add distilbert tokenizer

This commit is contained in:
thomwolf 2019-08-30 22:20:51 +02:00
parent 7a1f174a9d
commit 455a4c842c

View File

@ -25,6 +25,7 @@ from .tokenization_transfo_xl import TransfoXLTokenizer
from .tokenization_xlnet import XLNetTokenizer
from .tokenization_xlm import XLMTokenizer
from .tokenization_roberta import RobertaTokenizer
from.tokenization_distilbert import DistilBertTokenizer
logger = logging.getLogger(__name__)
@ -39,13 +40,14 @@ class AutoTokenizer(object):
The tokenizer class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: DistilBertTokenizer (DistilBert model)
- contains `roberta`: RobertaTokenizer (RoBERTa model)
- contains `bert`: BertTokenizer (Bert model)
- contains `openai-gpt`: OpenAIGPTTokenizer (OpenAI GPT model)
- contains `gpt2`: GPT2Tokenizer (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLTokenizer (Transformer-XL model)
- contains `xlnet`: XLNetTokenizer (XLNet model)
- contains `xlm`: XLMTokenizer (XLM model)
- contains `roberta`: RobertaTokenizer (RoBERTa model)
This class cannot be instantiated using `__init__()` (throw an error).
"""
@ -60,13 +62,14 @@ class AutoTokenizer(object):
The tokenizer class to instantiate is selected as the first pattern matching
in the `pretrained_model_name_or_path` string (in the following order):
- contains `distilbert`: DistilBertTokenizer (DistilBert model)
- contains `roberta`: RobertaTokenizer (XLM model)
- contains `bert`: BertTokenizer (Bert model)
- contains `openai-gpt`: OpenAIGPTTokenizer (OpenAI GPT model)
- contains `gpt2`: GPT2Tokenizer (OpenAI GPT-2 model)
- contains `transfo-xl`: TransfoXLTokenizer (Transformer-XL model)
- contains `xlnet`: XLNetTokenizer (XLNet model)
- contains `xlm`: XLMTokenizer (XLM model)
- contains `roberta`: RobertaTokenizer (XLM model)
Params:
pretrained_model_name_or_path: either:
@ -95,6 +98,8 @@ class AutoTokenizer(object):
config = AutoTokenizer.from_pretrained('./test/bert_saved_model/') # E.g. tokenizer was saved using `save_pretrained('./test/saved_model/')`
"""
if 'distilbert' in pretrained_model_name_or_path:
return DistilBertTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
if 'roberta' in pretrained_model_name_or_path:
return RobertaTokenizer.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs)
elif 'bert' in pretrained_model_name_or_path: