||
model by calling `model(features, labels=labels)`. If `labels` is a dict, such as when using a
|
||||
QuestionAnswering head model with multiple targets, the loss is instead calculated by calling
|
||||
`model(features, **labels)`.
|
||||
|
||||
Subclass and override this method if you want to inject some custom behavior.
|
||||
"""
|
||||
|
||||
num_examples = test_dataset.cardinality().numpy()
|
||||
|
||||
if num_examples < 0:
|
||||
raise ValueError("The training dataset must have an asserted cardinality")
|
||||
|
||||
steps = math.ceil(num_examples / self.args.eval_batch_size)
|
||||
ds = test_dataset.batch(self.args.eval_batch_size).prefetch(tf.data.experimental.AUTOTUNE)
|
||||
|
||||
return self.args.strategy.experimental_distribute_dataset(ds), steps, num_examples
|
||||
|
||||
def create_optimizer_and_scheduler(self, num_training_steps: int):
|
||||
"""
|
||||
Setup the optimizer and the learning rate scheduler.
|
||||
|
||||
We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
|
||||
TFTrainer's init through `optimizers`, or subclass and override this method.
|
||||
"""
|
||||
if not self.optimizer and not self.lr_scheduler:
|
||||
warmup_steps = (
|
||||
self.args.warmup_steps
|
||||
if self.args.warmup_steps > 0
|
||||
else math.ceil(num_training_steps * self.args.warmup_ratio)
|
||||
)
|
||||
|
||||
self.optimizer, self.lr_scheduler = create_optimizer(
|
||||
self.args.learning_rate,
|
||||
num_training_steps,
|
||||
warmup_steps,
|
||||
adam_beta1=self.args.adam_beta1,
|
||||
adam_beta2=self.args.adam_beta2,
|
||||
adam_epsilon=self.args.adam_epsilon,
|
||||
weight_decay_rate=self.args.weight_decay,
|
||||
power=self.args.poly_power,
|
||||
)
|
||||
|
||||
def setup_wandb(self):
|
||||
"""
|
||||
Setup the optional Weights & Biases (`wandb`) integration.
|
||||
|
||||
One can subclass and override this method to customize the setup if needed. Find more information `here
|
||||
<https://docs.wandb.com/huggingface>`__. You can also override the following environment variables:
|
||||
|
||||
Environment:
|
||||
WANDB_PROJECT:
|
||||
(Optional): str - "huggingface" by default, set this to a custom string to store results in a different
|
||||
project.
|
||||
WANDB_DISABLED:
|
||||
(Optional): boolean - defaults to false, set to "true" to disable wandb entirely.
|
||||
"""
|
||||
|
||||
logger.info('Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"')
|
||||
combined_dict = {**self.model.config.to_dict(), **self.args.to_sanitized_dict()}
|
||||
wandb.init(project=os.getenv("WANDB_PROJECT", "huggingface"), config=combined_dict, name=self.args.run_name)
|
||||
|
||||
def setup_comet(self):
|
||||
"""
|
||||
Setup the optional Comet.ml integration.
|
||||
|
||||
Environment:
|
||||
COMET_MODE:
|
||||
(Optional): str - "OFFLINE", "ONLINE", or "DISABLED"
|
||||
COMET_PROJECT_NAME:
|
||||
(Optional): str - Comet.ml project name for experiments
|
||||
COMET_OFFLINE_DIRECTORY:
|
||||
(Optional): str - folder to use for saving offline experiments when `COMET_MODE` is "OFFLINE"
|
||||
|
||||
For a number of configurable items in the environment, see `here
|
||||
<https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables>`__
|
||||
"""
|
||||
comet_mode = os.getenv("COMET_MODE", "ONLINE").upper()
|
||||
args = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")}
|
||||
experiment = None
|
||||
if comet_mode == "ONLINE":
|
||||
experiment = comet_ml.Experiment(**args)
|
||||
logger.info("Automatic Comet.ml online logging enabled")
|
||||
elif comet_mode == "OFFLINE":
|
||||
args["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./")
|
||||
experiment = comet_ml.OfflineExperiment(**args)
|
||||
logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished")
|
||||
if experiment is not None:
|
||||
experiment._set_model_graph(self.model, framework="transformers")
|
||||
experiment._log_parameters(self.args, prefix="args/", framework="transformers")
|
||||
experiment._log_parameters(self.model.config, prefix="config/", framework="transformers")
|
||||
|
||||
def prediction_loop(
|
||||
self,
|
||||
dataset: tf.data.Dataset,
|
||||
steps: int,
|
||||
num_examples: int,
|
||||
description: str,
|
||||
prediction_loss_only: Optional[bool] = None,
|
||||
) -> PredictionOutput:
|
||||
"""
|
||||
Prediction/evaluation loop, shared by [`~TFTrainer.evaluate`] and [`~TFTrainer.predict`].
|
||||
|
||||
Works both with or without labels.
|
||||
"""
|
||||
|
||||
prediction_loss_only = (
|
||||
prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only
|
||||
)
|
||||
|
||||
logger.info(f"***** Running {description} *****")
|
||||
logger.info(f" Num examples in dataset = {num_examples}")
|
||||
if description == "Evaluation":
|
||||
logger.info(f" Num examples in used in evaluation = {self.args.eval_batch_size * steps}")
|
||||
logger.info(f" Batch size = {self.args.eval_batch_size}")
|
||||
|
||||
label_ids: np.ndarray = None
|
||||
preds: np.ndarray = None
|
||||
self.eval_loss.reset_states()
|
||||
|
||||
# Reset the past mems state at the beginning of the evaluation if necessary.
|
||||
if self.args.past_index >= 0:
|
||||
self._past = None
|
||||
|
||||
for step, batch in enumerate(dataset):
|
||||
logits = self.distributed_prediction_steps(batch)
|
||||
_, labels = batch
|
||||
|
||||
if not prediction_loss_only:
|
||||
if isinstance(logits, tuple):
|
||||
logits = logits[0]
|
||||
|
||||
if isinstance(labels, tuple):
|
||||
labels = labels[0]
|
||||
|
||||
if self.args.n_replicas > 1:
|
||||
for val in logits.values:
|
||||
if preds is None:
|
||||
preds = val.numpy()
|
||||
else:
|
||||
preds = np.append(preds, val.numpy(), axis=0)
|
||||
|
||||
for val in labels.values:
|
||||
if label_ids is None:
|
||||
label_ids = val.numpy()
|
||||
else:
|
||||
label_ids = np.append(label_ids, val.numpy(), axis=0)
|
||||
else:
|
||||
if preds is None:
|
||||
preds = logits.numpy()
|
||||
else:
|
||||
preds = np.append(preds, logits.numpy(), axis=0)
|
||||
|
||||
if label_ids is None:
|
||||
label_ids = labels.numpy()
|
||||
else:
|
||||
label_ids = np.append(label_ids, labels.numpy(), axis=0)
|
||||
|
||||
if step == steps - 1:
|
||||
break
|
||||
|
||||
if self.compute_metrics is not None and preds is not None and label_ids is not None:
|
||||
metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids))
|
||||
else:
|
||||
metrics = {}
|
||||
|
||||
metrics["eval_loss"] = self.eval_loss.result().numpy() / steps
|
||||
|
||||
for key in list(metrics.keys()):
|
||||
if not key.startswith("eval_"):
|
||||
metrics[f"eval_{key}"] = metrics.pop(key)
|
||||
|
||||
if self.args.past_index and hasattr(self, "_past"):
|
||||
# Clean the state at the end of training
|
||||
delattr(self, "_past")
|
||||
|
||||
return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics)
|
||||
|
||||
def log(self, logs: Dict[str, float]) -> None:
|
||||
"""
|
||||
Log `logs` on the various objects watching training.
|
||||
|
||||
Subclass and override this method to inject custom behavior.
|
||||
|
||||
Args:
|
||||
logs (`Dict[str, float]`):
|
||||
The values to log.
