mirror of
https://github.com/huggingface/transformers.git
synced 2025-08-01 02:31:11 +06:00
Added model cards for Romanian BERT models (#4437)
* Create README.md * Create README.md * Update README.md * Update README.md * Apply suggestions from code review Co-authored-by: Julien Chaumond <chaumond@gmail.com>
This commit is contained in:
parent
54065d68b8
commit
42e8fbfc51
@ -0,0 +1,48 @@
|
|||||||
|
---
|
||||||
|
language: romanian
|
||||||
|
---
|
||||||
|
|
||||||
|
# bert-base-romanian-cased-v1
|
||||||
|
|
||||||
|
The BERT **base**, **cased** model for Romanian, trained on a 15GB corpus, version 
|
||||||
|
|
||||||
|
### How to use
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers import AutoTokenizer, AutoModel
|
||||||
|
import torch
|
||||||
|
# load tokenizer and model
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("dumitrescustefan/bert-base-romanian-cased-v1")
|
||||||
|
model = AutoModel.from_pretrained("dumitrescustefan/bert-base-romanian-cased-v1")
|
||||||
|
# tokenize a sentence and run through the model
|
||||||
|
input_ids = torch.tensor(tokenizer.encode("Acesta este un test.", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||||
|
outputs = model(input_ids)
|
||||||
|
# get encoding
|
||||||
|
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||||
|
```
|
||||||
|
|
||||||
|
### Evaluation
|
||||||
|
|
||||||
|
Evaluation is performed on Universal Dependencies [Romanian RRT](https://universaldependencies.org/treebanks/ro_rrt/index.html) UPOS, XPOS and LAS, and on a NER task based on [RONEC](https://github.com/dumitrescustefan/ronec). Details, as well as more in-depth tests not shown here, are given in the dedicated [evaluation page](https://github.com/dumitrescustefan/Romanian-Transformers/tree/master/evaluation/README.md).
|
||||||
|
|
||||||
|
The baseline is the [Multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) model ``bert-base-multilingual-(un)cased``, as at the time of writing it was the only available BERT model that works on Romanian.
|
||||||
|
|
||||||
|
| Model | UPOS | XPOS | NER | LAS |
|
||||||
|
|--------------------------------|:-----:|:------:|:-----:|:-----:|
|
||||||
|
| bert-base-multilingual-cased | 97.87 | 96.16 | 84.13 | 88.04 |
|
||||||
|
| bert-base-romanian-cased-v1 | **98.00** | **96.46** | **85.88** | **89.69** |
|
||||||
|
|
||||||
|
### Corpus
|
||||||
|
|
||||||
|
The model is trained on the following corpora (stats in the table below are after cleaning):
|
||||||
|
|
||||||
|
| Corpus | Lines(M) | Words(M) | Chars(B) | Size(GB) |
|
||||||
|
|----------- |:--------: |:--------: |:--------: |:--------: |
|
||||||
|
| OPUS | 55.05 | 635.04 | 4.045 | 3.8 |
|
||||||
|
| OSCAR | 33.56 | 1725.82 | 11.411 | 11 |
|
||||||
|
| Wikipedia | 1.54 | 60.47 | 0.411 | 0.4 |
|
||||||
|
| **Total** | **90.15** | **2421.33** | **15.867** | **15.2** |
|
||||||
|
|
||||||
|
#### Acknowledgements
|
||||||
|
|
||||||
|
- We'd like to thank [Sampo Pyysalo](https://github.com/spyysalo) from TurkuNLP for helping us out with the compute needed to pretrain the v1.0 BERT models. He's awesome!
|
@ -0,0 +1,51 @@
|
|||||||
|
---
|
||||||
|
language: romanian
|
||||||
|
---
|
||||||
|
|
||||||
|
# bert-base-romanian-uncased-v1
|
||||||
|
|
||||||
|
The BERT **base**, **uncased** model for Romanian, trained on a 15GB corpus, version 
|
||||||
|
|
||||||
|
### How to use
|
||||||
|
|
||||||
|
```python
|
||||||
|
from transformers import AutoTokenizer, AutoModel
|
||||||
|
import torch
|
||||||
|
|
||||||
|
# load tokenizer and model
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained("dumitrescustefan/bert-base-romanian-uncased-v1", do_lower_case=True)
|
||||||
|
model = AutoModel.from_pretrained("dumitrescustefan/bert-base-romanian-uncased-v1")
|
||||||
|
|
||||||
|
# tokenize a sentence and run through the model
|
||||||
|
input_ids = torch.tensor(tokenizer.encode("Acesta este un test.", add_special_tokens=True)).unsqueeze(0) # Batch size 1
|
||||||
|
outputs = model(input_ids)
|
||||||
|
|
||||||
|
# get encoding
|
||||||
|
last_hidden_states = outputs[0] # The last hidden-state is the first element of the output tuple
|
||||||
|
```
|
||||||
|
|
||||||
|
### Evaluation
|
||||||
|
|
||||||
|
Evaluation is performed on Universal Dependencies [Romanian RRT](https://universaldependencies.org/treebanks/ro_rrt/index.html) UPOS, XPOS and LAS, and on a NER task based on [RONEC](https://github.com/dumitrescustefan/ronec). Details, as well as more in-depth tests not shown here, are given in the dedicated [evaluation page](https://github.com/dumitrescustefan/Romanian-Transformers/tree/master/evaluation/README.md).
|
||||||
|
|
||||||
|
The baseline is the [Multilingual BERT](https://github.com/google-research/bert/blob/master/multilingual.md) model ``bert-base-multilingual-(un)cased``, as at the time of writing it was the only available BERT model that works on Romanian.
|
||||||
|
|
||||||
|
| Model | UPOS | XPOS | NER | LAS |
|
||||||
|
|--------------------------------|:-----:|:------:|:-----:|:-----:|
|
||||||
|
| bert-base-multilingual-uncased | 97.65 | 95.72 | 83.91 | 87.65 |
|
||||||
|
| bert-base-romanian-uncased-v1 | **98.18** | **96.84** | **85.26** | **89.61** |
|
||||||
|
|
||||||
|
### Corpus
|
||||||
|
|
||||||
|
The model is trained on the following corpora (stats in the table below are after cleaning):
|
||||||
|
|
||||||
|
| Corpus | Lines(M) | Words(M) | Chars(B) | Size(GB) |
|
||||||
|
|----------- |:--------: |:--------: |:--------: |:--------: |
|
||||||
|
| OPUS | 55.05 | 635.04 | 4.045 | 3.8 |
|
||||||
|
| OSCAR | 33.56 | 1725.82 | 11.411 | 11 |
|
||||||
|
| Wikipedia | 1.54 | 60.47 | 0.411 | 0.4 |
|
||||||
|
| **Total** | **90.15** | **2421.33** | **15.867** | **15.2** |
|
||||||
|
|
||||||
|
#### Acknowledgements
|
||||||
|
|
||||||
|
- We'd like to thank [Sampo Pyysalo](https://github.com/spyysalo) from TurkuNLP for helping us out with the compute needed to pretrain the v1.0 BERT models. He's awesome!
|
Loading…
Reference in New Issue
Block a user