mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-03 03:31:05 +06:00
tf model [WIP]
This commit is contained in:
parent
248314772f
commit
45dc04f33d
@ -111,7 +111,7 @@ class MultiHeadAttention(torch.nn.Module):
|
||||
v = self.split_into_heads(v, batch_size)
|
||||
if layer_past is not None:
|
||||
past_key, past_value = layer_past[0], layer_past[1]
|
||||
k = torch.cat((past_key, k), dim=-1)
|
||||
k = torch.cat((past_key, k), dim=-2)
|
||||
v = torch.cat((past_value, v), dim=-2)
|
||||
present = torch.stack((k, v))
|
||||
|
||||
@ -167,25 +167,25 @@ class EncoderLayer(torch.nn.Module):
|
||||
|
||||
|
||||
class CTRLPreTrainedModel(PreTrainedModel):
|
||||
""" An abstract class to handle weights initialization and
|
||||
a simple interface for dowloading and loading pretrained models.
|
||||
"""
|
||||
config_class = CTRLConfig
|
||||
pretrained_model_archive_map = CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
base_model_prefix = "transformer"
|
||||
""" An abstract class to handle weights initialization and
|
||||
a simple interface for dowloading and loading pretrained models.
|
||||
"""
|
||||
config_class = CTRLConfig
|
||||
pretrained_model_archive_map = CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
base_model_prefix = "transformer"
|
||||
|
||||
def _init_weights(self, module):
|
||||
""" Initialize the weights.
|
||||
"""
|
||||
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
def _init_weights(self, module):
|
||||
""" Initialize the weights.
|
||||
"""
|
||||
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
CTRL_START_DOCSTRING = r""" CTRL model was proposed in
|
||||
|
475
transformers/modeling_tf_ctrl.py
Normal file
475
transformers/modeling_tf_ctrl.py
Normal file
@ -0,0 +1,475 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2018 Salesforce and HuggingFace Inc. team.
|
||||
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" TF 2.0 CTRL model."""
|
||||
|
||||
from __future__ import absolute_import, division, print_function, unicode_literals
|
||||
|
||||
import logging
|
||||
import os
|
||||
import sys
|
||||
from io import open
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from .configuration_ctrl import CTRLConfig
|
||||
from .modeling_tf_utils import TFPreTrainedModel, get_initializer
|
||||
from .file_utils import add_start_docstrings
|
||||
from .modeling_tf_pytorch_utils import load_pytorch_checkpoint_in_tf2_model
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP = {"ctrl": "https://s3.amazonaws.com/models.huggingface.co/bert/ctrl-tf_model.h5"}
|
||||
|
||||
|
||||
def angle_defn(pos, i, d_model_size):
|
||||
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model_size))
|
||||
return pos * angle_rates
|
||||
|
||||
def positional_encoding(position, d_model_size, dtype):
|
||||
# create the sinusoidal pattern for the positional encoding
|
||||
angle_rads = angle_defn(np.arange(position)[:, np.newaxis],
|
||||
np.arange(d_model_size)[np.newaxis, :],
|
||||
d_model_size)
|
||||
|
||||
sines = np.sin(angle_rads[:, 0::2])
|
||||
cosines = np.cos(angle_rads[:, 1::2])
|
||||
|
||||
pos_encoding = tf.cast(np.concatenate([sines, cosines], axis=-1)[np.newaxis, ...], dtype=tf.float32)
|
||||
return pos_encoding
|
||||
|
||||
def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=None):
|
||||
# calculate attention
|
||||
matmul_qk = tf.matmul(q, k, transpose_b=True)
|
||||
|
||||
dk = tf.cast(tf.shape(k)[-1], tf.float32)
|
||||
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
|
||||
|
||||
if mask is not None:
|
||||
scaled_attention_logits += (mask * -1e4)
|
||||
|
||||
if attention_mask is not None:
|
||||
# Apply the attention mask
|
||||
scaled_attention_logits = scaled_attention_logits + attention_mask
|
||||
|
||||
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
|
||||
|
||||
# Mask heads if we want to
|
||||
