Generate - update cookie cutters to not initialize cache with training and gradient checkpointing (#21759)

This commit is contained in:
Joao Gante 2023-02-24 11:21:00 +00:00 committed by GitHub
parent 087436c98e
commit 440f39754b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -525,11 +525,17 @@ class {{cookiecutter.camelcase_modelname}}Encoder(nn.Module):
output_hidden_states=False,
return_dict=True,
):
if self.gradient_checkpointing and self.training and use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
@ -538,13 +544,6 @@ class {{cookiecutter.camelcase_modelname}}Encoder(nn.Module):
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, past_key_value, output_attentions)
@ -2525,6 +2524,10 @@ class {{cookiecutter.camelcase_modelname}}Decoder({{cookiecutter.camelcase_model
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# decoder layers
if self.gradient_checkpointing and self.training and use_cache:
logger.warning("`use_cache = True` is incompatible with gradient checkpointing`. Setting `use_cache = False`...")
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
@ -2547,11 +2550,6 @@ class {{cookiecutter.camelcase_modelname}}Decoder({{cookiecutter.camelcase_model
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning("`use_cache = True` is incompatible with gradient checkpointing`. Setting `use_cache = False`...")
use_cache = False
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value