mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-03 21:00:08 +06:00
Update Seq2Seq QA example script to use SQuAD metric. (#14335)
* Update postporcessing accordingly to use SQuAD metric. * Update assets accordingly based on SQuAD metrics. * Fix function naming error.
This commit is contained in:
parent
be4a6c64dc
commit
4f24058c58
@ -25,22 +25,20 @@ from dataclasses import dataclass, field
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import datasets
|
||||
import nltk
|
||||
import numpy as np
|
||||
from datasets import load_dataset, load_metric
|
||||
|
||||
import transformers
|
||||
from trainer_seq2seq_qa import QuestionAnsweringSeq2SeqTrainer
|
||||
from transformers import (
|
||||
AutoConfig,
|
||||
AutoModelForSeq2SeqLM,
|
||||
AutoTokenizer,
|
||||
DataCollatorForSeq2Seq,
|
||||
HfArgumentParser,
|
||||
Seq2SeqTrainer,
|
||||
Seq2SeqTrainingArguments,
|
||||
set_seed,
|
||||
)
|
||||
from transformers.trainer_utils import EvalPrediction, get_last_checkpoint
|
||||
from transformers.trainer_utils import EvalLoopOutput, EvalPrediction, get_last_checkpoint
|
||||
from transformers.utils import check_min_version
|
||||
from transformers.utils.versions import require_version
|
||||
|
||||
@ -411,7 +409,7 @@ def main():
|
||||
)
|
||||
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
||||
|
||||
def preprocess_sqaud_batch(
|
||||
def preprocess_squad_batch(
|
||||
examples,
|
||||
question_column: str,
|
||||
context_column: str,
|
||||
@ -422,14 +420,14 @@ def main():
|
||||
answers = examples[answer_column]
|
||||
|
||||
def generate_input(_question, _context):
|
||||
return " ".join(["question:", _question, "context:", _context])
|
||||
return " ".join(["question:", _question.lstrip(), "context:", _context.lstrip()])
|
||||
|
||||
inputs = [generate_input(question, context) for question, context in zip(questions, contexts)]
|
||||
targets = [answer["text"][0] if len(answer["text"]) > 0 else "" for answer in answers]
|
||||
return inputs, targets
|
||||
|
||||
def preprocess_function(examples):
|
||||
inputs, targets = preprocess_sqaud_batch(examples, question_column, context_column, answer_column)
|
||||
inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column)
|
||||
|
||||
model_inputs = tokenizer(inputs, max_length=max_seq_length, padding=padding, truncation=True)
|
||||
# Setup the tokenizer for targets
|
||||
@ -446,6 +444,45 @@ def main():
|
||||
model_inputs["labels"] = labels["input_ids"]
|
||||
return model_inputs
|
||||
|
||||
# Validation preprocessing
|
||||
def preprocess_validation_function(examples):
|
||||
inputs, targets = preprocess_squad_batch(examples, question_column, context_column, answer_column)
|
||||
|
||||
model_inputs = tokenizer(
|
||||
inputs,
|
||||
max_length=max_seq_length,
|
||||
padding=padding,
|
||||
truncation=True,
|
||||
return_overflowing_tokens=True,
|
||||
return_offsets_mapping=True,
|
||||
)
|
||||
# Setup the tokenizer for targets
|
||||
with tokenizer.as_target_tokenizer():
|
||||
labels = tokenizer(targets, max_length=max_answer_length, padding=padding, truncation=True)
|
||||
|
||||
# Since one example might give us several features if it has a long context, we need a map from a feature to
|
||||
# its corresponding example. This key gives us just that.
|
||||
sample_mapping = model_inputs.pop("overflow_to_sample_mapping")
|
||||
|
||||
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
|
||||
# corresponding example_id and we will store the offset mappings.
|
||||
model_inputs["example_id"] = []
|
||||
|
||||
for i in range(len(model_inputs["input_ids"])):
|
||||
# One example can give several spans, this is the index of the example containing this span of text.
|
||||
sample_index = sample_mapping[i]
|
||||
model_inputs["example_id"].append(examples["id"][sample_index])