if head_mask is not None:
|
||||
attention_weights = attention_weights * head_mask
|
||||
|
||||
output = tf.matmul(attention_weights, v)
|
||||
|
||||
return output, attention_weights
|
||||
|
||||
|
||||
class TFMultiHeadAttention(tf.keras.layers.Layer):
|
||||
def __init__(self, d_model_size, num_heads, output_attentions=False, **kwargs):
|
||||
super(TFMultiHeadAttention, self).__init__(**kwargs)
|
||||
self.output_attentions = output_attentions
|
||||
self.num_heads = num_heads
|
||||
self.d_model_size = d_model_size
|
||||
|
||||
self.depth = int(d_model_size / self.num_heads)
|
||||
|
||||
self.Wq = tf.keras.layers.Dense(d_model_size, name='Wq')
|
||||
self.Wk = tf.keras.layers.Dense(d_model_size, name='Wk')
|
||||
self.Wv = tf.keras.layers.Dense(d_model_size, name='Wv')
|
||||
|
||||
self.dense = tf.keras.layers.Dense(d_model_size, name='dense')
|
||||
|
||||
def split_into_heads(self, x, batch_size):
|
||||
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
|
||||
return tf.transpose(x, perm=[0, 2, 1, 3])
|
||||
|
||||
def call(self, inputs, training=False)
|
||||
v, k, q, mask, layer_past, attention_mask, head_mask = inputs
|
||||
batch_size = q.shape[0]
|
||||
|
||||
q = self.Wq(q)
|
||||
k = self.Wk(k)
|
||||
v = self.Wv(v)
|
||||
|
||||
q = self.split_into_heads(q, batch_size)
|
||||
k = self.split_into_heads(k, batch_size)
|
||||
v = self.split_into_heads(v, batch_size)
|
||||
if layer_past is not None:
|
||||
past_key, past_value = tf.unstack(layer_past, axis=1)
|
||||
k = tf.concat((past_key, k), dim=-2)
|
||||
v = tf.concat((past_value, v), dim=-2)
|
||||
present = tf.stack((k, v), axis=1)
|
||||
|
||||
output = scaled_dot_product_attention(q, k, v, mask, attention_mask, head_mask)
|
||||
scaled_attention = tf.transpose(output[0], perm=[0, 2, 1, 3])
|
||||
attn = output[1]
|
||||
original_size_attention = tf.reshape(scaled_attention, (batch_size, -1, self.d_model_size))
|
||||
output = self.dense(original_size_attention)
|
||||
|
||||
outputs = (output, present)
|
||||
if self.output_attentions:
|
||||
outputs = outputs + (attn,)
|
||||
return outputs
|
||||
|
||||
|
||||
|
||||
def point_wise_feed_forward_network(d_model_size, dff):
|
||||
return tf.keras.Sequential([tf.keras.layers.Dense(dff, activation='relu'),
|
||||
tf.keras.layers.Dense(d_model_size)])
|
||||
|
||||
|
||||
class TFEncoderLayer(tf.keras.layers.Layer):
|
||||
def __init__(self, d_model_size, num_heads, dff, rate=0.1, output_attentions=False, **kwargs):
|
||||
super(TFEncoderLayer, self).__init__(**kwargs)
|
||||
|
||||
self.multi_head_attention = MultiHeadAttention(d_model_size, num_heads, output_attentions)
|
||||
self.ffn = point_wise_feed_forward_network(d_model_size, dff)
|
||||
|
||||
self.layernorm1 = torch.nn.LayerNorm(d_model_size, eps=1e-6)
|
||||
self.layernorm2 = torch.nn.LayerNorm(d_model_size, eps=1e-6)
|
||||
|
||||
self.dropout1 = torch.nn.Dropout(rate)
|
||||
self.dropout2 = torch.nn.Dropout(rate)
|
||||
|
||||
def call(self, inputs, training=False):
|
||||
x, mask, layer_past, attention_mask, head_mask = inputs
|
||||
normed = self.layernorm1(x)
|
||||
attn_outputs = self.multi_head_attention(normed, normed, normed, mask,
|
||||
layer_past=layer_past,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask)
|
||||
attn_output = attn_outputs[0]
|
||||
attn_output = self.dropout1(attn_output, training=training)
|
||||
out1 = x + attn_output
|
||||
|
||||
out2 = self.layernorm2(out1)
|
||||
ffn_output = self.ffn(out2)
|
||||
ffn_output = self.dropout2(ffn_output, training=training)
|
||||
out2 = out1 + ffn_output
|
||||
|
||||
outputs = (out2,) + attn_outputs[1:]
|
||||
return outputs
|
||||
|
||||
|
||||
class TFCTRLPreTrainedModel(TFPreTrainedModel):
|
||||
""" An abstract class to handle weights initialization and
|
||||
a simple interface for dowloading and loading pretrained models.
