mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 18:22:34 +06:00
chore: Fix typo s/exclusivelly/exclusively/ (#28361)
This commit is contained in:
parent
7226f3d2b0
commit
4ab5fb8941
@ -317,7 +317,7 @@ generation.
|
|||||||
|
|
||||||
## StoppingCriteria
|
## StoppingCriteria
|
||||||
|
|
||||||
A [`StoppingCriteria`] can be used to change when to stop generation (other than EOS token). Please note that this is exclusivelly available to our PyTorch implementations.
|
A [`StoppingCriteria`] can be used to change when to stop generation (other than EOS token). Please note that this is exclusively available to our PyTorch implementations.
|
||||||
|
|
||||||
[[autodoc]] StoppingCriteria
|
[[autodoc]] StoppingCriteria
|
||||||
- __call__
|
- __call__
|
||||||
@ -333,7 +333,7 @@ A [`StoppingCriteria`] can be used to change when to stop generation (other than
|
|||||||
|
|
||||||
## Constraints
|
## Constraints
|
||||||
|
|
||||||
A [`Constraint`] can be used to force the generation to include specific tokens or sequences in the output. Please note that this is exclusivelly available to our PyTorch implementations.
|
A [`Constraint`] can be used to force the generation to include specific tokens or sequences in the output. Please note that this is exclusively available to our PyTorch implementations.
|
||||||
|
|
||||||
[[autodoc]] Constraint
|
[[autodoc]] Constraint
|
||||||
|
|
||||||
|
@ -1889,7 +1889,7 @@ class ClassifierFreeGuidanceLogitsProcessor(LogitsProcessor):
|
|||||||
|
|
||||||
<Tip warning={true}>
|
<Tip warning={true}>
|
||||||
|
|
||||||
This logits processor is exclusivelly compatible with
|
This logits processor is exclusively compatible with
|
||||||
[MusicGen](https://huggingface.co/docs/transformers/main/en/model_doc/musicgen)
|
[MusicGen](https://huggingface.co/docs/transformers/main/en/model_doc/musicgen)
|
||||||
|
|
||||||
</Tip>
|
</Tip>
|
||||||
@ -1948,7 +1948,7 @@ class AlternatingCodebooksLogitsProcessor(LogitsProcessor):
|
|||||||
|
|
||||||
<Tip warning={true}>
|
<Tip warning={true}>
|
||||||
|
|
||||||
This logits processor is exclusivelly compatible with
|
This logits processor is exclusively compatible with
|
||||||
[Bark](https://huggingface.co/docs/transformers/en/model_doc/bark)'s fine submodel. See the model documentation
|
[Bark](https://huggingface.co/docs/transformers/en/model_doc/bark)'s fine submodel. See the model documentation
|
||||||
for examples.
|
for examples.
|
||||||
|
|
||||||
@ -2109,7 +2109,7 @@ class BarkEosPrioritizerLogitsProcessor(LogitsProcessor):
|
|||||||
|
|
||||||
<Tip warning={true}>
|
<Tip warning={true}>
|
||||||
|
|
||||||
This logits processor is exclusivelly compatible with
|
This logits processor is exclusively compatible with
|
||||||
[Bark](https://huggingface.co/docs/transformers/en/model_doc/bark). See the model documentation for examples.
|
[Bark](https://huggingface.co/docs/transformers/en/model_doc/bark). See the model documentation for examples.
|
||||||
|
|
||||||
</Tip>
|
</Tip>
|
||||||
|
@ -1240,7 +1240,7 @@ class LlamaForCausalLM(LlamaPreTrainedModel):
|
|||||||
|
|
||||||
# Keep only the unprocessed tokens:
|
# Keep only the unprocessed tokens:
|
||||||
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||||||
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||||||
# input)
|
# input)
|
||||||
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||||||
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
||||||
|
@ -504,7 +504,7 @@ class LlavaForConditionalGeneration(LlavaPreTrainedModel):
|
|||||||
|
|
||||||
# Keep only the unprocessed tokens:
|
# Keep only the unprocessed tokens:
|
||||||
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||||||
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||||||
# input)
|
# input)
|
||||||
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||||||
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
||||||
|
@ -1207,7 +1207,7 @@ class MistralForCausalLM(MistralPreTrainedModel):
|
|||||||
|
|
||||||
# Keep only the unprocessed tokens:
|
# Keep only the unprocessed tokens:
|
||||||
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||||||
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||||||
# input)
|
# input)
|
||||||
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||||||
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
||||||
|
@ -1387,7 +1387,7 @@ class MixtralForCausalLM(MixtralPreTrainedModel):
|
|||||||
|
|
||||||
# Keep only the unprocessed tokens:
|
# Keep only the unprocessed tokens:
|
||||||
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||||||
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||||||
# input)
|
# input)
|
||||||
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||||||
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
||||||
|
@ -838,7 +838,7 @@ class PersimmonForCausalLM(PersimmonPreTrainedModel):
|
|||||||
|
|
||||||
# Keep only the unprocessed tokens:
|
# Keep only the unprocessed tokens:
|
||||||
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||||||
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||||||
# input)
|
# input)
|
||||||
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||||||
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
||||||
|
@ -1095,7 +1095,7 @@ class PhiForCausalLM(PhiPreTrainedModel):
|
|||||||
|
|
||||||
# Keep only the unprocessed tokens:
|
# Keep only the unprocessed tokens:
|
||||||
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||||||
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||||||
# input)
|
# input)
|
||||||
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||||||
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
||||||
|
@ -503,7 +503,7 @@ class VipLlavaForConditionalGeneration(VipLlavaPreTrainedModel):
|
|||||||
|
|
||||||
# Keep only the unprocessed tokens:
|
# Keep only the unprocessed tokens:
|
||||||
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
||||||
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
||||||
# input)
|
# input)
|
||||||
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
||||||
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
||||||
|
Loading…
Reference in New Issue
Block a user