|
||||
|
||||
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
|
||||
# padding in the loss.
|
||||
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
|
||||
labels["input_ids"] = [
|
||||
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
|
||||
]
|
||||
|
||||
model_inputs["labels"] = labels["input_ids"]
|
||||
return model_inputs
|
||||
|
||||
if training_args.do_train:
|
||||
if "train" not in raw_datasets:
|
||||
raise ValueError("--do_train requires a train dataset")
|
||||
@ -477,7 +514,7 @@ def main():
|
||||
# Validation Feature Creation
|
||||
with training_args.main_process_first(desc="validation dataset map pre-processing"):
|
||||
eval_dataset = eval_examples.map(
|
||||
preprocess_function,
|
||||
preprocess_validation_function,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
@ -498,7 +535,7 @@ def main():
|
||||
# Predict Feature Creation
|
||||
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
|
||||
predict_dataset = predict_examples.map(
|
||||
preprocess_function,
|
||||
preprocess_validation_function,
|
||||
batched=True,
|
||||
num_proc=data_args.preprocessing_num_workers,
|
||||
remove_columns=column_names,
|
||||
@ -518,50 +555,53 @@ def main():
|
||||
pad_to_multiple_of=8 if training_args.fp16 else None,
|
||||
)
|
||||
|
||||
metric = load_metric("squad_v2" if data_args.version_2_with_negative else "squad")
|
||||
|
||||
def compute_metrics(p: EvalPrediction):
|
||||
return metric.compute(predictions=p.predictions, references=p.label_ids)
|
||||
|
||||
# Post-processing:
|
||||
def postprocess_text(preds, labels):
|
||||
preds = [" ".join(pred) for pred in preds]
|
||||
preds = [pred.strip() for pred in preds]
|
||||
labels = [label.strip() for label in labels]
|
||||
|
||||
# rougeLSum expects newline after each sentence
|
||||
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
|
||||
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
|
||||
|
||||
return preds, labels
|
||||
|
||||
metric = load_metric("rouge")
|
||||
|
||||
def compute_metrics(eval_preds: EvalPrediction):
|
||||
preds, labels = eval_preds
|
||||
def post_processing_function(
|
||||
examples: datasets.Dataset, features: datasets.Dataset, outputs: EvalLoopOutput, stage="eval"
|
||||
):
|
||||
# Decode the predicted tokens.
|
||||
preds = outputs.predictions
|
||||
if isinstance(preds, tuple):
|
||||
preds = preds[0]
|
||||
decoded_preds = [tokenizer.batch_decode(pred, skip_special_tokens=True) for pred in preds]
|
||||
if data_args.ignore_pad_token_for_loss:
|
||||
# Replace -100 in the labels as we can't decode them.
|
||||
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
|
||||
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
|
||||
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
|
||||
|
||||
# Some simple post-processing
|
||||
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
|
||||
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
|
||||
# Extract a few results from ROUGE
|
||||
result = {key: value.mid.fmeasure * 100 for key, value in result.items()}
|
||||
# Build a map example to its corresponding features.
|
||||
example_id_to_index = {k: i for i, k in enumerate(examples["id"])}
|
||||
feature_per_example = {example_id_to_index[feature["example_id"]]: i for i, feature in enumerate(features)}
|
||||
predictions = {}
|
||||
# Let's loop over all the examples!
|
||||
for example_index, example in enumerate(examples):
|
||||
# This is the index of the feature associated to the current example.
|
||||
feature_index = feature_per_example[example_index]
|
||||
predictions[example["id"]] = decoded_preds[feature_index]
|
||||
|
||||
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
|
||||
result["gen_len"] = np.mean(prediction_lens)
|
||||
result = {k: round(v, 4) for k, v in result.items()}
|
||||
return result
|
||||
# Format the result to the format the metric expects.
|
||||
if data_args.version_2_with_negative:
|
||||
formatted_predictions = [
|
||||
{"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items()
|
||||
]
|
||||
else:
|
||||
formatted_predictions = [{"id": k, "prediction_text": v} for k, v in predictions.items()]
|
||||
|
||||
references = [{"id": ex["id"], "answers": ex[answer_column]} for ex in examples]
|
||||
return EvalPrediction(predictions=formatted_predictions, label_ids=references)
|
||||
|
||||
# Initialize our Trainer
|
||||
trainer = Seq2SeqTrainer(
|
||||
trainer = QuestionAnsweringSeq2SeqTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset if training_args.do_train else None,
|
||||
eval_dataset=eval_dataset if training_args.do_eval else None,
|
||||
eval_examples=eval_examples if training_args.do_eval else None,
|
||||
tokenizer=tokenizer,
|
||||
data_collator=data_collator,
|
||||
compute_metrics=compute_metrics,
|
||||
post_process_function=post_processing_function,
|
||||
)
|
||||
|
||||
# Training
|
||||
|
120
examples/pytorch/question-answering/trainer_seq2seq_qa.py
Normal file
120
examples/pytorch/question-answering/trainer_seq2seq_qa.py
Normal file
@ -0,0 +1,120 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2021 The HuggingFace Team All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
A subclass of `Trainer` specific to Question-Answering tasks
|
||||
"""
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from transformers import Seq2SeqTrainer, is_torch_tpu_available
|
||||
from transformers.trainer_utils import PredictionOutput
|
||||
|
||||
|
||||
if is_torch_tpu_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
import torch_xla.debug.metrics as met
|
||||
|
||||
|
||||
class QuestionAnsweringSeq2SeqTrainer(Seq2SeqTrainer):
|
||||
def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.eval_examples = eval_examples
|
||||
self.post_process_function = post_process_function
|
||||
|
||||
# def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"):
|
||||
def evaluate(
|
||||
self,
|
||||
eval_dataset: Optional[Dataset] = None,
|
||||
eval_examples=None,
|
||||
ignore_keys: Optional[List[str]] = None,
|
||||
metric_key_prefix: str = "eval",
|
||||
max_length: Optional[int] = None,
|
||||
num_beams: Optional[int] = None,
|
||||
) -> Dict[str, float]:
|
||||
self._max_length = max_length if max_length is not None else self.args.generation_max_length
|
||||
self._num_beams = num_beams if num_beams is not None else self.args.generation_num_beams
|
||||
|
||||
eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
|
||||
eval_dataloader = self.get_eval_dataloader(eval_dataset)