|
||||
"""
|
||||
config_class = CTRLConfig
|
||||
pretrained_model_archive_map = TF_CTRL_PRETRAINED_MODEL_ARCHIVE_MAP
|
||||
base_model_prefix = "transformer"
|
||||
load_pt_weights = load_bert_pt_weights_in_tf2
|
||||
|
||||
def _init_weights(self, module):
|
||||
""" Initialize the weights.
|
||||
"""
|
||||
if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
||||
if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
|
||||
module.bias.data.zero_()
|
||||
elif isinstance(module, nn.LayerNorm):
|
||||
module.bias.data.zero_()
|
||||
module.weight.data.fill_(1.0)
|
||||
|
||||
|
||||
CTRL_START_DOCSTRING = r""" CTRL model was proposed in
|
||||
`CTRL: A Conditional Transformer Language Model for Controllable Generation`_
|
||||
by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
|
||||
It's a causal (unidirectional) transformer pre-trained using language modeling on a very large
|
||||
corpus of ~140 GB of text data with the first token reserved as a control code (such as Links, Books, Wikipedia etc.).
|
||||
|
||||
This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
|
||||
refer to the PyTorch documentation for all matter related to general usage and behavior.
|
||||
|
||||
.. _`CTRL: A Conditional Transformer Language Model for Controllable Generation`:
|
||||
https://www.github.com/salesforce/ctrl
|
||||
|
||||
.. _`torch.nn.Module`:
|
||||
https://pytorch.org/docs/stable/nn.html#module
|
||||
|
||||
Parameters:
|
||||
config (:class:`~transformers.CTRLConfig`): Model configuration class with all the parameters of the model.
|
||||
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
||||
Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
|
||||
"""
|
||||
|
||||
CTRL_INPUTS_DOCSTRING = r""" Inputs:
|
||||
**input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
||||
Indices of input sequence tokens in the vocabulary.
|
||||
CTRL is a model with absolute position embeddings so it's usually advised to pad the inputs on
|
||||
the right rather than the left.
|
||||
Indices can be obtained using :class:`transformers.CTRLTokenizer`.
|
||||
See :func:`transformers.PreTrainedTokenizer.encode` and
|
||||
:func:`transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
|
||||
**past**:
|
||||
list of ``torch.FloatTensor`` (one for each layer):
|
||||
that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
|
||||
(see `past` output below). Can be used to speed up sequential decoding.
|
||||
**attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
|
||||
Mask to avoid performing attention on padding token indices.
|
||||
Mask values selected in ``[0, 1]``:
|
||||
``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
|
||||
**token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
||||
A parallel sequence of tokens (can be used to indicate various portions of the inputs).
|
||||
The embeddings from these tokens will be summed with the respective token embeddings.
|
||||
Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
|
||||
**position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
||||
Indices of positions of each input sequence tokens in the position embeddings.
|
||||
Selected in the range ``[0, config.max_position_embeddings - 1]``.
|
||||
**head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
|
||||
Mask to nullify selected heads of the self-attention modules.
|
||||
Mask values selected in ``[0, 1]``:
|
||||
``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
|
||||
"""
|
||||
|
||||
@add_start_docstrings("The bare CTRL Model transformer outputting raw hidden-states without any specific head on top.",
|
||||
CTRL_START_DOCSTRING, CTRL_INPUTS_DOCSTRING)
|
||||
class TFCTRLModel(TFCTRLPreTrainedModel):
|
||||
r"""
|
||||
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
||||
**last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
|
||||
Sequence of hidden-states at the last layer of the model.
|
||||
**past**:
|
||||
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
||||
that contains pre-computed hidden-states (key and values in the attention blocks).