|
||||
"""
|
||||
logs["epoch"] = self.epoch_logging
|
||||
|
||||
if self.tb_writer:
|
||||
with self.tb_writer.as_default():
|
||||
for k, v in logs.items():
|
||||
tf.summary.scalar(k, v, step=self.global_step)
|
||||
self.tb_writer.flush()
|
||||
|
||||
if is_wandb_available():
|
||||
wandb.log(logs, step=self.global_step)
|
||||
|
||||
if is_comet_available():
|
||||
experiment = comet_ml.config.get_global_experiment()
|
||||
if experiment is not None:
|
||||
experiment._log_metrics(
|
||||
logs, step=self.global_step, epoch=self.epoch_logging, framework="transformers"
|
||||
)
|
||||
|
||||
output = {**logs, **{"step": self.global_step}}
|
||||
|
||||
logger.info(output)
|
||||
|
||||
def evaluate(self, eval_dataset: Optional[tf.data.Dataset] = None) -> Dict[str, float]:
|
||||
"""
|
||||
Run evaluation and returns metrics.
|
||||
|
||||
The calling script will be responsible for providing a method to compute metrics, as they are task-dependent
|
||||
(pass it to the init `compute_metrics` argument).
|
||||
|
||||
Args:
|
||||
eval_dataset ([`~tf.data.Dataset`], *optional*):
|
||||
Pass a dataset if you wish to override `self.eval_dataset`. The dataset should yield tuples of
|
||||
`(features, labels)` where `features` is a dict of input features and `labels` is the labels. If
|
||||
`labels` is a tensor, the loss is calculated by the model by calling `model(features, labels=labels)`.
|
||||
If `labels` is a dict, such as when using a QuestionAnswering head model with multiple targets, the
|
||||
loss is instead calculated by calling `model(features, **labels)`.
|
||||
|
||||
Returns:
|
||||
A dictionary containing the evaluation loss and the potential metrics computed from the predictions.
|
||||
"""
|
||||
eval_ds, steps, num_examples = self.get_eval_tfdataset(eval_dataset)
|
||||
|
||||
output = self.prediction_loop(eval_ds, steps, num_examples, description="Evaluation")
|
||||
logs = {**output.metrics}
|
||||
logs["epoch"] = self.epoch_logging
|
||||
|
||||
self.log(logs)
|
||||
|
||||
return output.metrics
|
||||
|
||||
def prediction_step(
|
||||
self, features: tf.Tensor, labels: tf.Tensor, nb_instances_in_global_batch: tf.Tensor
|
||||
) -> tf.Tensor:
|
||||
"""
|
||||
Compute the prediction on features and update the loss with labels.
|
||||
|
||||
Subclass and override to inject some custom behavior.
|
||||
"""
|
||||
per_example_loss, logits = self.run_model(features, labels, False)
|
||||
scaled_loss = per_example_loss / tf.cast(nb_instances_in_global_batch, dtype=per_example_loss.dtype)
|
||||
|
||||
self.eval_loss.update_state(scaled_loss)
|
||||
|
||||
return logits
|
||||
|
||||
@tf.function
|
||||
def distributed_prediction_steps(self, batch):
|
||||
nb_instances_in_batch = self._compute_nb_instances(batch)
|
||||
inputs = self._get_step_inputs(batch, nb_instances_in_batch)
|
||||
|
||||
logits = self.args.strategy.run(self.prediction_step, inputs)
|
||||
|
||||
return logits
|
||||
|
||||
def train(self) -> None:
|
||||
"""
|
||||
Train method to train the model.
|
||||
"""
|
||||
train_ds = self.get_train_tfdataset()
|
||||
|
||||
if self.args.debug:
|
||||
tf.summary.trace_on(graph=True, profiler=True)
|
||||
|
||||
self.gradient_accumulator.reset()
|
||||
|
||||
num_update_steps_per_epoch = self.num_train_examples / self.total_train_batch_size
