mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-31 10:12:23 +06:00
TF CTRL
This commit is contained in:
parent
7511f3dd89
commit
48ac24020d
@ -241,7 +241,6 @@ CTRL_INPUTS_DOCSTRING = r"""
|
||||
CTRL_START_DOCSTRING,
|
||||
)
|
||||
class CTRLModel(CTRLPreTrainedModel):
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.output_hidden_states = config.output_hidden_states
|
||||
@ -439,7 +438,6 @@ class CTRLModel(CTRLPreTrainedModel):
|
||||
CTRL_START_DOCSTRING,
|
||||
)
|
||||
class CTRLLMHeadModel(CTRLPreTrainedModel):
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.transformer = CTRLModel(config)
|
||||
|
@ -22,7 +22,7 @@ import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from .configuration_ctrl import CTRLConfig
|
||||
from .file_utils import add_start_docstrings
|
||||
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable
|
||||
from .modeling_tf_utils import TFPreTrainedModel, TFSharedEmbeddings, shape_list
|
||||
|
||||
|
||||
@ -352,82 +352,108 @@ class TFCTRLPreTrainedModel(TFPreTrainedModel):
|
||||
base_model_prefix = "transformer"
|
||||
|
||||
|
||||
CTRL_START_DOCSTRING = r""" CTRL model was proposed in
|
||||
`CTRL: A Conditional Transformer Language Model for Controllable Generation`_
|
||||
by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||
It's a causal (unidirectional) transformer pre-trained using language modeling on a very large
|
||||
corpus of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.).
|
||||
CTRL_START_DOCSTRING = r"""
|
||||
|
||||
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
|
||||
refer to the PyTorch documentation for all matter related to general usage and behavior.
|
||||
.. note::
|
||||
TF 2.0 models accepts two formats as inputs:
|
||||
|
||||
.. _`CTRL: A Conditional Transformer Language Model for Controllable Generation`:
|
||||
https://www.github.com/salesforce/ctrl
|
||||
- having all inputs as keyword arguments (like PyTorch models), or
|
||||
- having all inputs as a list, tuple or dict in the first positional arguments.
|
||||
|
||||
.. _`torch.nn.Module`:
|
||||
https://pytorch.org/docs/stable/nn.html#module
|
||||
This second option is useful when using :obj:`tf.keras.Model.fit()` method which currently requires having
|
||||
all the tensors in the first argument of the model call function: :obj:`model(inputs)`.
|
||||
|
||||
If you choose this second option, there are three possibilities you can use to gather all the input Tensors
|
||||
in the first positional argument :
|
||||
|
||||
- a single Tensor with input_ids only and nothing else: :obj:`model(inputs_ids)`
|
||||
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
||||
:obj:`model([input_ids, attention_mask])` or :obj:`model([input_ids, attention_mask, token_type_ids])`
|
||||
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
||||
:obj:`model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`
|
||||
|
||||
Parameters:
|
||||
config (:class:`~transformers.CTRLConfig`): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
||||
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
|
||||
"""
|
||||
|
||||
CTRL_INPUTS_DOCSTRING = r""" Inputs:
|
||||
**input_ids**: ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
CTRL is a model with absolute position embeddings so it's usually advised to pad the inputs on
|
||||
the right rather than the left.
|
||||
CTRL_INPUTS_DOCSTRING = r"""
|
||||
Args:
|
||||
input_ids (:obj:`Numpy array` or :obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length)`):
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
|
||||
Indices can be obtained using :class:`transformers.CTRLTokenizer`.
|
||||
See :func:`transformers.PreTrainedTokenizer.encode` and
|
||||
:func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
|
||||
**past**:
|
||||
list of ``Numpy array`` or ``tf.Tensor`` (one for each layer):
|
||||
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
|
||||
(see `past` output below). Can be used to speed up sequential decoding.
|
||||
**attention_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
|
||||
:func:`transformers.PreTrainedTokenizer.encode_plus` for details.
|
||||
|
||||
`What are input IDs? <../glossary.html#input-ids>`__
|
||||
past (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers`):
|
||||
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
|
||||
(see `past` output below). Can be used to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
attention_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
|
||||
Mask to avoid performing attention on padding token indices.
|
||||
Mask values selected in ``[0, 1]``:
|
||||
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
||||
**token_type_ids**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
|
||||
A parallel sequence of tokens (can be used to indicate various portions of the inputs).
|
||||
The embeddings from these tokens will be summed with the respective token embeddings.
|
||||
Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
|
||||
**position_ids**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length)``:
|
||||
|
||||
`What are attention masks? <../glossary.html#attention-mask>`__
|
||||
token_type_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
|
||||
Segment token indices to indicate first and second portions of the inputs.
|
||||
Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
|
||||
corresponds to a `sentence B` token
|
||||
|
||||
`What are token type IDs? <../glossary.html#token-type-ids>`_
|
||||
position_ids (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
|
||||
Indices of positions of each input sequence tokens in the position embeddings.
|
||||
Selected in the range ``[0, config.max_position_embeddings - 1]``.
|
||||
**head_mask**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
|
||||
|
||||
`What are position IDs? <../glossary.html#position-ids>`_
|
||||
head_mask (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
|
||||
Mask to nullify selected heads of the self-attention modules.
|
||||
Mask values selected in ``[0, 1]``:
|
||||
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
|
||||
**inputs_embeds**: (`optional`) ``Numpy array`` or ``tf.Tensor`` of shape ``(batch_size, sequence_length, embedding_dim)``:
|
||||
Optionally, instead of passing ``input_ids`` you can choose to directly pass an embedded representation.
|
||||
:obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
|
||||
input_embeds (:obj:`tf.Tensor` or :obj:`Numpy array` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
|
||||
Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
|
||||
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
||||
than the model's internal embedding lookup matrix.
|
||||
training (:obj:`boolean`, `optional`, defaults to :obj:`False`):
|
||||
Whether to activate dropout modules (if set to :obj:`True`) during training or to de-activate them
|
||||
(if set to :obj:`False`) for evaluation.
|
||||
"""
|
||||
|
||||
|
||||
@add_start_docstrings(
|
||||
"The bare CTRL Model transformer outputting raw hidden-states without any specific head on top.",
|
||||
CTRL_START_DOCSTRING,
|
||||
CTRL_INPUTS_DOCSTRING,
|
||||
)
|
||||
class TFCTRLModel(TFCTRLPreTrainedModel):
|
||||
r"""
|
||||
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
||||
**last_hidden_state**: ``tf.Tensor`` of shape ``(batch_size, sequence_length, hidden_size)``
|
||||
def __init__(self, config, *inputs, **kwargs):
|
||||
super().__init__(config, *inputs, **kwargs)
|
||||
self.transformer = TFCTRLMainLayer(config, name="transformer")
|
||||
|
||||
@add_start_docstrings_to_callable(CTRL_INPUTS_DOCSTRING)
|
||||
def call(self, inputs, **kwargs):
|
||||
r"""
|
||||
Return:
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (config) and inputs:
|
||||
last_hidden_state (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the last layer of the model.
|
||||
**past**:
|
||||
list of ``tf.Tensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
|
||||
that contains pre-computed hidden-states (key and values in the attention blocks).
|
||||
Can be used (see `past` input) to speed up sequential decoding.
|
||||
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
||||
list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
|
||||
of shape ``(batch_size, sequence_length, hidden_size)``:
|
||||
past (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`):
|
||||
Contains pre-computed hidden-states (key and values in the attention blocks).
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)` `optional`, returned when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
||||
list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -440,13 +466,7 @@ class TFCTRLModel(TFCTRLPreTrainedModel):
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, config, *inputs, **kwargs):
|
||||
super().__init__(config, *inputs, **kwargs)
|
||||
self.transformer = TFCTRLMainLayer(config, name="transformer")
|
||||
|
||||
def call(self, inputs, **kwargs):
|
||||
"""
|
||||
outputs = self.transformer(inputs, **kwargs)
|
||||
return outputs
|
||||
|
||||
@ -472,26 +492,41 @@ class TFCTRLLMHead(tf.keras.layers.Layer):
|
||||
|
||||
@add_start_docstrings(
|
||||
"""The CTRL Model transformer with a language modeling head on top
|
||||
(linear layer with weights tied to the input embeddings). """,
|
||||
(linear layer with weights tied to the input embeddings). """,
|
||||
CTRL_START_DOCSTRING,
|
||||
CTRL_INPUTS_DOCSTRING,
|
||||
)
|
||||
class TFCTRLLMHeadModel(TFCTRLPreTrainedModel):
|
||||
r"""
|
||||
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
||||
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
|
||||
def __init__(self, config, *inputs, **kwargs):
|
||||
super().__init__(config, *inputs, **kwargs)
|
||||
self.transformer = TFCTRLMainLayer(config, name="transformer")
|
||||
|
||||
self.lm_head = TFCTRLLMHead(config, self.transformer.w, name="lm_head")
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head.input_embeddings
|
||||
|
||||
@add_start_docstrings_to_callable(CTRL_INPUTS_DOCSTRING)
|
||||
def call(self, inputs, **kwargs):
|
||||
r"""
|
||||
Return:
|
||||
:obj:`tuple(tf.Tensor)` comprising various elements depending on the configuration (:obj:`~transformers.GPT2Config`) and inputs:
|
||||
prediction_scores (:obj:`tf.Tensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
**past**:
|
||||
list of ``tf.Tensor`` (one for each layer) of shape ``(2, batch_size, num_heads, sequence_length, embed_size_per_head)``:
|
||||
that contains pre-computed hidden-states (key and values in the attention blocks).
|
||||
Can be used (see `past` input) to speed up sequential decoding.
|
||||
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
||||
list of ``tf.Tensor`` (one for the output of each layer + the output of the embeddings)
|
||||
of shape ``(batch_size, sequence_length, hidden_size)``:
|
||||
past (:obj:`List[tf.Tensor]` of length :obj:`config.n_layers` with each tensor of shape :obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`):
|
||||
Contains pre-computed hidden-states (key and values in the attention blocks).
|
||||
Can be used (see `past` input) to speed up sequential decoding. The token ids which have their past given to this model
|
||||
should not be passed as input ids as they have already been computed.
|
||||
hidden_states (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_hidden_states=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for the output of the embeddings + one for the output of each layer)
|
||||
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
||||
list of ``tf.Tensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
attentions (:obj:`tuple(tf.Tensor)`, `optional`, returned when ``config.output_attentions=True``):
|
||||
Tuple of :obj:`tf.Tensor` (one for each layer) of shape
|
||||
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
|
||||
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
||||
heads.
|
||||
|
||||
Examples::
|
||||
|
||||
@ -505,18 +540,7 @@ class TFCTRLLMHeadModel(TFCTRLPreTrainedModel):
|
||||
outputs = model(input_ids, labels=input_ids)
|
||||
loss, logits = outputs[:2]
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, config, *inputs, **kwargs):
|
||||
super().__init__(config, *inputs, **kwargs)
|
||||
self.transformer = TFCTRLMainLayer(config, name="transformer")
|
||||
|
||||
self.lm_head = TFCTRLLMHead(config, self.transformer.w, name="lm_head")
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head.input_embeddings
|
||||
|
||||
def call(self, inputs, **kwargs):
|
||||
"""
|
||||
transformer_outputs = self.transformer(inputs, **kwargs)
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user