|
||||
eval_examples = self.eval_examples if eval_examples is None else eval_examples
|
||||
|
||||
# Temporarily disable metric computation, we will do it in the loop here.
|
||||
compute_metrics = self.compute_metrics
|
||||
self.compute_metrics = None
|
||||
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
|
||||
try:
|
||||
output = eval_loop(
|
||||
eval_dataloader,
|
||||
description="Evaluation",
|
||||
# No point gathering the predictions if there are no metrics, otherwise we defer to
|
||||
# self.args.prediction_loss_only
|
||||
prediction_loss_only=True if compute_metrics is None else None,
|
||||
ignore_keys=ignore_keys,
|
||||
)
|
||||
finally:
|
||||
self.compute_metrics = compute_metrics
|
||||
|
||||
if self.post_process_function is not None and self.compute_metrics is not None:
|
||||
eval_preds = self.post_process_function(eval_examples, eval_dataset, output)
|
||||
metrics = self.compute_metrics(eval_preds)
|
||||
|
||||
# Prefix all keys with metric_key_prefix + '_'
|
||||
for key in list(metrics.keys()):
|
||||
if not key.startswith(f"{metric_key_prefix}_"):
|
||||
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
|
||||
|
||||
self.log(metrics)
|
||||
else:
|
||||
metrics = {}
|
||||
|
||||
if self.args.tpu_metrics_debug or self.args.debug:
|
||||
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
|
||||
xm.master_print(met.metrics_report())
|
||||
|
||||
self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)
|
||||
return metrics
|
||||
|
||||
def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"):
|
||||
predict_dataloader = self.get_test_dataloader(predict_dataset)
|
||||
|
||||
# Temporarily disable metric computation, we will do it in the loop here.
|
||||
compute_metrics = self.compute_metrics
|
||||
self.compute_metrics = None
|
||||
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
|
||||
try:
|
||||
output = eval_loop(
|
||||
predict_dataloader,
|
||||
description="Prediction",
|
||||
# No point gathering the predictions if there are no metrics, otherwise we defer to
|
||||
# self.args.prediction_loss_only
|
||||
prediction_loss_only=True if compute_metrics is None else None,
|
||||
ignore_keys=ignore_keys,
|
||||
)
|
||||
finally:
|
||||
self.compute_metrics = compute_metrics
|
||||
|
||||
if self.post_process_function is None or self.compute_metrics is None:
|
||||
return output
|
||||
|
||||
predictions = self.post_process_function(predict_examples, predict_dataset, output.predictions, "predict")
|
||||
metrics = self.compute_metrics(predictions)
|
||||
|
||||
# Prefix all keys with metric_key_prefix + '_'
|
||||
for key in list(metrics.keys()):
|
||||
if not key.startswith(f"{metric_key_prefix}_"):
|
||||
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
|
||||
|
||||
return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics)
|
@ -274,10 +274,8 @@ class ExamplesTests(TestCasePlus):
|
||||
with patch.object(sys, "argv", testargs):
|
||||
run_squad_seq2seq.main()
|
||||
result = get_results(tmp_dir)
|
||||
self.assertGreaterEqual(result["eval_rouge1"], 10)
|
||||
self.assertGreaterEqual(result["eval_rouge2"], 10)
|
||||
self.assertGreaterEqual(result["eval_rougeL"], 10)
|
||||
self.assertGreaterEqual(result["eval_rougeLsum"], 10)
|
||||
self.assertGreaterEqual(result["eval_f1"], 30)
|
||||
self.assertGreaterEqual(result["eval_exact"], 30)
|
||||
|
||||
def test_run_swag(self):
|
||||
stream_handler = logging.StreamHandler(sys.stdout)
|
||||
|
Loading…
Reference in New Issue
Block a user