mirror of
https://github.com/huggingface/transformers.git
synced 2025-07-04 05:10:06 +06:00
Fix typos in translated quicktour docs (#35302)
* fix: quicktour typos * fix: one more
This commit is contained in:
parent
deac971c46
commit
4302b27719
@ -347,8 +347,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
@ -356,8 +356,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -383,8 +383,8 @@ Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
@ -392,8 +392,8 @@ Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -385,8 +385,8 @@ Una característica particularmente interesante de 🤗 Transformers es la habil
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
@ -394,8 +394,8 @@ Una característica particularmente interesante de 🤗 Transformers es la habil
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -354,8 +354,8 @@ Une fonctionnalité particulièrement cool 🤗 Transformers est la possibilité
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
@ -363,8 +363,8 @@ Une fonctionnalité particulièrement cool 🤗 Transformers est la possibilité
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -385,8 +385,8 @@ Una caratteristica particolarmente interessante di 🤗 Transformers è la sua a
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
@ -394,8 +394,8 @@ Una caratteristica particolarmente interessante di 🤗 Transformers è la sua a
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -386,8 +386,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
|
||||
</pt>
|
||||
@ -396,8 +396,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -361,8 +361,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
@ -370,8 +370,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
@ -383,8 +383,8 @@ Um recurso particularmente interessante dos 🤗 Transformers é a capacidade de
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
@ -392,8 +392,8 @@ Um recurso particularmente interessante dos 🤗 Transformers é a capacidade de
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
@ -366,8 +366,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
```py
|
||||
>>> from transformers import AutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
```
|
||||
</pt>
|
||||
<tf>
|
||||
@ -375,8 +375,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
|
||||
```py
|
||||
>>> from transformers import TFAutoModel
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
|
||||
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
|
||||
```
|
||||
</tf>
|
||||
</frameworkcontent>
|
||||
|
Loading…
Reference in New Issue
Block a user