Add type hints transfoxl (#16267)

* Add type hint for pt transfo_xl model

* Add type hint for tf transfo_xl model
This commit is contained in:
Jack McDonald 2022-03-21 23:04:13 +08:00 committed by GitHub
parent 2afe9cd279
commit 460f36d352
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 23 additions and 21 deletions

View File

@ -18,8 +18,9 @@
"""
from dataclasses import dataclass
from typing import List, Optional, Tuple
from typing import List, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...file_utils import (
@ -29,6 +30,7 @@ from ...file_utils import (
add_start_docstrings_to_model_forward,
)
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
@ -1077,17 +1079,17 @@ class TFTransfoXLForSequenceClassification(TFTransfoXLPreTrainedModel, TFSequenc
)
def call(
self,
input_ids=None,
mems=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
labels=None,
training=False,
input_ids: Optional[TFModelInputType] = None,
mems: Optional[List[tf.Tensor]] = None,
head_mask: Optional[Union[np.ndarray, tf.Tensor]] = None,
inputs_embeds: Optional[Union[np.ndarray, tf.Tensor]] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[Union[np.ndarray, tf.Tensor]] = None,
training: Optional[bool] = False,
**kwargs,
):
) -> Union[Tuple, TFTransfoXLSequenceClassifierOutputWithPast]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the cross entropy classification loss. Indices should be in `[0, ...,

View File

@ -19,7 +19,7 @@
"""
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
@ -1215,15 +1215,15 @@ class TransfoXLForSequenceClassification(TransfoXLPreTrainedModel):
)
def forward(
self,
input_ids=None,
mems=None,
head_mask=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
input_ids: Optional[torch.Tensor] = None,
mems: Optional[List[torch.FloatTensor]] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TransfoXLSequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,