|
||||
Can be used (see `past` input) to speed up sequential decoding.
|
||||
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
||||
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
||||
of shape ``(batch_size, sequence_length, hidden_size)``:
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
||||
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
|
||||
Examples::
|
||||
|
||||
tokenizer = CTRLTokenizer.from_pretrained('ctrl')
|
||||
model = CTRLModel.from_pretrained('ctrl')
|
||||
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids)
|
||||
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||
|
||||
"""
|
||||
def __init__(self, config, **kwargs):
|
||||
super(TFCTRLModel, self).__init__(**kwargs)
|
||||
self.output_hidden_states = config.output_hidden_states
|
||||
self.d_model_size = config.n_embd
|
||||
self.num_layers = config.n_layer
|
||||
|
||||
self.pos_encoding = positional_encoding(config.n_positions, self.d_model_size, torch.float)
|
||||
|
||||
self.output_attentions = config.output_attentions
|
||||
|
||||
self.w = nn.Embedding(config.vocab_size, config.n_embd)
|
||||
|
||||
|
||||
self.dropout = nn.Dropout(config.embd_pdrop)
|
||||
self.h = nn.ModuleList([EncoderLayer(config.n_embd,
|
||||
config.n_head,
|
||||
config.dff,
|
||||
config.resid_pdrop,
|
||||
config.output_attentions) for _ in range(config.n_layer)])
|
||||
self.layernorm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
||||
|
||||
self.init_weights()
|
||||
|
||||
def _resize_token_embeddings(self, new_num_tokens):
|
||||
self.w = self._get_resized_embeddings(self.w, new_num_tokens)
|
||||
return self.w
|
||||
|
||||
def _prune_heads(self, heads_to_prune):
|
||||
""" Prunes heads of the model.
|
||||
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
||||
"""
|
||||
for layer, heads in heads_to_prune.items():
|
||||
self.h[layer].attn.prune_heads(heads)
|
||||
|
||||
def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None):
|
||||
input_shape = input_ids.size()
|
||||
input_ids = input_ids.view(-1, input_shape[-1])
|
||||
if token_type_ids is not None:
|
||||
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
||||
if position_ids is not None:
|
||||
position_ids = position_ids.view(-1, input_shape[-1])
|
||||
|
||||
if past is None:
|
||||
past_length = 0
|
||||
past = [None] * len(self.h)
|
||||
else:
|
||||
past_length = past[0][0].size(-2)
|
||||
if position_ids is None:
|
||||
position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
|
||||
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
||||
|
||||
# Attention mask.
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask.view(-1, input_shape[-1])
