mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 10:12:23 +06:00
Add model card for the NER model (#4162)
This commit is contained in:
parent
17ae0363db
commit
4c3be2e718
556
model_cards/jplu/tf-xlm-r-ner-40-lang/README.md
Normal file
556
model_cards/jplu/tf-xlm-r-ner-40-lang/README.md
Normal file
@ -0,0 +1,556 @@
|
||||
# XLM-R + NER
|
||||
|
||||
This model is a fine-tuned [XLM-Roberta-base](https://arxiv.org/abs/1911.02116) over the 40 languages proposed in [XTREME]([https://github.com/google-research/xtreme](https://github.com/google-research/xtreme)) from [Wikiann](https://aclweb.org/anthology/P17-1178). This is still an on-going work and the results will be updated everytime an improvement is reached.
|
||||
|
||||
The covered labels are:
|
||||
```
|
||||
LOC
|
||||
ORG
|
||||
PER
|
||||
O
|
||||
```
|
||||
|
||||
## Metrics on evaluation set:
|
||||
### Average over the 40 languages
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.81 0.81 0.81 102452
|
||||
PER 0.90 0.91 0.91 108978
|
||||
LOC 0.86 0.89 0.87 121868
|
||||
|
||||
micro avg 0.86 0.87 0.87 333298
|
||||
macro avg 0.86 0.87 0.87 333298
|
||||
```
|
||||
|
||||
### Afrikaans
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.89 0.88 0.88 582
|
||||
PER 0.89 0.97 0.93 369
|
||||
LOC 0.84 0.90 0.86 518
|
||||
|
||||
micro avg 0.87 0.91 0.89 1469
|
||||
macro avg 0.87 0.91 0.89 1469
|
||||
```
|
||||
|
||||
### Arabic
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.83 0.84 0.84 3507
|
||||
PER 0.90 0.91 0.91 3643
|
||||
LOC 0.88 0.89 0.88 3604
|
||||
|
||||
micro avg 0.87 0.88 0.88 10754
|
||||
macro avg 0.87 0.88 0.88 10754
|
||||
```
|
||||
|
||||
### Basque
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.88 0.93 0.91 5228
|
||||
ORG 0.86 0.81 0.83 3654
|
||||
PER 0.91 0.91 0.91 4072
|
||||
|
||||
micro avg 0.89 0.89 0.89 12954
|
||||
macro avg 0.89 0.89 0.89 12954
|
||||
```
|
||||
|
||||
### Bengali
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.86 0.89 0.87 325
|
||||
LOC 0.91 0.91 0.91 406
|
||||
PER 0.96 0.95 0.95 364
|
||||
|
||||
micro avg 0.91 0.92 0.91 1095
|
||||
macro avg 0.91 0.92 0.91 1095
|
||||
```
|
||||
|
||||
### Bulgarian
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.86 0.83 0.84 3661
|
||||
PER 0.92 0.95 0.94 4006
|
||||
LOC 0.92 0.95 0.94 6449
|
||||
|
||||
micro avg 0.91 0.92 0.91 14116
|
||||
macro avg 0.91 0.92 0.91 14116
|
||||
```
|
||||
|
||||
### Burmese
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.60 0.86 0.71 37
|
||||
ORG 0.68 0.63 0.66 30
|
||||
PER 0.44 0.44 0.44 36
|
||||
|
||||
micro avg 0.57 0.65 0.61 103
|
||||
macro avg 0.57 0.65 0.60 103
|
||||
```
|
||||
|
||||
### Chinese
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.70 0.69 0.70 4022
|
||||
LOC 0.76 0.81 0.78 3830
|
||||
PER 0.84 0.84 0.84 3706
|
||||
|
||||
micro avg 0.76 0.78 0.77 11558
|
||||
macro avg 0.76 0.78 0.77 11558
|
||||
```
|
||||
|
||||
### Dutch
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.87 0.87 0.87 3930
|
||||
PER 0.95 0.95 0.95 4377
|
||||
LOC 0.91 0.92 0.91 4813
|
||||
|
||||
micro avg 0.91 0.92 0.91 13120
|
||||
macro avg 0.91 0.92 0.91 13120
|
||||
```
|
||||
|
||||
### English
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.83 0.84 0.84 4781
|
||||
PER 0.89 0.90 0.89 4559
|
||||
ORG 0.75 0.75 0.75 4633
|
||||
|
||||
micro avg 0.82 0.83 0.83 13973
|
||||
macro avg 0.82 0.83 0.83 13973
|
||||
```
|
||||
|
||||
### Estonian
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.89 0.92 0.91 5654
|
