mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-05 13:50:13 +06:00
Update Seq2Seq QA example script to use SQuAD metric. (#14335)
* Update postporcessing accordingly to use SQuAD metric. * Update assets accordingly based on SQuAD metrics. * Fix function naming error.
This commit is contained in:
parent
be4a6c64dc
commit
4f24058c58
@ -25,22 +25,20 @@ from dataclasses import dataclass, field
|
|||||||
from typing import List, Optional, Tuple
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
import datasets
|
import datasets
|
||||||
import nltk
|
|
||||||
import numpy as np
|
|
||||||
from datasets import load_dataset, load_metric
|
from datasets import load_dataset, load_metric
|
||||||
|
|
||||||
import transformers
|
import transformers
|
||||||
|
from trainer_seq2seq_qa import QuestionAnsweringSeq2SeqTrainer
|
||||||
from transformers import (
|
from transformers import (
|
||||||
AutoConfig,
|
AutoConfig,
|
||||||
AutoModelForSeq2SeqLM,
|
AutoModelForSeq2SeqLM,
|
||||||
AutoTokenizer,
|
AutoTokenizer,
|
||||||
DataCollatorForSeq2Seq,
|
DataCollatorForSeq2Seq,
|
||||||
HfArgumentParser,
|
HfArgumentParser,
|
||||||
Seq2SeqTrainer,
|
|
||||||
Seq2SeqTrainingArguments,
|
Seq2SeqTrainingArguments,
|
||||||
set_seed,
|
set_seed,
|
||||||
)
|
)
|
||||||
from transformers.trainer_utils import EvalPrediction, get_last_checkpoint
|
from transformers.trainer_utils import EvalLoopOutput, EvalPrediction, get_last_checkpoint
|
||||||
from transformers.utils import check_min_version
|
from transformers.utils import check_min_version
|
||||||
from transformers.utils.versions import require_version
|
from transformers.utils.versions import require_version
|
||||||
|
|
||||||
@ -411,7 +409,7 @@ def main():
|
|||||||
)
|
)
|
||||||
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
||||||
|
|
||||||
def preprocess_sqaud_batch(
|
def preprocess_squad_batch(
|
||||||
examples,
|
examples,
|
||||||
question_column: str,
|
question_column: str,
|
||||||
context_column: str,
|
context_column: str,
|
||||||
@ -422,14 +420,14 @@ def main():
|
|||||||
answers = examples[answer_column]
|
answers = examples[answer_column]
|
||||||
|
|
||||||
def generate_input(_question, _context):
|
def generate_input(_question, _context):
|
||||||
return " ".join(["question:", _question, "context:", _context])
|
return " ".join(["question:", _question.lstrip(), "context:", _context.lstrip()])
|
||||||
|
|
||||||
inputs = [generate_input(question, context) for question, context in zip(questions, contexts)]
|
inputs = [generate_input(question, context) for question, context in zip(questions, contexts)]
|
||||||
targets = [answer["text"][0] if len(answer["text"]) > 0 else "" for answer in answers]
|
targets = [answer["text"][0] if len(answer["text"]) > 0 else "" for answer in answers]
|
||||||
return inputs, targets
|
return inputs, targets
|
||||||
|
|
||||||
def preprocess_function(examples):
|
def preprocess_function(examples):
|
||||||
inputs, targets = preprocess_sqaud_batch(examples, question_column, context_column, answer_column)
|
inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column)
|
||||||
|
|
||||||
model_inputs = tokenizer(inputs, max_length=max_seq_length, padding=padding, truncation=True)
|
model_inputs = tokenizer(inputs, max_length=max_seq_length, padding=padding, truncation=True)
|
||||||
# Setup the tokenizer for targets
|
# Setup the tokenizer for targets
|
||||||
@ -446,6 +444,45 @@ def main():
|
|||||||
model_inputs["labels"] = labels["input_ids"]
|
model_inputs["labels"] = labels["input_ids"]
|
||||||
return model_inputs
|
return model_inputs
|
||||||
|
|
||||||
|
# Validation preprocessing
|
||||||
|
def preprocess_validation_function(examples):
|
||||||
|
inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column)
|
||||||
|
|
||||||
|
model_inputs = tokenizer(
|
||||||
|
inputs,
|
||||||
|
max_length=max_seq_length,
|
||||||
|
padding=padding,
|
||||||
|
truncation=True,
|
||||||
|
return_overflowing_tokens=True,
|
||||||
|
return_offsets_mapping=True,
|
||||||
|
)
|
||||||
|
# Setup the tokenizer for targets
|
||||||
|
with tokenizer.as_target_tokenizer():
|
||||||
|
labels = tokenizer(targets, max_length=max_answer_length, padding=padding, truncation=True)
|
||||||
|
|
||||||
|
# Since one example might give us several features if it has a long context, we need a map from a feature to
|
||||||
|
# its corresponding example. This key gives us just that.
|
||||||
|
sample_mapping = model_inputs.pop("overflow_to_sample_mapping")
|
||||||
|
|
||||||
|
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
|
||||||
|
# corresponding example_id and we will store the offset mappings.
|
||||||
|
model_inputs["example_id"] = []
|
||||||
|
|
||||||
|
for i in range(len(model_inputs["input_ids"])):
|
||||||
|
# One example can give several spans, this is the index of the example containing this span of text.
|
||||||
|
sample_index = sample_mapping[i]
|
||||||
|
model_inputs["example_id"].append(examples["id"][sample_index])
|
||||||
|
|
||||||
|
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
|
||||||
|
# padding in the loss.
|
||||||
|
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
|
||||||
|
labels["input_ids"] = [
|
||||||
|
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
|
||||||
|
]
|
||||||
|
|
||||||
|
model_inputs["labels"] = labels["input_ids"]
|
||||||
|
return model_inputs
|
||||||
|
|
||||||
if training_args.do_train:
|
if training_args.do_train:
|
||||||
if "train" not in raw_datasets:
|
if "train" not in raw_datasets:
|
||||||
raise ValueError("--do_train requires a train dataset")
|
raise ValueError("--do_train requires a train dataset")
|
||||||
@ -477,7 +514,7 @@ def main():
|
|||||||
# Validation Feature Creation
|
# Validation Feature Creation
|
||||||
with training_args.main_process_first(desc="validation dataset map pre-processing"):
|
with training_args.main_process_first(desc="validation dataset map pre-processing"):
|
||||||
eval_dataset = eval_examples.map(
|
eval_dataset = eval_examples.map(
|
||||||
preprocess_function,
|
preprocess_validation_function,
|
||||||
batched=True,
|
batched=True,
|
||||||
num_proc=data_args.preprocessing_num_workers,
|
num_proc=data_args.preprocessing_num_workers,
|
||||||
remove_columns=column_names,
|
remove_columns=column_names,
|
||||||
@ -498,7 +535,7 @@ def main():
|
|||||||
# Predict Feature Creation
|
# Predict Feature Creation
|
||||||
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
|
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
|
||||||
predict_dataset = predict_examples.map(
|
predict_dataset = predict_examples.map(
|
||||||
preprocess_function,
|
preprocess_validation_function,
|
||||||
batched=True,
|
batched=True,
|
||||||
num_proc=data_args.preprocessing_num_workers,
|
num_proc=data_args.preprocessing_num_workers,
|
||||||
remove_columns=column_names,
|
remove_columns=column_names,
|
||||||
@ -518,50 +555,53 @@ def main():
|
|||||||
pad_to_multiple_of=8 if training_args.fp16 else None,
|
pad_to_multiple_of=8 if training_args.fp16 else None,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
metric = load_metric("squad_v2" if data_args.version_2_with_negative else "squad")
|
||||||
|
|
||||||
|
def compute_metrics(p: EvalPrediction):
|
||||||
|
return metric.compute(predictions=p.predictions, references=p.label_ids)
|
||||||
|
|
||||||
# Post-processing:
|
# Post-processing:
|
||||||
def postprocess_text(preds, labels):
|
def post_processing_function(
|
||||||
preds = [" ".join(pred) for pred in preds]
|
examples: datasets.Dataset, features: datasets.Dataset, outputs: EvalLoopOutput, stage="eval"
|
||||||
preds = [pred.strip() for pred in preds]
|
):
|
||||||
labels = [label.strip() for label in labels]
|
# Decode the predicted tokens.
|
||||||
|
preds = outputs.predictions
|
||||||
# rougeLSum expects newline after each sentence
|
|
||||||
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
|
|
||||||
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
|
|
||||||
|
|
||||||
return preds, labels
|
|
||||||
|
|
||||||
metric = load_metric("rouge")
|
|
||||||
|
|
||||||
def compute_metrics(eval_preds: EvalPrediction):
|
|
||||||
preds, labels = eval_preds
|
|
||||||
if isinstance(preds, tuple):
|
if isinstance(preds, tuple):
|
||||||
preds = preds[0]
|
preds = preds[0]
|
||||||
decoded_preds = [tokenizer.batch_decode(pred, skip_special_tokens=True) for pred in preds]
|
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
||||||
if data_args.ignore_pad_token_for_loss:
|
|
||||||
# Replace -100 in the labels as we can't decode them.
|
|
||||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
|
||||||
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
|
||||||
|
|
||||||
# Some simple post-processing
|
# Build a map example to its corresponding features.
|
||||||
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
|
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
|
||||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
feature_per_example = {example_id_to_index[feature["example_id"]]: i for i, feature in enumerate(features)}
|
||||||
# Extract a few results from ROUGE
|
predictions = {}
|
||||||
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
|
# Let's loop over all the examples!
|
||||||
|
for example_index, example in enumerate(examples):
|
||||||
|
# This is the index of the feature associated to the current example.
|
||||||
|
feature_index = feature_per_example[example_index]
|
||||||
|
predictions[example["id"]] = decoded_preds[feature_index]
|
||||||
|
|
||||||
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
|
# Format the result to the format the metric expects.
|
||||||
result["gen_len"] = np.mean(prediction_lens)
|
if data_args.version_2_with_negative:
|
||||||
result = {k: round(v, 4) for k, v in result.items()}
|
formatted_predictions = [
|
||||||
return result
|
{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]
|
||||||
|
|
||||||
|
references = [{"id": ex["id"], "answers": ex[answer_column]} for ex in examples]
|
||||||
|
return EvalPrediction(predictions=formatted_predictions, label_ids=references)
|
||||||
|
|
||||||
# Initialize our Trainer
|
# Initialize our Trainer
|
||||||
trainer = Seq2SeqTrainer(
|
trainer = QuestionAnsweringSeq2SeqTrainer(
|
||||||
model=model,
|
model=model,
|
||||||
args=training_args,
|
args=training_args,
|
||||||
train_dataset=train_dataset if training_args.do_train else None,
|
train_dataset=train_dataset if training_args.do_train else None,
|
||||||
eval_dataset=eval_dataset if training_args.do_eval else None,
|
eval_dataset=eval_dataset if training_args.do_eval else None,
|
||||||
|
eval_examples=eval_examples if training_args.do_eval else None,
|
||||||
tokenizer=tokenizer,
|
tokenizer=tokenizer,
|
||||||
data_collator=data_collator,
|
data_collator=data_collator,
|
||||||
compute_metrics=compute_metrics,
|
compute_metrics=compute_metrics,
|
||||||
|
post_process_function=post_processing_function,
|
||||||
)
|
)
|
||||||
|
|
||||||
# Training
|
# Training
|
||||||
|
120
examples/pytorch/question-answering/trainer_seq2seq_qa.py
Normal file
120
examples/pytorch/question-answering/trainer_seq2seq_qa.py
Normal file
@ -0,0 +1,120 @@
|
|||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2021 The HuggingFace Team All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
"""
|
||||||
|
A subclass of `Trainer` specific to Question-Answering tasks
|
||||||
|
"""
|
||||||
|
from typing import Dict, List, Optional
|
||||||
|
|
||||||
|
from torch.utils.data import Dataset
|
||||||
|
|
||||||
|
from transformers import Seq2SeqTrainer, is_torch_tpu_available
|
||||||
|
from transformers.trainer_utils import PredictionOutput
|
||||||
|
|
||||||
|
|
||||||
|
if is_torch_tpu_available():
|
||||||
|
import torch_xla.core.xla_model as xm
|
||||||
|
import torch_xla.debug.metrics as met
|
||||||
|
|
||||||
|
|
||||||
|
class QuestionAnsweringSeq2SeqTrainer(Seq2SeqTrainer):
|
||||||
|
def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.eval_examples = eval_examples
|
||||||
|
self.post_process_function = post_process_function
|
||||||
|
|
||||||
|
# def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"):
|
||||||
|
def evaluate(
|
||||||
|
self,
|
||||||
|
eval_dataset: Optional[Dataset] = None,
|
||||||
|
eval_examples=None,
|
||||||
|
ignore_keys: Optional[List[str]] = None,
|
||||||
|
metric_key_prefix: str = "eval",
|
||||||
|
max_length: Optional[int] = None,
|
||||||
|
num_beams: Optional[int] = None,
|
||||||
|
) -> Dict[str, float]:
|
||||||
|
self._max_length = max_length if max_length is not None else self.args.generation_max_length
|
||||||
|
self._num_beams = num_beams if num_beams is not None else self.args.generation_num_beams
|
||||||
|
|
||||||
|
eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
|
||||||
|
eval_dataloader = self.get_eval_dataloader(eval_dataset)