|
||||
# We create a 3D attention mask from a 2D tensor mask.
|
||||
# Sizes are [batch_size, 1, 1, to_seq_length]
|
||||
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
||||
# this attention mask is more simple than the triangular masking of causal attention
|
||||
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
||||
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
||||
|
||||
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
||||
# masked positions, this operation will create a tensor which is 0.0 for
|
||||
# positions we want to attend and -10000.0 for masked positions.
|
||||
# Since we are adding it to the raw scores before the softmax, this is
|
||||
# effectively the same as removing these entirely.
|
||||
attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
|
||||
attention_mask = (1.0 - attention_mask) * -10000.0
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# head_mask has shape n_layer x batch x n_heads x N x N
|
||||
if head_mask is not None:
|
||||
if head_mask.dim() == 1:
|
||||
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
||||
head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
|
||||
elif head_mask.dim() == 2:
|
||||
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1) # We can specify head_mask for each layer
|
||||
head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
|
||||
else:
|
||||
head_mask = [None] * self.config.n_layer
|
||||
|
||||
x = self.w(input_ids)
|
||||
# x = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded
|
||||
seq_len = input_ids.shape[1]
|
||||
mask = torch.triu(torch.ones(seq_len, seq_len), 1).to(x.device)
|
||||
|
||||
x *= np.sqrt(self.d_model_size)
|
||||
|
||||
pos_x = self.pos_encoding[position_ids, :].to(x.device)
|
||||
x += pos_x
|
||||
|
||||
x = self.dropout(x)
|
||||
|
||||
output_shape = input_shape + (x.size(-1),)
|
||||
presents = ()
|
||||
all_hidden_states = ()
|
||||
all_attentions = []
|
||||
for i, (h, layer_past) in enumerate(zip(self.h, past)):
|
||||
if self.output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (x.view(*output_shape),)
|
||||
outputs = h(x,
|
||||
mask,
|
||||
layer_past=layer_past,
|
||||
attention_mask=attention_mask,
|
||||
head_mask=head_mask[i])
|
||||
x, present = outputs[:2]
|
||||
presents = presents + (present,)
|
||||
|
||||
if self.output_attentions:
|
||||
all_attentions.append(outputs[2])
|
||||
|
||||
x = self.layernorm(x)
|
||||
x = x.view(*output_shape)
|
||||
if self.output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (x,)
|
||||
|
||||
outputs = (x, presents)
|
||||
if self.output_hidden_states:
|
||||
outputs = outputs + (all_hidden_states,)
|
||||
if self.output_attentions:
|
||||
# let the number of heads free (-1) so we can extract attention even after head pruning
|
||||
attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
|
||||
all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
|
||||
outputs = outputs + (all_attentions,)
|
||||
return outputs
|
||||
|
||||
|
||||
@add_start_docstrings("""The CTRL Model transformer with a language modeling head on top
|
||||
(linear layer with weights tied to the input embeddings). """, CTRL_START_DOCSTRING, CTRL_INPUTS_DOCSTRING)
|
||||
class CTRLLMHeadModel(CTRLPreTrainedModel):
|
||||
r"""
|
||||
**labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
|
||||
Labels for language modeling.
|
||||
Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
|
||||
Indices are selected in ``[-1, 0, ..., config.vocab_size]``
|
||||
All labels set to ``-1`` are ignored (masked), the loss is only
|
||||
computed for labels in ``[0, ..., config.vocab_size]``
|
||||
|
||||
Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
|
||||
**loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
|
||||
Language modeling loss.
|
||||
**prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
**past**:
|
||||
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
||||
that contains pre-computed hidden-states (key and values in the attention blocks).
|
||||
Can be used (see `past` input) to speed up sequential decoding.
|
||||
**hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
|
||||
list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
|
||||
of shape ``(batch_size, sequence_length, hidden_size)``:
|
||||
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
||||
**attentions**: (`optional`, returned when ``config.output_attentions=True``)
|
||||
list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
|
||||
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
|
||||
|
||||
Examples::
|
||||
|
||||
import torch
|
||||
from transformers import CTRLTokenizer, CTRLLMHeadModel
|
||||
|
||||
tokenizer = CTRLTokenizer.from_pretrained('ctrl')
|
||||
model = CTRLLMHeadModel.from_pretrained('ctrl')
|
||||
|
||||
input_ids = torch.tensor(tokenizer.encode("Links Hello, my dog is cute")).unsqueeze(0) # Batch size 1
|
||||
outputs = model(input_ids, labels=input_ids)
|
||||
loss, logits = outputs[:2]
|
||||
|
||||
"""
|
||||
def __init__(self, config):
|
||||
super(CTRLLMHeadModel, self).__init__(config)
|
||||
self.transformer = CTRLModel(config)
|
||||
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True)
|
||||
|
||||
self.init_weights()
|
||||
self.tie_weights()
|
||||
|
||||
def tie_weights(self):
|
||||
""" Make sure we are sharing the input and output embeddings.
|
||||
Export to TorchScript can't handle parameter sharing so we are cloning them instead.
|
||||
"""
|
||||
self._tie_or_clone_weights(self.lm_head, self.transformer.w)
|
||||
|
||||
def forward(self, input_ids, past=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None,
|
||||
labels=None):
|
||||
transformer_outputs = self.transformer(input_ids,
|
||||
past=past,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask)
|
||||
|
||||
hidden_states = transformer_outputs[0]
|
||||
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
|
||||
outputs = (lm_logits,) + transformer_outputs[1:]
|
||||
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss(ignore_index=-1)
|
||||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
|
||||
shift_labels.view(-1))
|
||||
outputs = (loss,) + outputs
|
||||
|
||||
return outputs # (loss), lm_logits, presents, (all hidden_states), (attentions)
|
Loading…
Reference in New Issue
Block a user