||||
ORG 0.85 0.85 0.85 3878
|
||||
PER 0.94 0.94 0.94 4026
|
||||
|
||||
micro avg 0.90 0.91 0.90 13558
|
||||
macro avg 0.90 0.91 0.90 13558
|
||||
```
|
||||
|
||||
### Finnish
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.84 0.83 0.84 4104
|
||||
LOC 0.88 0.90 0.89 5307
|
||||
PER 0.95 0.94 0.94 4519
|
||||
|
||||
micro avg 0.89 0.89 0.89 13930
|
||||
macro avg 0.89 0.89 0.89 13930
|
||||
```
|
||||
|
||||
### French
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.90 0.89 0.89 4808
|
||||
ORG 0.84 0.87 0.85 3876
|
||||
PER 0.94 0.93 0.94 4249
|
||||
|
||||
micro avg 0.89 0.90 0.90 12933
|
||||
macro avg 0.89 0.90 0.90 12933
|
||||
```
|
||||
|
||||
### Georgian
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
PER 0.90 0.91 0.90 3964
|
||||
ORG 0.83 0.77 0.80 3757
|
||||
LOC 0.82 0.88 0.85 4894
|
||||
|
||||
micro avg 0.84 0.86 0.85 12615
|
||||
macro avg 0.84 0.86 0.85 12615
|
||||
```
|
||||
|
||||
### German
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.85 0.90 0.87 4939
|
||||
PER 0.94 0.91 0.92 4452
|
||||
ORG 0.79 0.78 0.79 4247
|
||||
|
||||
micro avg 0.86 0.86 0.86 13638
|
||||
macro avg 0.86 0.86 0.86 13638
|
||||
```
|
||||
|
||||
### Greek
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.86 0.85 0.85 3771
|
||||
LOC 0.88 0.91 0.90 4436
|
||||
PER 0.91 0.93 0.92 3894
|
||||
|
||||
micro avg 0.88 0.90 0.89 12101
|
||||
macro avg 0.88 0.90 0.89 12101
|
||||
```
|
||||
|
||||
### Hebrew
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
PER 0.87 0.88 0.87 4206
|
||||
ORG 0.76 0.75 0.76 4190
|
||||
LOC 0.85 0.85 0.85 4538
|
||||
|
||||
micro avg 0.83 0.83 0.83 12934
|
||||
macro avg 0.82 0.83 0.83 12934
|
||||
```
|
||||
|
||||
### Hindi
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.78 0.81 0.79 362
|
||||
LOC 0.83 0.85 0.84 422
|
||||
PER 0.90 0.95 0.92 427
|
||||
|
||||
micro avg 0.84 0.87 0.85 1211
|
||||
macro avg 0.84 0.87 0.85 1211
|
||||
```
|
||||
|
||||
### Hungarian
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
PER 0.95 0.95 0.95 4347
|
||||
ORG 0.87 0.88 0.87 3988
|
||||
LOC 0.90 0.92 0.91 5544
|
||||
|
||||
micro avg 0.91 0.92 0.91 13879
|
||||
macro avg 0.91 0.92 0.91 13879
|
||||
```
|
||||
|
||||
### Indonesian
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.88 0.89 0.88 3735
|
||||
LOC 0.93 0.95 0.94 3694
|
||||
PER 0.93 0.93 0.93 3947
|
||||
|
||||
micro avg 0.91 0.92 0.92 11376
|
||||
macro avg 0.91 0.92 0.92 11376
|
||||
```
|
||||
|
||||
### Italian
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.88 0.88 0.88 4592
|
||||
ORG 0.86 0.86 0.86 4088
|
||||
PER 0.96 0.96 0.96 4732
|
||||
|
||||
micro avg 0.90 0.90 0.90 13412
|
||||
macro avg 0.90 0.90 0.90 13412
|
||||
```
|
||||
|
||||
### Japanese
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.62 0.61 0.62 4184
|
||||
PER 0.76 0.81 0.78 3812
|
||||
LOC 0.68 0.74 0.71 4281
|
||||
|
||||
micro avg 0.69 0.72 0.70 12277
|
||||
macro avg 0.69 0.72 0.70 12277
|
||||
```
|
||||
|
||||
### Javanese
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.79 0.80 0.80 46
|
||||
PER 0.81 0.96 0.88 26
|
||||
LOC 0.75 0.75 0.75 40
|
||||
|
||||
micro avg 0.78 0.82 0.80 112
|
||||
macro avg 0.78 0.82 0.80 112
|
||||
```
|
||||
|
||||
### Kazakh
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.76 0.61 0.68 307
|
||||
LOC 0.78 0.90 0.84 461
|
||||
PER 0.87 0.91 0.89 367
|
||||
|
||||
micro avg 0.81 0.83 0.82 1135
|
||||
macro avg 0.81 0.83 0.81 1135
|
||||
```
|
||||
|
||||
### Korean
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.86 0.89 0.88 5097
|
||||
ORG 0.79 0.74 0.77 4218
|
||||
PER 0.83 0.86 0.84 4014
|
||||
|
||||
micro avg 0.83 0.83 0.83 13329
|
||||
macro avg 0.83 0.83 0.83 13329
|
||||
```
|
||||
|
||||
### Malay
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.87 0.89 0.88 368
|
||||
PER 0.92 0.91 0.91 366
|
||||
LOC 0.94 0.95 0.95 354
|
||||
|
||||
micro avg 0.91 0.92 0.91 1088
|
||||
macro avg 0.91 0.92 0.91 1088
|
||||
```
|
||||
|
||||
### Malayalam
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.75 0.74 0.75 347
|
||||
PER 0.84 0.89 0.86 417
|
||||
LOC 0.74 0.75 0.75 391
|
||||
|
||||
micro avg 0.78 0.80 0.79 1155
|
||||
macro avg 0.78 0.80 0.79 1155
|
||||
```
|
||||
|
||||
### Marathi
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
PER 0.89 0.94 0.92 394
|
||||
LOC 0.82 0.84 0.83 457
|
||||
ORG 0.84 0.78 0.81 339
|
||||
|
||||
micro avg 0.85 0.86 0.85 1190
|
||||
macro avg 0.85 0.86 0.85 1190
|
||||
```
|
||||
|
||||
### Persian
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
PER 0.93 0.92 0.93 3540
|
||||
LOC 0.93 0.93 0.93 3584
|
||||
ORG 0.89 0.92 0.90 3370
|
||||
|
||||
micro avg 0.92 0.92 0.92 10494
|
||||
macro avg 0.92 0.92 0.92 10494
|
||||
```
|
||||
|
||||
### Portuguese
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.90 0.91 0.91 4819
|
||||
PER 0.94 0.92 0.93 4184
|
||||
ORG 0.84 0.88 0.86 3670
|
||||
|
||||
micro avg 0.89 0.91 0.90 12673
|
||||
macro avg 0.90 0.91 0.90 12673
|
||||
```
|
||||
|
||||
### Russian
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
PER 0.93 0.96 0.95 3574
|
||||
LOC 0.87 0.89 0.88 4619
|
||||
ORG 0.82 0.80 0.81 3858
|
||||
|
||||
micro avg 0.87 0.88 0.88 12051
|
||||
macro avg 0.87 0.88 0.88 12051
|
||||
```
|
||||
|
||||
### Spanish
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
PER 0.95 0.93 0.94 3891
|
||||
ORG 0.86 0.88 0.87 3709
|
||||
LOC 0.89 0.91 0.90 4553
|
||||
|
||||
micro avg 0.90 0.91 0.90 12153
|
||||
macro avg 0.90 0.91 0.90 12153
|
||||
```
|
||||
|
||||
### Swahili
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.82 0.85 0.83 349
|
||||
PER 0.95 0.92 0.94 403
|
||||
LOC 0.86 0.89 0.88 450
|
||||
|
||||
micro avg 0.88 0.89 0.88 1202
|
||||
macro avg 0.88 0.89 0.88 1202
|
||||
```
|
||||
|
||||
### Tagalog
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.90 0.91 0.90 338
|
||||
ORG 0.83 0.91 0.87 339
|
||||
PER 0.96 0.93 0.95 350
|
||||
|
||||
micro avg 0.90 0.92 0.91 1027
|
||||
macro avg 0.90 0.92 0.91 1027
|
||||
```
|
||||
|
||||
### Tamil
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
PER 0.90 0.92 0.91 392
|
||||
ORG 0.77 0.76 0.76 370
|
||||
LOC 0.78 0.81 0.79 421
|
||||
|
||||
micro avg 0.82 0.83 0.82 1183
|
||||
macro avg 0.82 0.83 0.82 1183
|
||||
```
|
||||
|
||||
### Telugu
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.67 0.55 0.61 347
|
||||
LOC 0.78 0.87 0.82 453
|
||||
PER 0.73 0.86 0.79 393
|
||||
|
||||
micro avg 0.74 0.77 0.76 1193
|
||||
macro avg 0.73 0.77 0.75 1193
|
||||
```
|
||||
|
||||
### Thai
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.63 0.76 0.69 3928
|
||||
PER 0.78 0.83 0.80 6537
|
||||
ORG 0.59 0.59 0.59 4257
|
||||
|
||||
micro avg 0.68 0.74 0.71 14722
|
||||
macro avg 0.68 0.74 0.71 14722
|
||||
```
|
||||
|
||||
### Turkish
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
PER 0.94 0.94 0.94 4337
|
||||
ORG 0.88 0.89 0.88 4094
|
||||
LOC 0.90 0.92 0.91 4929
|
||||
|
||||
micro avg 0.90 0.92 0.91 13360
|
||||
macro avg 0.91 0.92 0.91 13360
|
||||
```
|
||||
|
||||