|
||||
|
||||
# In fact, ``self.args.dataloader_drop_last`` has no effect in `trainer_tf.py`, because
|
||||
# the dataset is repeated before being batched.
|
||||
# It has the effect only when TPU is used which requires explicit tensor shape in order to make
|
||||
# the gradient accumulation implementation work.
|
||||
approx = math.floor if self.args.dataloader_drop_last else math.ceil
|
||||
num_update_steps_per_epoch = approx(num_update_steps_per_epoch)
|
||||
|
||||
# At least one update for each epoch.
|
||||
num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1)
|
||||
self.steps_per_epoch = num_update_steps_per_epoch
|
||||
|
||||
if self.args.max_steps > 0:
|
||||
t_total = self.args.max_steps
|
||||
epochs = (self.args.max_steps // self.steps_per_epoch) + int(
|
||||
self.args.max_steps % self.steps_per_epoch > 0
|
||||
)
|
||||
else:
|
||||
t_total = self.steps_per_epoch * self.args.num_train_epochs
|
||||
epochs = self.args.num_train_epochs
|
||||
|
||||
# Since ``self.args.num_train_epochs`` can be `float`, we make ``epochs`` be a `float` always.
|
||||
epochs = float(epochs)
|
||||
|
||||
with self.args.strategy.scope():
|
||||
self.create_optimizer_and_scheduler(num_training_steps=t_total)
|
||||
folder = os.path.join(self.args.output_dir, PREFIX_CHECKPOINT_DIR)
|
||||
ckpt = tf.train.Checkpoint(optimizer=self.optimizer, model=self.model)
|
||||
self.model.ckpt_manager = tf.train.CheckpointManager(ckpt, folder, max_to_keep=self.args.save_total_limit)
|
||||
|
||||
iterations = self.optimizer.iterations
|
||||
epochs_trained = 0
|
||||
steps_trained_in_current_epoch = 0
|
||||
if self.model.ckpt_manager.latest_checkpoint:
|
||||
logger.info(
|
||||
f"Checkpoint file {self.model.ckpt_manager.latest_checkpoint} found and restoring from checkpoint"
|
||||
)
|
||||
ckpt.restore(self.model.ckpt_manager.latest_checkpoint).expect_partial()
|
||||
|
||||
self.global_step = iterations.numpy()
|
||||
|
||||
epochs_trained = self.global_step // self.steps_per_epoch
|
||||
steps_trained_in_current_epoch = self.global_step % self.steps_per_epoch
|
||||
|
||||
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
|
||||
logger.info(f" Continuing training from epoch {epochs_trained}")
|
||||
logger.info(f" Continuing training from global step {self.global_step}")
|
||||
logger.info(f" Will skip the first {steps_trained_in_current_epoch} steps in the first epoch")
|
||||
|
||||
tf.summary.experimental.set_step(self.global_step)
|
||||
|
||||
with self.tb_writer.as_default():
|
||||
tf.summary.text("args", self.args.to_json_string())
|
||||
|
||||
self.tb_writer.flush()
|
||||
|
||||
logger.info("***** Running training *****")
|
||||
logger.info(f" Num examples = {self.num_train_examples}")
|
||||
# TODO: We might want to print a more precise ``epochs`` if self.args.max_steps > 0 ?
|
||||
logger.info(f" Num Epochs = {epochs}")
|
||||
logger.info(f" Instantaneous batch size per device = {self.args.per_device_train_batch_size}")
|
||||
logger.info(
|
||||
f" Total train batch size (w. parallel, distributed & accumulation) = {self.total_train_batch_size}"
|
||||
)
|
||||
logger.info(f" Gradient Accumulation steps = {self.args.gradient_accumulation_steps}")
|
||||
logger.info(f" Steps per epoch = {self.steps_per_epoch}")
|
||||
logger.info(f" Total optimization steps = {t_total}")
|
||||
|
||||
self.train_loss = tf.keras.metrics.Sum()
|
||||
start_time = datetime.datetime.now()
|
||||
|
||||
for epoch_iter in range(epochs_trained, int(epochs)):