|
||||||
|
eval_examples = self.eval_examples if eval_examples is None else eval_examples
|
||||||
|
|
||||||
|
# Temporarily disable metric computation, we will do it in the loop here.
|
||||||
|
compute_metrics = self.compute_metrics
|
||||||
|
self.compute_metrics = None
|
||||||
|
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
|
||||||
|
try:
|
||||||
|
output = eval_loop(
|
||||||
|
eval_dataloader,
|
||||||
|
description="Evaluation",
|
||||||
|
# No point gathering the predictions if there are no metrics, otherwise we defer to
|
||||||
|
# self.args.prediction_loss_only
|
||||||
|
prediction_loss_only=True if compute_metrics is None else None,
|
||||||
|
ignore_keys=ignore_keys,
|
||||||
|
)
|
||||||
|
finally:
|
||||||
|
self.compute_metrics = compute_metrics
|
||||||
|
|
||||||
|
if self.post_process_function is not None and self.compute_metrics is not None:
|
||||||
|
eval_preds = self.post_process_function(eval_examples, eval_dataset, output)
|
||||||
|
metrics = self.compute_metrics(eval_preds)
|
||||||
|
|
||||||
|
# Prefix all keys with metric_key_prefix + '_'
|
||||||
|
for key in list(metrics.keys()):
|
||||||
|
if not key.startswith(f"{metric_key_prefix}_"):
|
||||||
|
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
|
||||||
|
|
||||||
|
self.log(metrics)
|
||||||
|
else:
|
||||||
|
metrics = {}
|
||||||
|
|
||||||
|
if self.args.tpu_metrics_debug or self.args.debug:
|
||||||
|
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
|
||||||
|
xm.master_print(met.metrics_report())
|
||||||
|
|
||||||
|
self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)
|
||||||
|
return metrics
|
||||||
|
|
||||||
|
def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"):
|
||||||
|
predict_dataloader = self.get_test_dataloader(predict_dataset)
|
||||||
|
|
||||||
|
# Temporarily disable metric computation, we will do it in the loop here.
|
||||||
|
compute_metrics = self.compute_metrics
|
||||||
|
self.compute_metrics = None
|
||||||
|
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
|
||||||
|
try:
|
||||||
|
output = eval_loop(
|
||||||
|
predict_dataloader,
|
||||||
|
description="Prediction",
|
||||||
|
# No point gathering the predictions if there are no metrics, otherwise we defer to
|
||||||
|
# self.args.prediction_loss_only
|
||||||
|
prediction_loss_only=True if compute_metrics is None else None,
|
||||||
|
ignore_keys=ignore_keys,
|
||||||
|
)
|
||||||
|
finally:
|
||||||
|
self.compute_metrics = compute_metrics
|
||||||
|
|
||||||
|
if self.post_process_function is None or self.compute_metrics is None:
|
||||||
|
return output
|
||||||
|
|
||||||
|
predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict")
|
||||||
|
metrics = self.compute_metrics(predictions)
|
||||||
|
|
||||||
|
# Prefix all keys with metric_key_prefix + '_'
|
||||||
|
for key in list(metrics.keys()):
|
||||||
|
if not key.startswith(f"{metric_key_prefix}_"):
|
||||||
|
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
|
||||||
|
|
||||||
|
return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics)
|
@ -274,10 +274,8 @@ class ExamplesTests(TestCasePlus):
|
|||||||
with patch.object(sys, "argv", testargs):
|
with patch.object(sys, "argv", testargs):
|
||||||
run_squad_seq2seq.main()
|
run_squad_seq2seq.main()
|
||||||
result = get_results(tmp_dir)
|
result = get_results(tmp_dir)
|
||||||
self.assertGreaterEqual(result["eval_rouge1"], 10)
|
self.assertGreaterEqual(result["eval_f1"], 30)
|
||||||
self.assertGreaterEqual(result["eval_rouge2"], 10)
|
self.assertGreaterEqual(result["eval_exact"], 30)
|
||||||
self.assertGreaterEqual(result["eval_rougeL"], 10)
|
|
||||||
self.assertGreaterEqual(result["eval_rougeLsum"], 10)
|
|
||||||
|
|
||||||
def test_run_swag(self):
|
def test_run_swag(self):
|
||||||
stream_handler = logging.StreamHandler(sys.stdout)
|
stream_handler = logging.StreamHandler(sys.stdout)
|
||||||
|
Loading…
Reference in New Issue
Block a user