mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 02:02:21 +06:00
Update README.md
This commit is contained in:
parent
55eccfbb49
commit
4e5b036bdd
@ -1,22 +1,36 @@
|
||||
---
|
||||
language: en
|
||||
license: apache-2.0
|
||||
datasets:
|
||||
- wiki_dpr
|
||||
---
|
||||
## RAG
|
||||
|
||||
This is the RAG-Token Model of the the paper [Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks](https://arxiv.org/pdf/2005.11401.pdf)
|
||||
by Patrick Lewis, Ethan Perez, Aleksandara Piktus et al.
|
||||
|
||||
The model is a *uncased* model, which means that capital letters are simply converted to lower-case letters.
|
||||
|
||||
The model consits of a *question_encoder*, *retriever* and a *generator*. The retriever is extracts relevant passages from the *wiki_dpr* `train` datasets, which is linked above.
|
||||
The question_encoder and retriever are based on `facebook/dpr-question_encoder-single-nq-base` and `facebook/bart-large`, which were jointly finetuned on
|
||||
on the *wiki_dpr* QA dataset in an end-to-end fashion.
|
||||
|
||||
## Usage:
|
||||
|
||||
```python
|
||||
**Note**: In the usage example below only the *dummy* retriever of *wiki_dpr* is used because the real retriever requires to over 40 GB of RAM.
|
||||
The model can generate questions to any question as follows:
|
||||
|
||||
```python
|
||||
from transformers import RagTokenizer, RagRetriever, RagTokenForGeneration
|
||||
|
||||
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
|
||||
retriever = RagRetriever.from_pretrained("facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True)
|
||||
model = RagTokenForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever)
|
||||
|
||||
input_dict = tokenizer.prepare_seq2seq_batch("How many people live in Paris?", "In Paris, there are 10 million people.", return_tensors="pt")
|
||||
input_dict = tokenizer.prepare_seq2seq_batch("who holds the record in 100m freestyle", return_tensors="pt")
|
||||
|
||||
generated = model.generate(input_ids=input_dict["input_ids"])
|
||||
print(tokenizer.batch_decode(generated, skip_special_tokens=True)[0])
|
||||
generated = model.generate(input_ids=input_dict["input_ids"])
|
||||
print(tokenizer.batch_decode(generated, skip_special_tokens=True)[0])
|
||||
|
||||
# generated_string should give 270,000,000 -> a bit too many I think
|
||||
# should give michael phelps => sounds reasonable
|
||||
```
|
||||
|
Loading…
Reference in New Issue
Block a user