Fix typos in translated quicktour docs (#35302)

* fix: quicktour typos

* fix: one more
This commit is contained in:
Jacky Lee 2024-12-17 09:32:00 -08:00 committed by GitHub
parent deac971c46
commit 4302b27719
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 47 additions and 47 deletions

View File

@ -347,8 +347,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</pt>
<tf>
@ -356,8 +356,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</tf>
</frameworkcontent>

View File

@ -383,8 +383,8 @@ Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</pt>
<tf>
@ -392,8 +392,8 @@ Ein besonders cooles 🤗 Transformers-Feature ist die Möglichkeit, ein Modell
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</tf>
</frameworkcontent>

View File

@ -385,8 +385,8 @@ Una característica particularmente interesante de 🤗 Transformers es la habil
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</pt>
<tf>
@ -394,8 +394,8 @@ Una característica particularmente interesante de 🤗 Transformers es la habil
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</tf>
</frameworkcontent>

View File

@ -354,8 +354,8 @@ Une fonctionnalité particulièrement cool 🤗 Transformers est la possibilité
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</pt>
<tf>
@ -363,8 +363,8 @@ Une fonctionnalité particulièrement cool 🤗 Transformers est la possibilité
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</tf>
</frameworkcontent>

View File

@ -385,8 +385,8 @@ Una caratteristica particolarmente interessante di 🤗 Transformers è la sua a
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</pt>
<tf>
@ -394,8 +394,8 @@ Una caratteristica particolarmente interessante di 🤗 Transformers è la sua a
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</tf>
</frameworkcontent>

View File

@ -386,8 +386,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</pt>
@ -396,8 +396,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</tf>
</frameworkcontent>

View File

@ -361,8 +361,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</pt>
<tf>
@ -370,8 +370,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</tf>
</frameworkcontent>

View File

@ -383,8 +383,8 @@ Um recurso particularmente interessante dos 🤗 Transformers é a capacidade de
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</pt>
<tf>
@ -392,8 +392,8 @@ Um recurso particularmente interessante dos 🤗 Transformers é a capacidade de
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</tf>
</frameworkcontent>

View File

@ -366,8 +366,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</pt>
<tf>
@ -375,8 +375,8 @@ tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725],
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</tf>
</frameworkcontent>