### Urdu
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.90 0.95 0.93 352
|
||||
PER 0.96 0.96 0.96 333
|
||||
ORG 0.91 0.90 0.90 326
|
||||
|
||||
micro avg 0.92 0.94 0.93 1011
|
||||
macro avg 0.92 0.94 0.93 1011
|
||||
```
|
||||
|
||||
### Vietnamese
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
ORG 0.86 0.87 0.86 3579
|
||||
LOC 0.88 0.91 0.90 3811
|
||||
PER 0.92 0.93 0.93 3717
|
||||
|
||||
micro avg 0.89 0.90 0.90 11107
|
||||
macro avg 0.89 0.90 0.90 11107
|
||||
```
|
||||
|
||||
### Yoruba
|
||||
```
|
||||
precision recall f1-score support
|
||||
|
||||
LOC 0.54 0.72 0.62 36
|
||||
ORG 0.58 0.31 0.41 35
|
||||
PER 0.77 1.00 0.87 36
|
||||
|
||||
micro avg 0.64 0.68 0.66 107
|
||||
macro avg 0.63 0.68 0.63 107
|
||||
```
|
||||
|
||||
## Reproduce the results
|
||||
Download and prepare the dataset from the [[https://github.com/google-research/xtreme#download-the-data](https://github.com/google-research/xtreme#download-the-data)](XTREME repo). Next, from the root of the transformers repo run:
|
||||
```
|
||||
cd examples/ner
|
||||
python run_tf_ner.py \
|
||||
--data_dir . \
|
||||
--labels ./labels.txt \
|
||||
--model_name_or_path jplu/tf-xlm-roberta-base \
|
||||
--output_dir model \
|
||||
--max-seq-length 128 \
|
||||
--num_train_epochs 2 \
|
||||
--per_gpu_train_batch_size 16 \
|
||||
--per_gpu_eval_batch_size 32 \
|
||||
--do_train \
|
||||
--do_eval \
|
||||
--logging_dir logs \
|
||||
--mode token-classification \
|
||||
--evaluate_during_training \
|
||||
--optimizer_name adamw
|
||||
```
|
||||
|
||||
## Usage with pipelines
|
||||
```python
|
||||
from transformers import pipeline
|
||||
|
||||
nlp_ner = pipeline(
|
||||
"ner",
|
||||
model="jplu/tf-xlm-r-ner-40-lang",
|
||||
tokenizer=(
|
||||
'jplu/tf-xlm-r-ner-40-lang',
|
||||
{"use_fast": True}
|
||||
))
|
||||
|
||||
text_fr = "Barack Obama est né à Hawaï."
|
||||
text_en = "Barack Obama was born in Hawaii."
|
||||
text_es = "Barack Obama nació en Hawai."
|
||||
text_zh = "巴拉克·奧巴馬(Barack Obama)出生於夏威夷。"
|
||||
text_ar = "ولد باراك أوباما في هاواي."
|
||||
|
||||
nlp_ner(text_fr)
|
||||
#Output: [{'word': '▁Barack', 'score': 0.9894659519195557, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9888848662376404, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.998701810836792, 'entity': 'LOC'}, {'word': 'ï', 'score': 0.9987035989761353, 'entity': 'LOC'}]
|
||||
nlp_ner(text_en)
|
||||
#Output: [{'word': '▁Barack', 'score': 0.9929141998291016, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9930834174156189, 'entity': 'PER'}, {'word': '▁Hawaii', 'score': 0.9986202120780945, 'entity': 'LOC'}]
|
||||
nlp_ner(test_es)
|
||||
#Output: [{'word': '▁Barack', 'score': 0.9944776296615601, 'entity': 'PER'}, {'word': '▁Obama', 'score': 0.9949177503585815, 'entity': 'PER'}, {'word': '▁Hawa', 'score': 0.9987911581993103, 'entity': 'LOC'}, {'word': 'i', 'score': 0.9984861612319946, 'entity': 'LOC'}]
|
||||
nlp_ner(test_zh)
|
||||
#Output: [{'word': '夏威夷', 'score': 0.9988449215888977, 'entity': 'LOC'}]
|
||||
nlp_ner(test_ar)
|
||||
#Output: [{'word': '▁با', 'score': 0.9903655648231506, 'entity': 'PER'}, {'word': 'راك', 'score': 0.9850614666938782, 'entity': 'PER'}, {'word': '▁أوباما', 'score': 0.9850308299064636, 'entity': 'PER'}, {'word': '▁ها', 'score': 0.9477543234825134, 'entity': 'LOC'}, {'word': 'وا', 'score': 0.9428229928016663, 'entity': 'LOC'}, {'word': 'ي', 'score': 0.9319471716880798, 'entity': 'LOC'}]
|
||||
|
||||
```
|
Loading…
Reference in New Issue
Block a user