Include output embedding as well with include_embedding flag (#37935)

* Include output embedding as well with `include_embedding` flag

Summary:
att

Test Plan:
python tests/quantization/torchao_integration/test_torchao.py -k test_include_embedding

Reviewers:

Subscribers:

Tasks:

Tags:

* format

* rename include_embedding to include_input_output_embeddings

---------

Co-authored-by: Mohamed Mekkouri <93391238+MekkCyber@users.noreply.github.com>
This commit is contained in:
Jerry Zhang 2025-05-16 03:06:11 -07:00 committed by GitHub
parent 34c1e29cdd
commit 44fa04ae8d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 17 additions and 10 deletions

View File

@ -185,10 +185,14 @@ class TorchAoHfQuantizer(HfQuantizer):
self.modules_to_not_convert = self.get_modules_to_not_convert(
model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules
)
if self.quantization_config.include_embedding:
if self.quantization_config.include_input_output_embeddings:
input_emb = model.get_input_embeddings()
input_emb_names = [name for name, module in model.named_modules() if id(module) == id(input_emb)]
self.modules_to_not_convert = [x for x in self.modules_to_not_convert if x not in input_emb_names]
output_emb = model.get_output_embeddings()
output_emb_names = [name for name, module in model.named_modules() if id(module) == id(output_emb)]
self.modules_to_not_convert = [
x for x in self.modules_to_not_convert if x not in input_emb_names + output_emb_names
]
return
def check_quantized_param(
@ -213,7 +217,7 @@ class TorchAoHfQuantizer(HfQuantizer):
# we only quantize the weight of nn.Linear and nn.Embedding
module, tensor_name = get_module_from_name(model, param_name)
_QUANTIZABLE = [torch.nn.Linear]
if self.quantization_config.include_embedding:
if self.quantization_config.include_input_output_embeddings:
_QUANTIZABLE.append(torch.nn.Embedding)
return isinstance(module, tuple(_QUANTIZABLE)) and (tensor_name == "weight")

View File

@ -1554,7 +1554,7 @@ class TorchAoConfig(QuantizationConfigMixin):
quant_type: Union[str, "AOBaseConfig"] # noqa: F821
modules_to_not_convert: Optional[List]
quant_type_kwargs: Dict[str, Any]
include_embedding: bool
include_input_output_embeddings: bool
untie_embedding_weights: bool
"""This is a config class for torchao quantization/sparsity techniques.
@ -1617,7 +1617,7 @@ class TorchAoConfig(QuantizationConfigMixin):
self,
quant_type: Union[str, "AOBaseConfig"], # noqa: F821
modules_to_not_convert: Optional[List] = None,
include_embedding: bool = False,
include_input_output_embeddings: bool = False,
untie_embedding_weights: bool = False,
**kwargs,
):
@ -1625,7 +1625,7 @@ class TorchAoConfig(QuantizationConfigMixin):
self.quant_type = quant_type
self.modules_to_not_convert = modules_to_not_convert
self.quant_type_kwargs = kwargs.get("quant_type_kwargs", kwargs)
self.include_embedding = include_embedding
self.include_input_output_embeddings = include_input_output_embeddings
self.untie_embedding_weights = untie_embedding_weights
self.post_init()

View File

@ -201,7 +201,7 @@ class TorchAoTest(unittest.TestCase):
self.assertTrue(tokenizer.decode(output[0], skip_special_tokens=True) in EXPECTED_OUTPUT)
@require_torchao_version_greater_or_equal("0.11.0")
def test_include_embedding(self):
def test_include_input_output_embeddings(self):
weight_dtype = torch.int8
granularity = PerAxis(0)
mapping_type = MappingType.ASYMMETRIC
@ -210,9 +210,11 @@ class TorchAoTest(unittest.TestCase):
granularity=granularity,
mapping_type=mapping_type,
)
config = AOPerModuleConfig({"_default": None, "model.embed_tokens": embedding_config})
# need set `include_embedding` to True
quant_config = TorchAoConfig(quant_type=config, include_embedding=True)
config = AOPerModuleConfig(
{"_default": None, "model.embed_tokens": embedding_config, "lm_head": embedding_config}
)
# need set `include_input_output_embeddings` to True
quant_config = TorchAoConfig(quant_type=config, include_input_output_embeddings=True)
quantized_model = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map=self.device,
@ -220,6 +222,7 @@ class TorchAoTest(unittest.TestCase):
)
# making sure embedding is quantized
self.assertTrue(isinstance(quantized_model.model.embed_tokens.weight, AffineQuantizedTensor))
self.assertTrue(isinstance(quantized_model.lm_head.weight, AffineQuantizedTensor))
tokenizer = AutoTokenizer.from_pretrained(self.model_name)
input_ids = tokenizer(self.input_text, return_tensors="pt").to(self.device)