|
||||
# Reset the past mems state at the beginning of each epoch if necessary.
|
||||
if self.args.past_index >= 0:
|
||||
self._past = None
|
||||
|
||||
for step, batch in enumerate(train_ds):
|
||||
# Skip past any already trained steps if resuming training
|
||||
if steps_trained_in_current_epoch > 0:
|
||||
steps_trained_in_current_epoch -= 1
|
||||
continue
|
||||
|
||||
self.distributed_training_steps(batch)
|
||||
|
||||
self.global_step = iterations.numpy()
|
||||
self.epoch_logging = epoch_iter + (step + 1) / self.steps_per_epoch
|
||||
|
||||
training_loss = self.train_loss.result() / (step + 1)
|
||||
|
||||
if self.args.debug:
|
||||
logs = {}
|
||||
logs["loss"] = training_loss.numpy()
|
||||
logs["epoch"] = self.epoch_logging
|
||||
|
||||
self.log(logs)
|
||||
|
||||
if self.global_step == 1 and self.args.debug:
|
||||
with self.tb_writer.as_default():
|
||||
tf.summary.trace_export(
|
||||
name="training", step=self.global_step, profiler_outdir=self.args.logging_dir
|
||||
)
|
||||
|
||||
if (
|
||||
self.args.eval_steps > 0
|
||||
and self.args.evaluation_strategy == IntervalStrategy.STEPS
|
||||
and self.global_step % self.args.eval_steps == 0
|
||||
):
|
||||
self.evaluate()
|
||||
|
||||
if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
|
||||
self.global_step == 1 and self.args.logging_first_step
|
||||
):
|
||||
logs = {}
|
||||
logs["loss"] = training_loss.numpy()
|
||||
logs["learning_rate"] = self.lr_scheduler(self.global_step).numpy()
|
||||
logs["epoch"] = self.epoch_logging
|
||||
|
||||
self.log(logs)
|
||||
|
||||
if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
|
||||
ckpt_save_path = self.model.ckpt_manager.save()
|
||||
|
||||
logger.info(f"Saving checkpoint for step {self.global_step} at {ckpt_save_path}")
|
||||
|
||||
if self.args.max_steps > 0 and self.global_step >= t_total:
|
||||
break
|
||||
|
||||
if self.global_step % self.steps_per_epoch == 0:
|
||||
break
|
||||
|
||||
self.train_loss.reset_states()
|
||||
|
||||
if self.args.max_steps > 0 and self.global_step >= self.args.max_steps:
|
||||
break
|
||||
|
||||
end_time = datetime.datetime.now()
|
||||
|
||||
logger.info(f"Training took: {str(end_time - start_time)}")
|
||||
|
||||
if self.args.past_index and hasattr(self, "_past"):
|
||||
# Clean the state at the end of training
|
||||
delattr(self, "_past")
|
||||
|
||||
def training_step(self, features, labels, nb_instances_in_global_batch):
|
||||
"""
|
||||
Perform a training step on features and labels.
|
||||
|
||||
Subclass and override to inject some custom behavior.
|
||||
"""
|
||||
per_example_loss, _ = self.run_model(features, labels, True)
|
||||
scaled_loss = per_example_loss / tf.cast(nb_instances_in_global_batch, dtype=per_example_loss.dtype)
|
||||
gradients = tf.gradients(scaled_loss, self.model.trainable_variables)
|
||||
gradients = [
|
||||
g if g is not None else tf.zeros_like(v) for g, v in zip(gradients, self.model.trainable_variables)
|
||||
]
|
||||
|
||||
if self.args.gradient_accumulation_steps > 1:
|
||||
self.gradient_accumulator(gradients)
|
||||
|
||||
self.train_loss.update_state(scaled_loss)
|
||||
|
||||
if self.args.gradient_accumulation_steps == 1:
|
||||
return gradients
|
||||
|
||||
def apply_gradients(self, features, labels, nb_instances_in_global_batch):
|
||||
if self.args.gradient_accumulation_steps == 1:
|
||||
gradients = self.training_step(features, labels, nb_instances_in_global_batch)
|
||||
|
||||
self.optimizer.apply_gradients(list(zip(gradients, self.model.trainable_variables)))
|
||||
else:
|
||||
for _ in tf.range(self.args.gradient_accumulation_steps):
|
||||
reduced_features = {
|
||||
k: ft[: self.args.train_batch_size // self.args.n_replicas] for k, ft in features.items()
|
||||
}
|
||||
|
||||
if tf.is_tensor(labels):
|
||||
reduced_labels = labels[: self.args.train_batch_size // self.args.n_replicas]
|
||||
elif isinstance(labels, dict):
|
||||
reduced_labels = {
|
||||
k: lbl[: self.args.train_batch_size // self.args.n_replicas] for k, lbl in labels.items()
|
||||
}
|
||||
else:
|
||||
raise ValueError("The labels must be either a tf.Tensor or a dict.")
|
||||
|
||||
self.training_step(reduced_features, reduced_labels, nb_instances_in_global_batch)
|
||||
|
||||
features = {
|
||||
k: tf.concat(
|
||||
[ft[self.args.train_batch_size // self.args.n_replicas :], reduced_features[k]],
|
||||
axis=0,
|
||||
)
|
||||
for k, ft in features.items()
|
||||
}
|
||||
|
||||
if tf.is_tensor(labels):
|
||||
labels = tf.concat(
|
||||
[labels[self.args.train_batch_size // self.args.n_replicas :], reduced_labels], axis=0
|
||||
)
|
||||
elif isinstance(labels, dict):
|
||||
labels = {
|
||||
k: tf.concat(
|
||||
[lbl[self.args.train_batch_size // self.args.n_replicas :], reduced_labels[k]],
|
||||
axis=0,
|
||||
)
|
||||
for k, lbl in labels.items()
|
||||
}
|
||||
else:
|
||||
raise ValueError("The labels must be either a tf.Tensor or a dict.")
|
||||
|
||||
gradients = self.gradient_accumulator.gradients
|
||||
gradients = [
|
||||
(tf.clip_by_value(grad, -self.args.max_grad_norm, self.args.max_grad_norm)) for grad in gradients
|
||||
]
|
||||
|
||||
self.optimizer.apply_gradients(list(zip(gradients, self.model.trainable_variables)))
|
||||
self.gradient_accumulator.reset()
|
||||
|
||||
@tf.function
|
||||
def distributed_training_steps(self, batch):
|
||||
with self.args.strategy.scope():
|
||||
nb_instances_in_batch = self._compute_nb_instances(batch)
|
||||
inputs = self._get_step_inputs(batch, nb_instances_in_batch)
|
||||
|
||||
self.args.strategy.run(self.apply_gradients, inputs)
|
||||
|
||||
@staticmethod
|
||||
def _compute_nb_instances(batch):
|
||||
labels = batch[-1]
|
||||
if isinstance(labels, PerReplica):
|
||||
labels = tf.concat(labels.values, axis=0)
|
||||
|
||||
nb_instances = tf.reduce_sum(tf.cast(labels != -100, dtype=tf.int32))
|
||||
|
||||
return nb_instances
|
||||
|
||||
@staticmethod
|
||||
def _get_step_inputs(batch, nb_instances):
|
||||
features, labels = batch
|
||||
|
||||
if isinstance(labels, PerReplica):
|
||||
# need to make a `PerReplica` objects for ``nb_instances``
|
||||
nb_instances = PerReplica([nb_instances] * len(labels.values))
|
||||
|
||||
step_inputs = (features, labels, nb_instances)
|
||||
|
||||
return step_inputs
|
||||
|
||||
def run_model(self, features, labels, training):
|
||||
"""
|
||||
Computes the loss of the given features and labels pair.
|
||||
|
||||
Subclass and override this method if you want to inject some custom behavior.
|
||||
|
||||
Args:
|
||||
features (`tf.Tensor`): A batch of input features.
|
||||
labels (`tf.Tensor`): A batch of labels.
|
||||
training (`bool`): Whether or not to run the model in training mode.
|
||||
|
||||
Returns:
|
||||
A tuple of two `tf.Tensor`: The loss and logits.
|
||||
"""
|
||||
|
||||
if self.args.past_index >= 0 and getattr(self, "_past", None) is not None:
|
||||
features["mems"] = self._past
|
||||
|
||||
if isinstance(labels, (dict)):
|
||||
outputs = self.model(features, training=training, **labels)[:2]
|
||||
else:
|
||||
outputs = self.model(features, labels=labels, training=training)[:2]
|
||||
|
||||
loss, logits = outputs[:2]
|
||||
|
||||
if self.args.past_index >= 0:
|
||||
self._past = outputs[self.args.past_index]
|
||||
|
||||
return loss, logits
|
||||
|
||||
def predict(self, test_dataset: tf.data.Dataset) -> PredictionOutput:
|
||||
"""
|
||||
Run prediction and returns predictions and potential metrics.
|
||||
|
||||
Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method
|
||||
will also return metrics, like in `evaluate()`.
|
||||
|
||||
Args:
|
||||
test_dataset ([`~tf.data.Dataset`]):
|
||||
Dataset to run the predictions on. The dataset should yield tuples of `(features, labels)` where
|
||||
`features` is a dict of input features and `labels` is the labels. If `labels` is a tensor, the loss is
|
||||
calculated by the model by calling `model(features, labels=labels)`. If `labels` is a dict, such as
|
||||
when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by
|
||||
calling `model(features, **labels)`
|
||||
|
||||
Returns: *NamedTuple* A namedtuple with the following keys:
|
||||
|
||||
- predictions (`np.ndarray`): The predictions on `test_dataset`.
|
||||
- label_ids (`np.ndarray`, *optional*): The labels (if the dataset contained some).
|
||||
- metrics (`Dict[str, float]`, *optional*): The potential dictionary of metrics (if the dataset contained
|
||||
labels).
|
||||
"""
|
||||
test_ds, steps, num_examples = self.get_test_tfdataset(test_dataset)
|
||||
|
||||
return self.prediction_loop(test_ds, steps, num_examples, description="Prediction")
|
||||
|
||||
def save_model(self, output_dir: Optional[str] = None):
|
||||
"""
|
||||
Will save the model, so you can reload it using `from_pretrained()`.
|
||||
"""
|
||||
output_dir = output_dir if output_dir is not None else self.args.output_dir
|
||||
|
||||
logger.info(f"Saving model in {output_dir}")
|
||||
|
||||
if not isinstance(self.model, TFPreTrainedModel):
|
||||
raise ValueError("Trainer.model appears to not be a PreTrainedModel")
|
||||
|
||||
self.model.save_pretrained(output_dir)
|
@ -13,7 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Utilities for the Trainer and TFTrainer class. Should be independent from PyTorch and TensorFlow.
|
||||
PyTorch-independent utilities for the Trainer class.
|
||||
"""
|
||||
|
||||
import copy
|
||||
|
@ -379,8 +379,6 @@ class TrainingArguments:
|
||||
set to warn or lower (default), `False` otherwise.
|
||||
remove_unused_columns (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to automatically remove the columns unused by the model forward method.
|
||||
|
||||
(Note that this behavior is not implemented for [`TFTrainer`] yet.)
|
||||
label_names (`List[str]`, *optional*):
|
||||
The list of keys in your dictionary of inputs that correspond to the labels.
|
||||
|
||||
|
@ -2993,10 +2993,3 @@ class WarmUp(metaclass=DummyObject):
|
||||
|
||||
def create_optimizer(*args, **kwargs):
|
||||
requires_backends(create_optimizer, ["tf"])
|
||||
|
||||
|
||||
class TFTrainer(metaclass=DummyObject):
|
||||
_backends = ["tf"]
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
requires_backends(self, ["tf"])
|
||||
|
@ -944,7 +944,6 @@ DEPRECATED_OBJECTS = [
|
||||
"xnli_output_modes",
|
||||
"xnli_processors",
|
||||
"xnli_tasks_num_labels",
|
||||
"TFTrainer",
|
||||
"TFTrainingArguments",
|
||||
]
|
||||
|
||||
|
@ -965,7 +965,6 @@ src/transformers/trainer.py
|
||||
src/transformers/trainer_callback.py
|
||||
src/transformers/trainer_pt_utils.py
|
||||
src/transformers/trainer_seq2seq.py
|
||||
src/transformers/trainer_tf.py
|
||||
src/transformers/trainer_utils.py
|
||||
src/transformers/training_args.py
|
||||
src/transformers/training_args_seq2seq.py
|
||||
|
Loading…
Reference in New Issue
Block a user